JPH01182106A - Vibration damping equipment - Google Patents

Vibration damping equipment

Info

Publication number
JPH01182106A
JPH01182106A JP722788A JP722788A JPH01182106A JP H01182106 A JPH01182106 A JP H01182106A JP 722788 A JP722788 A JP 722788A JP 722788 A JP722788 A JP 722788A JP H01182106 A JPH01182106 A JP H01182106A
Authority
JP
Japan
Prior art keywords
orifice
chamber
detection means
displacement
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP722788A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Doi
土井 三浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP722788A priority Critical patent/JPH01182106A/en
Publication of JPH01182106A publication Critical patent/JPH01182106A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To obtain a sufficient vibration damping performance by applying a voltage to an electric rheological fluid within an orifice on the bases of detection information from a flow condition detection means and a displacement condition detection means, and controlling the applied voltage. CONSTITUTION:On the basis of detection information from a pressure detector (a flow condition detection means) 14 for detecting a flow condition within an orifice 11, and a displacement condition detection means 19 for detecting a relative acceleration or a relative displacement between fitting members 2, 3, a voltage is applied to an electric rheological fluid 13 within the orifice 11 and the applied voltage is controlled by a control means 22. Consequently, on the basis of a phase difference between a supporting spring force corresponding to the condition of the relative displacement between the fixing member 2, 3, and a spread spring force which is changed corresponding to the flow condition within the orifice 11, the viscosity of the electric rheological fluid 13 which flows within the orifice 11 is changed so that the spread spring force is promptly adjusted and controlled. As a result, a force generated within the equipment concerned by a fluid which flows between the first and the second chambers 4, 7 is adopted so that a sufficient vibration damping performance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車のエンジンマウンティング等に使用さ
れる流体封入式の振動減衰装置に関し、特にオリフィス
を通して2室間を移動する電気レオロジカル流体の粘性
を変化させ、広い周波数範囲で振動減衰能を発揮する振
動減衰装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fluid-filled vibration damping device used in automobile engine mounting, etc., and in particular to a vibration damping device using an electrorheological fluid moving between two chambers through an orifice. This invention relates to a vibration damping device that exhibits vibration damping ability over a wide frequency range by changing viscosity.

(従来の技術) 近時、自動車のエンジンマウンティング等にはより高度
な振動減衰特性が要求されており、広い周波数範囲の振
動を効果的に減衰させるために、例えば流体封入式の振
動減衰装置が用いられている。このような振動減衰装置
においては、シェーク等の低周波−大振幅の振動入力時
に弾性体の変形に伴いオリフィスを通る流体の絞り作用
によって大きな減衰が促され、一方、高周波−小振幅の
振動入力時に低ばね定数の弾性体により振動吸収してこ
もり音等の騒音を低減させるようにしている。しかし、
装置自体の周波数特性は一定であり、十分な振動減衰能
を発揮できるのは大振幅および小振幅の振動それぞれの
所定周波数範囲に限られていた。このため、流体粘性を
変化させてより広い周波数範囲で振動減衰能を発揮させ
るものが提案されている。
(Prior Art) In recent years, more sophisticated vibration damping characteristics have been required for automobile engine mountings, etc., and in order to effectively damp vibrations in a wide frequency range, for example, fluid-filled vibration damping devices have been developed. It is used. In such a vibration damping device, large damping is promoted by the squeezing action of the fluid passing through the orifice due to the deformation of the elastic body when low-frequency, large-amplitude vibrations are input, such as shaking, while large damping is promoted when high-frequency, small-amplitude vibrations are input. Sometimes, vibrations are absorbed by an elastic body with a low spring constant to reduce noise such as muffled sounds. but,
The frequency characteristics of the device itself are constant, and sufficient vibration damping ability can be exhibited only within predetermined frequency ranges for large-amplitude and small-amplitude vibrations. For this reason, devices have been proposed that exhibit vibration damping ability over a wider frequency range by changing fluid viscosity.

