JPH01183065A - Metal halogen battery - Google Patents

Metal halogen battery

Info

Publication number
JPH01183065A
JPH01183065A JP63002477A JP247788A JPH01183065A JP H01183065 A JPH01183065 A JP H01183065A JP 63002477 A JP63002477 A JP 63002477A JP 247788 A JP247788 A JP 247788A JP H01183065 A JPH01183065 A JP H01183065A
Authority
JP
Japan
Prior art keywords
battery
active layer
metal halogen
positive electrode
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002477A
Other languages
Japanese (ja)
Inventor
Akihiko Hirota
広田 明彦
Kazuo Fushimi
伏見 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63002477A priority Critical patent/JPH01183065A/en
Publication of JPH01183065A publication Critical patent/JPH01183065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To maintain high energy efficiency by using activated carbon fibers whose iodine absorption is 1800-3000mg/g as the active layer of a carbon plastic electrode. CONSTITUTION:In a metal halogen battery, its electrochemical reaction is accelerated with increase in iodine absorption in an active layer. The relation of the discharge overvoltage of a positive electrode to the iodine absorption is not linear function, and the overvoltage is very high below some level (1800mg/g) of the absorption. The absorption is saturated above a certain level (3000mg/g), and the relation of overvoltage to the absorption shows exponential function. By using activated carbon fibers whose iodine absorption is 1800-3000mg/g, preferably 2000-2500mg/g as the active layer of an electrode, the voltage efficiency, coulomb efficiency, and energy efficiency of a battery is stabilized.

Description

【発明の詳細な説明】 A、産業上の利用分野 乙の発明は、シー】・状に形成されたカーボンプラスチ
ックの表面に活性層を形成したカーボンプラスチック電
極を使用して成る金属ハロゲン電池、特に電極の活性層
を改良した金属ハロゲン電池に関するものである。
[Detailed Description of the Invention] A. Industrial Application Field B's invention relates to a metal halogen battery using a carbon plastic electrode having an active layer formed on the surface of carbon plastic formed in the shape of a sheet. This invention relates to a metal halogen battery with an improved electrode active layer.

B0発明の概要 この発明は、金属ハロゲン電池を構成するカーボンプラ
スチック電極の活性層として、ヨウ素吸着量の範囲を限
定した活性炭素繊維を用いたことにより、高いクーロン
効率およびエネルギー効率を安定的に維持できる金属ハ
ロゲン電池を提供したものである。
B0 Summary of the invention This invention stably maintains high coulombic efficiency and energy efficiency by using activated carbon fiber with a limited range of iodine adsorption as the active layer of the carbon plastic electrode that constitutes a metal halogen battery. The present invention provides a metal halogen battery that can be used.

C0従来の技術 金属ハロゲン電池、例えば亜鉛臭素電池は電力貯蔵用2
次電池として開発が進んでいる。
C0 Conventional technology Metal halogen batteries, such as zinc bromine batteries, are used for power storage2
Development is progressing as a next-generation battery.

第4図は、電解液留環形亜鉛臭素電池の基本構成模式図
である。
FIG. 4 is a schematic diagram of the basic configuration of an electrolyte-retained cyclic zinc-bromine battery.

図において、1は電池反応槽、2は正極室、3は負極室
、4は隔膜、5は正極、6は負極、7は正極電解液、8
ば負極電解液、9は正極電解液タンク、10は、負極電
解液タンク、11および12はポンプ、11aおよびl
lbは充放電切替弁である。
In the figure, 1 is a battery reaction tank, 2 is a positive electrode chamber, 3 is a negative electrode chamber, 4 is a diaphragm, 5 is a positive electrode, 6 is a negative electrode, 7 is a positive electrode electrolyte, 8
9 is a negative electrode electrolyte tank, 10 is a negative electrode electrolyte tank, 11 and 12 are pumps, 11a and l
lb is a charge/discharge switching valve.

係る亜鉛臭素電池においては、充放電時には、Z n 
B r 2 F→Z n 十B r 2の反応が進行す
る。
In such a zinc bromine battery, during charging and discharging, Z n
The reaction B r 2 F → Z n + B r 2 proceeds.

充電時においては、式中上の矢印による反応が進行して
、負極では亜鉛が電極表面に電析し、正極においては、
臭素の発生が起こる。発生した臭素は、正極電解液8中
に溶解している4級アンモニウム塩からなる臭素錯化剤
と結合して、臭素錯化物を形成し、正極電解液と分離さ
れる。そして正極電解液タンク9の底部に貯蔵される。
During charging, the reaction shown by the arrow above in the equation progresses, and zinc is deposited on the electrode surface at the negative electrode, and at the positive electrode,
Bromine evolution occurs. The generated bromine combines with a bromine complexing agent made of a quaternary ammonium salt dissolved in the positive electrode electrolyte 8 to form a bromine complex, which is separated from the positive electrode electrolyte. Then, it is stored at the bottom of the positive electrode electrolyte tank 9.

放電時においては、式中下の矢印による反応が進行し、
負極では電極表面上に析出していた亜鉛が溶解する。正
極では、正極電解液タンク9から切換弁11aを介して
、供給させる臭素錯化物を溶解し、臭素を還元する。
During discharge, the reaction shown by the arrow at the bottom of the equation progresses,
At the negative electrode, zinc deposited on the electrode surface is dissolved. At the positive electrode, the bromine complex supplied from the positive electrode electrolyte tank 9 via the switching valve 11a is dissolved to reduce bromine.

ここで亜鉛−臭素電池は、電池のコストの低下、重量エ
ネルギー密度の増大を図るため、耐臭素性の大きいポリ
オレフィン系の樹脂たとえば、ポリエチレンなどにカー
ボンブラック、グラファイトなどの導電性物を添加し、
加熱状態で、混線形成したカーボンプラスチックより構
成されたカーボンプラスチック電極を用いている。
Here, zinc-bromine batteries are made by adding conductive materials such as carbon black and graphite to a polyolefin resin with high bromine resistance, such as polyethylene, in order to reduce the cost of the battery and increase the weight energy density.
A carbon plastic electrode made of carbon plastic that is cross-wired in a heated state is used.

なお、カーボンプラスチック電極をバイポーラ電極とし
て使用する場合は、電解液不浸透性とすることが必要で
ある。
In addition, when using a carbon plastic electrode as a bipolar electrode, it is necessary to make it impermeable to electrolyte.

カーボンプラスチック電極は、一般に表面が平滑に形成
されており、正極での臭素との反応が十分でない。
Carbon plastic electrodes generally have smooth surfaces and do not react sufficiently with bromine at the positive electrode.

このため、臭素との反応を活性化するとともに、電極の
反応面積の増大を図るためカーボンプラスチック電極は
、カーボンプラスチックの表面に活性層を形成して成る
Therefore, in order to activate the reaction with bromine and increase the reaction area of the electrode, the carbon plastic electrode is formed by forming an active layer on the surface of the carbon plastic.

従来、乙の活性層材とし′(は、)工、ノール系ノボラ
ック繊維等を出発原料とする活性炭素l!Ii維を平織
、ニット、フェルト状に形成したシー1−が用いられて
おり、バイポーラ電極の場合はカーボンプラスチックの
片面に押し出し機の冷却3本ロールでラミネートされて
いる。
Conventionally, active layer materials such as activated carbon l! Sea 1-, which is made of Ii fibers formed into plain weave, knit, or felt shapes, is used, and in the case of bipolar electrodes, it is laminated on one side of carbon plastic with three cooling rolls of an extruder.

D0発明が解決しようとする課題 上記のような金属ハロゲン電池の電極において、ラミネ
ートされる活性炭素繊維から成るシートは、1本の繊維
ロールの中でもその特性のバラツキが゛ 大きいという
欠点がある。
D0 Problems to be Solved by the Invention In the electrodes of metal halogen batteries as described above, the laminated sheets made of activated carbon fibers have the disadvantage that their properties vary widely even within a single fiber roll.

従って、それらを活性層に用いた従来の金属ハロゲン電
池の電極では、積層電池を構成し、運転を行っても予定
どおりのクーロン効率およびエネルギー効率が得られな
い場合が多々あるという問題点を有していた。
Therefore, conventional metal halogen battery electrodes that use them in the active layer have the problem that they often do not provide the expected coulombic efficiency and energy efficiency even when a stacked battery is constructed and operated. Was.