従来のこの種の振動減衰装置としては、例えば特開昭6
0−104828号公報に記載されたものがある。この
装置では、弾性体と共に第1の室を画成する中間板に二
つのプレート電極からなる配管が装着され、入力振動に
よってマウントが変形したとき、第1の室内の電気レオ
ロジカル流体がこの配管を通って中間板および弾性室壁
により画成された第2の室に流出しあるいは第2の室か
ら流入するようにしている。また、配管のプレート電極
間にはエンジンの回転数等の情報に応じた電圧が印加さ
れ、エンジン回転数が増加するにつれて電気レオロジカ
ル流体の粘性を低くして減衰力を減少させながら広い周
波数範囲の入力振動に対応するようになっている。
As a conventional vibration damping device of this type, for example, Japanese Patent Application Laid-open No. 6
There is one described in Publication No. 0-104828. In this device, a pipe consisting of two plate electrodes is attached to an intermediate plate that defines a first chamber together with an elastic body, and when the mount is deformed by input vibration, the electrorheological fluid in the first chamber flows into this pipe. through which it flows into and out of a second chamber defined by the intermediate plate and the elastic chamber wall. In addition, a voltage is applied between the plate electrodes of the piping according to information such as the engine speed, and as the engine speed increases, the viscosity of the electrorheological fluid is lowered and the damping force is reduced while a wide frequency range is applied. It is designed to respond to input vibrations.

(発明が解決しようとする問題点) しかしながら、このような従来の振動減衰装置にあって
は、エンジン回転数等の外部情報のみに応じて配管内の
電気レオロジカル流体に印加する電圧が制御される構成
となっていたため、配管内を通る流体によって発生する
内圧変化等を含めた適確な電圧制御が行われず、装置内
で発生する力の位相のずれにより十分な振動減衰能を得
ることができないという問題点があった。
(Problem to be Solved by the Invention) However, in such conventional vibration damping devices, the voltage applied to the electrorheological fluid in the piping is controlled only according to external information such as engine speed. As a result, accurate voltage control, including changes in internal pressure caused by fluid passing through the piping, was not performed, and it was not possible to obtain sufficient vibration damping performance due to the phase shift of the forces generated within the device. The problem was that it couldn't be done.

すなわち、装置内には両取付部材の相対変位による弾性
体の変形に応じた支持ばね力と第1の室内の圧力変化を
伴う弾性体の拡張ばね力とが作用するようになっており
、拡張ばね力は、配管内を通る電気レオロジカル流体の
マスに粘性に基づく減衰力が付加されることによって支
持ばね力と位相を異にして変動する。したがって、車体
側からの加振力を受けたエンジンシェイク等の場合、支
持ばね力と拡張ばね力が同位相の力としてエンジンに作
用するときにはエンジンへの伝達力は大きくなり、逆位
相の力として作用するときには伝達力は小さくなる。こ
のため、両ばね力の位相を考慮して印加電圧を随時加減
調節していない従来の振動減衰装置にあっては、減衰効
果の大きい伝達力を最適のタイミングで発揮することが
できず、十分な振動減衰能を得ることができなかった。
That is, a supporting spring force corresponding to the deformation of the elastic body due to the relative displacement of both mounting members and an expansion spring force of the elastic body accompanied by a pressure change in the first chamber act within the device. The spring force varies out of phase with the supporting spring force due to the addition of a viscous damping force to the mass of electrorheological fluid passing through the pipe. Therefore, in the case of engine shake caused by excitation force from the vehicle body, when the support spring force and expansion spring force act on the engine as forces in the same phase, the force transmitted to the engine increases, and as forces in opposite phases. When it acts, the transmitted force becomes small. For this reason, with conventional vibration damping devices that do not adjust the applied voltage at any time by considering the phase of both spring forces, the transmission force with a large damping effect cannot be exerted at the optimal timing, and it is not possible to sufficiently It was not possible to obtain sufficient vibration damping ability.

(発明の目的) そこで本発明は、第1の室および第2の室間を移動する
流体によって発生する内圧変化等を含め、装置内で発生
する力の位相を考慮して印加電圧を制御することにより
、装置内で発生する力を効果的に利用して十分な振動減
衰能を発揮させることを目的としている。
(Objective of the Invention) Therefore, the present invention controls the applied voltage by considering the phase of the force generated within the device, including internal pressure changes generated by the fluid moving between the first chamber and the second chamber. The purpose of this is to effectively utilize the force generated within the device to exhibit sufficient vibration damping ability.