E0課題を解決するための手段 この発明においては、金属ハロゲン電池のカーボンプラ
スチック電極の活性層材としてヨウ素吸着量が1800
〜3000mg 7g、好ましくは2000〜2500
mg7gの範囲にある活性炭素繊維を用いたことによっ
て、上記の問題点を解決したものである。
Means for Solving the E0 Problem In this invention, as an active layer material of a carbon plastic electrode of a metal halogen battery, an iodine adsorption amount of 1800
~3000mg 7g, preferably 2000-2500
The above-mentioned problems are solved by using activated carbon fiber in the mg/7g range.

F0作用 金属ハロゲン電池、例えば亜鉛臭素電池においては活性
層の臭素吸着能力が高い程、電池の電気化学反応が促進
されて有利であると考えられる。
In F0-acting metal halogen batteries, such as zinc-bromine batteries, it is believed that the higher the bromine adsorption capacity of the active layer, the more advantageous the electrochemical reaction of the battery will be promoted.

ここで、この臭素吸着能力は一般的に固体表面の物理吸
着能力を表す場合に用いられるヨウ素吸着量として考え
ることができ、このヨウ素吸着量と正極の放電過電圧の
関係は1次関数的なリニアな関係ではなく、あるレベル
以下の吸着能力では過電圧が非常に大きいが、一定のレ
ベル以上では飽和状態になり、それ以上吸着能力を上げ
ても過電圧は殆ど変化しないという漸近線をもつ指数関
数的な関係にある。
Here, this bromine adsorption capacity can be thought of as the amount of iodine adsorption, which is generally used to express the physical adsorption ability of a solid surface, and the relationship between this amount of iodine adsorption and the discharge overvoltage of the positive electrode is a linear function. It is not an exponential relationship with an asymptote that means that the overvoltage is very large when the adsorption capacity is below a certain level, but it becomes saturated above a certain level, and the overvoltage hardly changes even if the adsorption capacity is increased further. There is a relationship.

このため、上記の一定レベル以上の吸着能力を有する活
性炭素繊維シートを活性層に用いれば、電池のクーロン
効率およびエネルギー効率の安定した特性が得られるも
のである。
Therefore, if an activated carbon fiber sheet having an adsorption capacity above a certain level is used in the active layer, stable characteristics of coulombic efficiency and energy efficiency of the battery can be obtained.

G、実施例 実施例1: 亜鉛臭素電池の正極活性層材として、人ee507−2
0(商品名:日本カイノール■製)を選び、種々のロッ
トの中からシート厚みと目付量がほぼ同じものを多数ピ
ックアップしてヨウ素吸着量の値と正極放電過電圧の相
関関係を調へた。
G. Examples Example 1: Human ee507-2 as positive electrode active layer material of zinc bromine battery
0 (trade name: manufactured by Nippon Kynor ■), a large number of sheets with almost the same thickness and basis weight were selected from various lots, and the correlation between the value of the amount of iodine adsorption and the positive electrode discharge overvoltage was investigated.

目付量が約82g/rn’、厚みが約0.42mmで、
ヨウ素吸着量が種々異なる22種類の平織された活性炭
素繊維シート(以下「クロス」という)をカーボンプラ
スチックの片面にラミネートシてバイポーラ電極を作製
した。
The basis weight is approximately 82g/rn', the thickness is approximately 0.42mm,
A bipolar electrode was fabricated by laminating 22 types of plain-woven activated carbon fiber sheets (hereinafter referred to as "cloth") with various iodine adsorption amounts on one side of carbon plastic.

上記ラミネートは、押し出し機(日本製鋼所膜P90〜
28Aw)を使用して、カーボンプラスチックペレツ 
l−(#vエチレン/カーボン系充填剤= 50750
重量比)をTダイ (特殊水平ハンガータイプ2リツプ
長6o。
The above laminate is made using an extruder (Japan Steel Works Membrane P90~
28Aw) to make carbon plastic pellets.
l-(#v ethylene/carbon filler = 50750
Weight ratio) to T die (special horizontal hanger type 2 lip length 6o).

mm、  リップ厚1.2mn)より押し出し、3本ロ
ールで冷却し、厚薄調整する際最下段田−ルと中間ロー
ルの間にクロスを挿入して行った。
mm, lip thickness 1.2 mm), cooled with three rolls, and when adjusting the thickness, a cloth was inserted between the bottom roll and the middle roll.

以上のようにして作製した22枚の電極の正極数重過電
圧を測定した結果とヨウ素吸着量の関係を第1図に示す
。図に示されるように、クロスの目付量およびシート厚
みが一定の場合、放電過電圧の値はクロスのヨウ素吸着
量に依存しており、その傾向は放電電流密度が大きい程
顕著である。
FIG. 1 shows the relationship between the results of measuring the positive electrode multiple overvoltage of the 22 electrodes prepared as described above and the amount of iodine adsorbed. As shown in the figure, when the basis weight of the cloth and the sheet thickness are constant, the value of the discharge overvoltage depends on the amount of iodine adsorbed by the cloth, and this tendency becomes more pronounced as the discharge current density increases.

また、ヨウ素吸着量が2000+ng / g以上では
飽和状態になり、放電過電圧はほとんど変化しないのに
対し、1800IIIg/ g以下のものは過電圧が急
激に高くなる傾向が明確に認められる。
In addition, when the amount of iodine adsorption is 2000+ng/g or more, it becomes saturated and the discharge overvoltage hardly changes, whereas it is clearly recognized that when the amount of iodine adsorption is 1800IIIg/g or less, the overvoltage tends to increase rapidly.

以上の結果から、正極の活性層材として活性炭素繊維シ
ートを用いる場合には、ヨウ素吸着量が1800mg 
/ g以上のものが適していると言える。
From the above results, when using an activated carbon fiber sheet as the active layer material of the positive electrode, the amount of iodine adsorption is 1800 mg.
/ g or more is suitable.

実施例2: 実施例1と同様にしてクロスAec507−20 (商
品名二日本カイソール■製)をカーボンプラスチックに
ラミネートシて電極を作成し、ヨウ素吸着量の値が17
0On1g/g以下をA郡、1700〜180011g
/gleB郡、1800〜1900mg/gヲC郡、1
900〜200oIIIg/greD郡、および200
0mg/g以上をE郡として選別した。
Example 2: In the same manner as in Example 1, an electrode was created by laminating cloth Aec507-20 (product name: manufactured by Nippon Kaisoru ■) on carbon plastic, and the value of iodine adsorption amount was 17.
0On1g/g or less in A group, 1700-180011g
/gleB county, 1800-1900mg/gwoC county, 1
900-200oIIIg/greD county, and 200
0 mg/g or more was selected as Group E.

これらのA−E郡のそれぞれからサップリングしく8) た電極を、セパレータとともに積層して5種類の10セ
ル積層のバイポーラ積層電池a −eを構成した。
The electrodes from each of these groups A to E were laminated together with separators to construct five types of bipolar stacked batteries a to e with 10 cells stacked.

この様にして構成した各電池にそれぞれ電解液として2
.5mol/I臭化亜鉛水溶液、3mo l / I塩
化アンモニ ウ ム 、 0.5mol/lメチルーエ
チルーモル本ルニウムプロマイド、0.511+017
1メチル−エチル−ピロリじニウム知マイト、 10 
 ’mol/I塩化錫および5x10づmol/l臭化
鉛を用いて20mA/cnfで8時間充電し、同電流密
度20mA/cnrで放電し、IOVでカットオフした
Each battery constructed in this way has 2 ml of electrolyte.
.. 5 mol/I zinc bromide aqueous solution, 3 mol/I ammonium chloride, 0.5 mol/l methyl-ethyl mol Honolium bromide, 0.511+017
1 Methyl-ethyl-pyrrolidinium chiromite, 10
The battery was charged with 'mol/I tin chloride and 5x10mol/l lead bromide at 20 mA/cnf for 8 hours, discharged at the same current density of 20 mA/cnr, and cut off at IOV.

この時の電圧効率、クーロン効率、エネルギー効率を表
1に示した。表から明らがなようにヨウ素吸着量が大き
くなる程、即ち電池a < b < c <d < e
の順に効率が向上している。
Table 1 shows the voltage efficiency, coulomb efficiency, and energy efficiency at this time. As is clear from the table, the larger the amount of iodine adsorption, that is, the battery a < b < c < d < e.
Efficiency improves in this order.

特にクロスのヨウ素吸着量が1800mg/g以上の電
池Cy dy eはクーロン効率92%以上、エネルギ
ー効率82%以上でともに優れている。
In particular, the battery Cy dy e, in which the amount of iodine adsorbed by the cloth is 1800 mg/g or more, is excellent with both a Coulombic efficiency of 92% or more and an energy efficiency of 82% or more.