(問題点を解決するための手段) 本発明は、上記の目的を達成するために、機関側の取付
部材と支持体側の取付部材との間に介装され、内部に第
1の室を画成する弾性体と、両取付部材の少なくとも一
方に設けられたオリフィスおよび該オリフィスを介して
第1の室に連通ずる容積変化自在な第2の室を有し、両
取付部材の相対変位による弾性体の変形に応じて第1の
室および第2の室間でオリフィスを通して流体を移動さ
せることができる流体移動手段と、第1の室および第2
の室に封入され、印加電圧に応じて液体からほぼ固体ま
で粘性が変化しうる電気レオロジカル流体と、オリフィ
ス内の流れ状態を検出する流れ状態検出手段と、両取付
部材の相対加速度あるいは相対変位を検出する変位状態
検出手段と、流れ状態検出手段および変位状態検出手段
の検出情報に基づいてオリフィス内の電気レオロジカル
流体に電圧を印加し、該印加電圧を制御する制御手段と
、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a first chamber which is interposed between an engine-side mounting member and a support-side mounting member, and defines a first chamber therein. an orifice provided in at least one of the two mounting members, and a second chamber whose volume can be changed freely and which communicates with the first chamber via the orifice, and the elastic body is formed by the relative displacement of the two mounting members. a fluid moving means capable of moving fluid through an orifice between the first chamber and the second chamber in response to deformation of the body;
an electrorheological fluid whose viscosity can change from liquid to almost solid depending on the applied voltage; a flow state detection means for detecting the flow state within the orifice; and relative acceleration or relative displacement between the two mounting members. and a control means for applying a voltage to the electrorheological fluid in the orifice and controlling the applied voltage based on the detection information of the flow state detection means and the displacement state detection means. There is.

(作用) 本発明では、オリフィス内の流れ状態を検出する流れ状
態検出手段と取付部材間の相対加速度あるいは相対変位
を検出する変位状態検出手段との検出情報に基づき、制
御手段によってオリフィス内の電気レオロジカル流体に
電圧が印加され、該印加電圧が制御される。したがって
、取付部材間の相対変位の状態に対応する支持ば゛ね力
とオリフィス内の流れに対応して変動する拡張ばね力と
の位相差に基づいてオリフィス内を流れる電気レオロジ
カル流体の粘性が変化され、拡張ばね力が迅速に加減調
節される。この結果、第1の室および第2の室間を移動
する流体によって発生する内圧変化等を含めて装置内で
発生する力が効果的に利用され、十分な振動減衰能が発
揮される。
(Function) In the present invention, the control means controls the electric current in the orifice based on the detection information of the flow state detection means for detecting the flow state in the orifice and the displacement state detection means for detecting the relative acceleration or relative displacement between the mounting members. A voltage is applied to the rheological fluid and the applied voltage is controlled. Therefore, the viscosity of the electrorheological fluid flowing through the orifice is determined based on the phase difference between the supporting spring force that corresponds to the state of relative displacement between the mounting members and the expansion spring force that varies in response to the flow within the orifice. the expansion spring force can be adjusted quickly. As a result, the forces generated within the apparatus, including internal pressure changes caused by the fluid moving between the first chamber and the second chamber, are effectively utilized, and sufficient vibration damping ability is exhibited.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜6図は本発明に係る振動減衰装置の一実施例を示
す図であり、本発明を自動車のエンジンマウンティング
装置に適用した例である。
1 to 6 are diagrams showing an embodiment of a vibration damping device according to the present invention, and are examples in which the present invention is applied to an engine mounting device for an automobile.

第1図において、1は筒状の弾性体であり、弾性体lは
機関側の取付部材2と支持体側の取付部材3との間に介
装され、内部に第1の室4を画成している。第1の室4
の図中下方側には仕切板5およびダイヤフラム6が装着
されており、仕切板5およびダイヤフラム6はダイヤフ
ラム6の弾性変形によって容積変化自在な第2の室7を
画成している。また、仕切板5の中央部には外筒電極8
および内筒電極9が設けられており、外筒電極8および
内筒電極9は環状のオリフィス11を形成し、オリフィ
ス11を介して第1の室4および第2の室7を連通させ
ている。これらの仕切板5、ダイヤフラム6およびオリ
フィス11は機関、すなわち、エンジン(図示していな
い)からの加振力あるいは支持体である車体からの加振
力による弾性体1の変形に応じて第1の室4および第2
の室7の間で流体(詳細後述する)を移動させることが
できる流体移動手段12を構成しており、流体移動手段
12はオリフィス11を通る流体の絞り作用によって入
力振動を減衰させるようになっている。
In FIG. 1, 1 is a cylindrical elastic body, and the elastic body 1 is interposed between a mounting member 2 on the engine side and a mounting member 3 on the support side, and defines a first chamber 4 therein. are doing. first chamber 4
A partition plate 5 and a diaphragm 6 are attached to the lower side in the figure, and the partition plate 5 and diaphragm 6 define a second chamber 7 whose volume can be freely changed by elastic deformation of the diaphragm 6. In addition, an outer cylinder electrode 8 is provided at the center of the partition plate 5.
and an inner tube electrode 9 are provided, the outer tube electrode 8 and the inner tube electrode 9 form an annular orifice 11, and the first chamber 4 and the second chamber 7 are communicated through the orifice 11. . These partition plate 5, diaphragm 6, and orifice 11 are arranged in a first position in response to the deformation of the elastic body 1 due to the excitation force from the engine (not shown) or the excitation force from the vehicle body, which is the supporting body. chamber 4 and 2
The fluid moving means 12 constitutes a fluid moving means 12 capable of moving a fluid (to be described in detail later) between the chambers 7 of the orifice 11, and the fluid moving means 12 is adapted to damp input vibration by a throttling action of the fluid passing through the orifice 11. ing.