第1表       単位(X) 実施例3: 実施例2で用いた電池a〜eについて、20mA/cd
で8時間充電後、同電流密度で放電し、放電末期5vに
なった時点で電池電極の正負を逆にして、逆充電を2時
間、次に逆放電(臭素消し)を3時間行うことを1サイ
クルとするサイクルテストをそれぞれ200回行い、エ
ネルギー効率の再現性を確認した。
Table 1 Unit (X) Example 3: For batteries a to e used in Example 2, 20 mA/cd
After charging for 8 hours, discharge at the same current density, and at the end of discharge to 5V, reverse the positive and negative polarities of the battery electrodes, reverse charge for 2 hours, and then reverse discharge (bromine eradication) for 3 hours. Each cycle test was performed 200 times to confirm the reproducibility of energy efficiency.

第2図および第3図は上記のサイクルテストの結果を示
すものである。なお、図においてエネルギー効率は10
サイクル毎に平均値を算出して表している。
FIGS. 2 and 3 show the results of the above cycle test. In addition, in the figure, the energy efficiency is 10
The average value is calculated and expressed for each cycle.

その結果、電池aおよびbは各サイクルでの効率にバラ
ツキがあり、また第3図に見られるように150サイク
ルを過ぎると徐々に効率が低下して、200サイクルで
はエネルギー効率が80z以下となっている。
As a result, the efficiency of batteries a and b varies with each cycle, and as shown in Figure 3, the efficiency gradually decreases after 150 cycles, and at 200 cycles, the energy efficiency drops to 80z or less. ing.

これに対して、ヨウ素吸着量が1800■/g以上の活
性炭素繊維を活性層に用いた電池c、d、およびeは、
第2図に示されるように初めの10サイクルは効率が若
干低いが、エージングがよく行われて作動状態が安定す
ると各電池とも安定した効率でサイクルが進み、150
サイクルを過ぎても電池aおよびbのような効率の低下
はみられない。
On the other hand, batteries c, d, and e, which use activated carbon fibers with an iodine adsorption amount of 1800 μg or more in the active layer,
As shown in Figure 2, the efficiency is slightly low for the first 10 cycles, but once the battery is well aged and the operating condition stabilizes, each battery continues to cycle at a stable efficiency, reaching 150 cycles.
Even after the cycle, there is no decrease in efficiency like in batteries a and b.

しかも、200サイクルまで常に82%以上のエネルギ
ー効率を維持しているので、ボンブロス、インバーター
及び冷却装置等の補機損失分を考慮しても電池システム
全体のエネルギー効率は70〜80に以上を常時維持で
きるものである。
Moreover, the energy efficiency of the entire battery system is always maintained at 82% or higher up to 200 cycles, so even considering the loss of auxiliary equipment such as the bomb broth, inverter, and cooling device, the energy efficiency of the entire battery system is always 70-80% or higher. It is something that can be maintained.

これらの結果は、ヨウ素吸着量が1800呵/g以上、
好ましくは2000mg/g以上の活性炭素繊維を正極
活性層に用いれば安定的に高いエネルギー効率で電池を
運転できることを示している。
These results indicate that the iodine adsorption amount is 1800 tsu/g or more,
It is shown that if activated carbon fiber of preferably 2000 mg/g or more is used in the positive electrode active layer, the battery can be stably operated with high energy efficiency.