第1の室4および第2の室7には電気レオロジカル流体
13が封入されている。電気レオロジカル流体13は、
例えばシリコン油等の絶縁油内に所定量の粒子(シリカ
ゲル等)が含有されたものであり、印加電圧に基づく電
場の強さに応じて含有粒子の配列が変化し、この粒子配
列が極めて整一になされたときにはほぼ固体に近いもの
に状態が遷位する。すなわち、電気レオロジカル流体1
3は、絶縁油が備えた流体としての粘性からほぼ固体の
状態まで、印加電圧の大きさに応じて粘性が連続的に変
化し、また、電圧印加から粘性変化までの反応時間が極
めて短い(数ミリ秒)という特徴を有している。そして
、流体移動手段12の作動によってオリフィス11を通
る電気レオロジカル流体13が外筒電極8および内筒電
極9間の電圧に応じて粘性変化することにより粘性抵抗
等の流動抵抗が増減し、周波数特性の異なる振動減衰性
能を発揮することができるようになっており、負荷状態
によって振動周波数の異なるアイドル振動あるいは車体
側からの加振力によるエンジンシェイク等を有効に減衰
するようにしている。
An electrorheological fluid 13 is sealed in the first chamber 4 and the second chamber 7 . The electrorheological fluid 13 is
For example, a predetermined amount of particles (silica gel, etc.) are contained in an insulating oil such as silicone oil, and the arrangement of the contained particles changes depending on the strength of the electric field based on the applied voltage, and this particle arrangement is extremely regular. When this is done, the state transitions to something almost solid. That is, electrorheological fluid 1
3 is that the viscosity of insulating oil changes continuously from the fluid viscosity to the almost solid state depending on the magnitude of the applied voltage, and the reaction time from voltage application to viscosity change is extremely short ( (several milliseconds). Then, the viscosity of the electrorheological fluid 13 passing through the orifice 11 changes according to the voltage between the outer cylinder electrode 8 and the inner cylinder electrode 9 due to the operation of the fluid moving means 12, so that flow resistance such as viscous resistance increases or decreases, and the frequency It is designed to exhibit vibration damping performance with different characteristics, effectively damping idle vibrations with different vibration frequencies depending on the load condition, engine shake due to excitation force from the vehicle body, etc.

一方、第2の室7内には室内の圧力PIを検出する圧力
検出器(流れ状態検出手段) 14が設けられており、
圧力検出器14は制御回路15に接続され、オリフィス
11内の電気レオロジカル流体13の流れ方向および速
度等に応じた圧力PIの変化を検出情報として制御回路
15に与えるようになっている。
On the other hand, a pressure detector (flow state detection means) 14 is provided in the second chamber 7 to detect the pressure PI in the chamber.
The pressure detector 14 is connected to the control circuit 15, and is configured to provide the control circuit 15 with changes in pressure PI according to the flow direction and velocity of the electrorheological fluid 13 in the orifice 11 as detection information.

制御回路15には演算回路16が接続され、演算回路1
6を介して加速度検出器17.18に接続されている。
An arithmetic circuit 16 is connected to the control circuit 15, and the arithmetic circuit 1
6 to an acceleration detector 17.18.

加速度検出器17.18は取付部材2.3あるいはこれ
らの近傍に取り付けられ、取付部材2.3の振動加速度
を検出するようになっており、演算回路16に与えられ
る加速度検出器17.18の検出情報(変位加速度)X
、、xzから取付部材2.3の相対変位(X、−’i、
)あるいは相対加速度(X。
The acceleration detectors 17.18 are attached to the mounting member 2.3 or the vicinity thereof, and are designed to detect the vibration acceleration of the mounting member 2.3. Detection information (displacement acceleration)
,, relative displacement of the mounting member 2.3 from xz (X, -'i,
) or relative acceleration (X.