H0発明の効果 この発明は、金属ハロゲン電池の正極活性層のヨウ素吸
着量と正極放電過電圧が漸近線をもつ指数関数的な関係
にあり、一定レベル以上のヨウ素吸着量においては放電
過電圧を安定的に小さくできることを見出し、ヨウ素吸
着量が1800mg/g以上、好ましくは2000n1
g/g以上の活性炭素繊維を活性層材に用いたことによ
り、充放電サイクルを連続して行う場合にも安定して電
池の高いエネルギー効率を維持できるという極めて優れ
た効果を有するものである。
H0 Effects of the Invention This invention shows that the amount of iodine adsorbed in the positive electrode active layer of a metal halogen battery and the positive electrode discharge overvoltage have an exponential relationship with an asymptote, and that the amount of iodine adsorbed in the positive electrode active layer of a metal halogen battery is in an exponential relationship with an asymptote. We found that the amount of iodine adsorption can be reduced to 1800 mg/g or more, preferably 2000 n1
By using activated carbon fiber of g/g or more in the active layer material, it has an extremely excellent effect of stably maintaining high energy efficiency of the battery even when performing charge/discharge cycles continuously. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活性炭素繊維シートのヨウ素吸着量と正極放電
過電圧の関係を示すグラフ、第2図はヨウ素吸着量18
00IIIg/g以上の活性炭素繊維シートを用いた電
池の充放電サイクル数とエネルギー効率の関係を示すグ
ラフ、第3図はヨウ素吸着量1800IIg/g未満の
活性炭素繊維シートを用いた電池の充放電サイクル数と
エネルギー効率の関係を示すグラフ、第4図は亜鉛臭素
電池の基本構成模式図である。 1:電池反応層、2:正極室、3:負極室、4:隔膜、
5:正極、6:負極、7:正極電解液、8:負極電解液
、9,10:電解液タンク、11,12:ポンプ、ll
a、llb:切換弁。 代理人  弁理士   佐藤正年 1:電池反応槽 2:正極室 3:負極室 4:隔膜 5:正極 6:負極 7:正極電解液 8:負極電解液 9.10:電解液タンク 11.12:ボノブ 11a 、 llb :切換弁
Figure 1 is a graph showing the relationship between the amount of iodine adsorbed by the activated carbon fiber sheet and the positive electrode discharge overvoltage, and Figure 2 is a graph showing the relationship between the amount of iodine adsorbed on the activated carbon fiber sheet and the amount of iodine adsorbed at 18
A graph showing the relationship between the number of charging/discharging cycles and energy efficiency of a battery using an activated carbon fiber sheet with an iodine adsorption amount of 0.00IIIg/g or more, and Figure 3 shows the charging/discharging of a battery using an activated carbon fiber sheet with an iodine adsorption amount of less than 1800IIg/g. FIG. 4 is a graph showing the relationship between the number of cycles and energy efficiency, and is a schematic diagram of the basic configuration of a zinc bromine battery. 1: battery reaction layer, 2: positive electrode chamber, 3: negative electrode chamber, 4: diaphragm,
5: positive electrode, 6: negative electrode, 7: positive electrode electrolyte, 8: negative electrode electrolyte, 9, 10: electrolyte tank, 11, 12: pump, ll
a, llb: switching valve. Agent Patent Attorney Masatoshi Sato 1: Battery reaction tank 2: Positive electrode chamber 3: Negative electrode chamber 4: Diaphragm 5: Positive electrode 6: Negative electrode 7: Positive electrode electrolyte 8: Negative electrode electrolyte 9.10: Electrolyte tank 11.12: Bonob 11a, llb: switching valve

Claims (3)

【特許請求の範囲】[Claims] (1)シート状に形成されたカーボンプラスチックの表
面に活性層を形成したカーボンプラスチック電極を使用
して成る金属ハロゲン電池において、前記カーボンプラ
スチック電極の活性層として、ヨウ素吸着量が1800
〜3000mg/gの範囲にある活性炭素繊維を用いた
ことを特徴とする金属ハロゲン電池。
(1) In a metal halogen battery using a carbon plastic electrode in which an active layer is formed on the surface of carbon plastic formed in the form of a sheet, the active layer of the carbon plastic electrode has an iodine adsorption amount of 1800
A metal halogen battery characterized by using activated carbon fiber in the range of ~3000 mg/g.
(2)前記活性炭素繊維がフェノール系ノボラック繊維
を出発原料としたものである特許請求の範囲第1項記載
の金属ハロゲン電池。
(2) The metal halogen battery according to claim 1, wherein the activated carbon fiber is made from phenolic novolac fiber as a starting material.
(3)前記活性炭素繊維のヨウ素吸着量が、2000〜
2500mg/gの範囲にある特許請求の範囲第1項記
載の金属ハロゲン電池。
(3) The amount of iodine adsorbed by the activated carbon fiber is 2000~
The metal halogen battery according to claim 1, in the range of 2500 mg/g.
JP63002477A 1988-01-11 1988-01-11 Metal halogen battery Pending JPH01183065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002477A JPH01183065A (en) 1988-01-11 1988-01-11 Metal halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002477A JPH01183065A (en) 1988-01-11 1988-01-11 Metal halogen battery

Publications (1)

Publication Number Publication Date
JPH01183065A true JPH01183065A (en) 1989-07-20

Family

ID=11530420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002477A Pending JPH01183065A (en) 1988-01-11 1988-01-11 Metal halogen battery