−X2)等の相対変位状態が検出されるようになってい
る。すなわち、演算回路16および加速度検出器17.
18により取付部材2.3の相対加速度あるいは相対変
位を検出する変位状態検出手段19が構成されている。
-X2), etc., are detected. That is, the arithmetic circuit 16 and the acceleration detector 17.
18 constitutes a displacement state detection means 19 for detecting relative acceleration or relative displacement of the mounting member 2.3.

また、制御回路15はマイクロコンピュータ等からなり
、圧力検出器14および変位状態検出手段19の検出情
報に基づいてオリフィス11内の電気レオロジカル流体
13の流れ状態(流れ方向、速度)および弾性体1の変
形状態を識別し、オリフィス11を通る電気レオロジカ
ル流体13によって発生する第1の室4の内圧変動を含
めて第2図に示す弾性体1の支持ばね力F1および拡張
ばね力F2を把握して両ばね力の大きさおよび位相のず
れ等に応じた制御信号Cを電源回路21に出力する。電
源回路21は外筒電極8に常時一定な直流の基準電圧V
N(例えば、V s = OV )を出力するとともに
、制御信号Cに応じて内筒電極9に基準電圧VNと同値
から基準電圧VNより高い所定値まで変化する直流電圧
■、を出力するようになっており、制御信号Cにより直
流電圧■、の変化を促してオリフィスll内を通る電気
レオロジカル流体13に印加される電圧が制御されるよ
うになっている。すなわち、制御回路15および電源回
路21は圧力検出器14および変位状態検出手段19の
検出情報に基づいてオリフィスll内の電気レオロジカ
ル流体13に電圧を印加するとともに、該印加電圧を制
御する制御手段22を構成している。
The control circuit 15 is composed of a microcomputer or the like, and the control circuit 15 determines the flow state (flow direction, speed) of the electrorheological fluid 13 in the orifice 11 and the elastic body 1 based on the detection information of the pressure detector 14 and the displacement state detection means 19. identify the deformation state of and grasp the support spring force F1 and expansion spring force F2 of the elastic body 1 shown in FIG. Then, a control signal C is outputted to the power supply circuit 21 according to the magnitude and phase shift of both spring forces. The power supply circuit 21 applies a constant DC reference voltage V to the outer cylinder electrode 8.
N (for example, V s = OV), and also outputs a DC voltage ■, which changes from the same value as the reference voltage VN to a predetermined value higher than the reference voltage VN, to the inner cylinder electrode 9 according to the control signal C. The voltage applied to the electrorheological fluid 13 passing through the orifice 11 is controlled by promoting a change in the DC voltage (2) by the control signal C. That is, the control circuit 15 and the power supply circuit 21 apply a voltage to the electrorheological fluid 13 in the orifice 11 based on the detection information of the pressure detector 14 and the displacement state detection means 19, and also control means for controlling the applied voltage. 22.

なお、第2図は本実施例の概略構成をモデル化したもの
であり、本実施例がエンジンのマスMおよび弾性体1の
ばね定数に1を有する主振動系と弾性体1の拡張ばね定
数KZ、オリフィス11内の電気レオロジカル流体13
のマスmおよびオリフィス内減衰力f、を発揮する減衰
器りを有する副振動系とからなることを示している。こ
の場合、主振動系の共振振幅を抑えるよう副振動系のマ
スmおよびばね定数に2を設定すると、減衰器りの減衰
係数の大きさによって第3図の共振曲線a、b、Cに示
すような周波数特性を示すことは周知であり、電気レオ
ロジカル流体13に電圧が印加されない非制御時には共
振曲線c(H適共振曲線)の特性となるようにしている
Note that FIG. 2 is a model of the schematic configuration of this embodiment, and this embodiment has a main vibration system in which the mass M of the engine and the spring constant of the elastic body 1 are 1, and the extended spring constant of the elastic body 1. KZ, electrorheological fluid 13 in orifice 11
, and a sub-vibration system having a damping device that exerts a mass m and an orifice damping force f. In this case, if the mass m and spring constant of the secondary vibration system are set to 2 to suppress the resonance amplitude of the main vibration system, the resonance curves a, b, and C in Figure 3 are shown depending on the magnitude of the damping coefficient of the damping device. It is well known that the electrorheological fluid 13 exhibits such frequency characteristics, and when no voltage is applied to the electrorheological fluid 13 and is not controlled, the electrorheological fluid 13 exhibits the characteristics of the resonance curve c (H-suitable resonance curve).