Country Status (1)

Country Link
JP (1) JPH01183065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022118733A (en) * 2013-03-15 2022-08-15 24エム・テクノロジーズ・インコーポレイテッド Asymmetric battery having semi-solid cathode and high energy density anode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996662A (en) * 1982-11-24 1984-06-04 Meidensha Electric Mfg Co Ltd Plastic electrode for zinc bromine battery
JPS59215667A (en) * 1983-05-24 1984-12-05 Meidensha Electric Mfg Co Ltd Electrode of zinc-bromine cell
JPS6025152A (en) * 1983-07-20 1985-02-07 Matsushita Electric Ind Co Ltd Rechargeable battery
JPS61158673A (en) * 1984-08-16 1986-07-18 Meidensha Electric Mfg Co Ltd Zinc-halogen battery with porous electrode
JPS61277156A (en) * 1985-06-03 1986-12-08 Mitsui Toatsu Chem Inc Zinc iodine secondary cell
JPH01169876A (en) * 1987-12-25 1989-07-05 Meidensha Corp Metallic halogen cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996662A (en) * 1982-11-24 1984-06-04 Meidensha Electric Mfg Co Ltd Plastic electrode for zinc bromine battery
JPS59215667A (en) * 1983-05-24 1984-12-05 Meidensha Electric Mfg Co Ltd Electrode of zinc-bromine cell
JPS6025152A (en) * 1983-07-20 1985-02-07 Matsushita Electric Ind Co Ltd Rechargeable battery
JPS61158673A (en) * 1984-08-16 1986-07-18 Meidensha Electric Mfg Co Ltd Zinc-halogen battery with porous electrode
JPS61277156A (en) * 1985-06-03 1986-12-08 Mitsui Toatsu Chem Inc Zinc iodine secondary cell
JPH01169876A (en) * 1987-12-25 1989-07-05 Meidensha Corp Metallic halogen cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022118733A (en) * 2013-03-15 2022-08-15 24エム・テクノロジーズ・インコーポレイテッド Asymmetric battery having semi-solid cathode and high energy density anode

Similar Documents

Publication Publication Date Title
CA2154637C (en) Flexible carbon fiber with low modulus, battery employing the carbon fiber electrode, and method of manufacture
KR101009440B1 (en) Electrode for soluble lead acid redox flow battery and soluble lead acid redox flow battery using the same
US6743548B2 (en) Silver-zinc alkaline rechargeable battery (stacking order)
WO1996005624A1 (en) Electrolytic cell and electrolytic process
JP7183398B2 (en) Electrolyte membrane for all-solid-state battery and manufacturing method thereof
JPH0315175A (en) Secondary battery furnishing polymer electrodes
US20210028427A1 (en) Novel composite separator, battery and battery pack
JP2014007117A (en) Li BASED SECONDARY BATTERY
WO2003056644A1 (en) Non-aqueous electrolytic secondary battery
JP6211800B2 (en) Electrolyte flow type secondary battery
KR100726891B1 (en) Composition of Nanoparticle Based on Organic-inorganic Hybrid and Nanocomposite Polymer Electrolyte for Lithium Polymer Rechargeable Batteries
WO2016045622A1 (en) Battery, battery pack and continuous power supply
JPH01183065A (en) Metal halogen battery
KR102447918B1 (en) Nanoclustered metal composite graphite and lithium ion secondary battery using the same
KR102447926B1 (en) Method for manufacturing nano-clustered metal composite graphite and lithium ion secondary battery manufactured therefrom
CN113437248B (en) Processing method of negative pole piece, sodium metal negative pole piece and electrochemical device
EP4135089A1 (en) All-solid-state battery comprising two types of solid electrolyte layers
JPS62226580A (en) Redox flow battery
CN114566393A (en) Composite positive electrode material for lithium ion capacitor and application thereof
JP2003249221A (en) Secondary battery and capacitor using indole compound
JPH0286073A (en) Thin, ribbon-shaped, flexible and chargeable zinc/halide battery
US4592971A (en) Metal halogen electrochemical cell
JP4669980B2 (en) Thin lithium secondary battery
KR102535395B1 (en) Nanoclustered manganese oxide composite graphite and zinc ion secondary battery using the same
KR20110017219A (en) Coin cell lithium metal capacitor and manufacturing method of the same