次に、作用を説明する。Next, the effect will be explained.

いま、エンジンあるいは車体側から取付部材2.3に比
較的低周波の振動(アイドル振動およびエンジンシェイ
ク等)が加わると、オリフィス11内の電気レオロジカ
ル流体13の流れ状態(移動状態)に応じて第2の室7
の内圧P8と取付部材2および取付部材3間の伝達力F
とが第4図に示すように変化する。すなわち、強制振動
の位相遅れ特性により、第2図のマスmであるオリフィ
スll内の電気レオロジカル流体13が共振周波数未満
の加振時に加振変位X、(第2図のX、−XZに相当)
と略同相に移動し、共振時には加振変位X0と90°の
位相差(遅れ)で移動し、さらに、共振周波数を越える
周波数の加振時に加振変位X0と略逆相(180°遅れ
)に移動して第2の室7の内圧p、を加振変位X0と位
相を異にして一義的に変化させる。したがって、内圧P
、の変化からオリフィス11内の電気レオロジカル流体
13の流れ状態が検出される。また、オリフィス11内
の電気レオロジカル流体13の移動により第1の室4内
の内圧が内圧P、と逆相に増減するとともに、加振変位
X0に基づいて変化するので、制御回路15によりオリ
フィスll内の流れ状態と取付部材2および取付部材3
の相対変位状態とから装置内に作用する支持ばね力F1
および拡張ばね力F2とその位相差が把握される。
Now, when relatively low-frequency vibrations (idle vibration, engine shake, etc.) are applied to the mounting member 2.3 from the engine or the vehicle body side, the electrorheological fluid 13 in the orifice 11 will cause vibrations depending on the flow state (movement state) of the electrorheological fluid 13 in the orifice 11. second chamber 7
The internal pressure P8 and the transmission force F between the mounting member 2 and the mounting member 3
changes as shown in FIG. That is, due to the phase delay characteristic of forced vibration, when the electrorheological fluid 13 in the orifice 11, which is the mass m in FIG. equivalent)
It moves approximately in phase with the excitation displacement X0 during resonance, and moves with a phase difference (lag) of 90° from the excitation displacement The internal pressure p of the second chamber 7 is uniquely changed by changing the phase from the excitation displacement X0. Therefore, the internal pressure P
The flow state of the electrorheological fluid 13 within the orifice 11 is detected from the change in . Furthermore, due to the movement of the electrorheological fluid 13 in the orifice 11, the internal pressure in the first chamber 4 increases or decreases in the opposite phase to the internal pressure P, and also changes based on the excitation displacement X0. Flow state in ll and mounting member 2 and mounting member 3
The supporting spring force F1 acting within the device from the relative displacement state of
Then, the expansion spring force F2 and its phase difference are grasped.

具体的には、第5.6図に示すような処理が所定時間毎
に繰り返される。まず、演算回路16により取付部材2
の変位加速度父2および取付部材3の変位加速度父、か
ら相対変位状態である相対加速度(X、−X、)あるい
は相対変位(X+  Xz)が演算され、制御回路15
により第2の室7の内圧P、の変化量−8が識別される
。このとき、相対加速度(’東−’iz)の符号(プラ
スあるいはマイナス)がプラスの場合には取付部材2.
3は互いに接近する方向に相対変位し、該符号がマイナ
スの場合には取付部材2.3が互いに離隔する方向に変
位することになり、相対加速度(父、−Xz)あるいは
相対変位(x+ −XZ )から支持ばね力が把握され
る。また、同時に変化量か、の符号がプラスの場合には
オリフィスll内の流れは第2の室7に向かい、該符号
がマイナスの場合にはオリフィス11内の流れは第1の
室4に向かうことになり、変化Rpmからオリフィス1
1内の流れによる第1の室4内の圧力変動および拡張ば
ね力F2が把握される。次いで、制御回路15により両
者の積である(又r  ’Xz)  ・pmあるいは(
x。
Specifically, the process shown in FIG. 5.6 is repeated at predetermined intervals. First, the arithmetic circuit 16 determines whether the mounting member 2
The relative acceleration (X, -X,) or relative displacement (X+
Thus, the amount of change -8 in the internal pressure P of the second chamber 7 is identified. At this time, if the sign (plus or minus) of the relative acceleration ('east-'iz) is positive, the mounting member 2.
3 are relatively displaced in the direction of approaching each other, and when the sign is negative, the mounting members 2.3 are displaced in the direction of separating from each other, and the relative acceleration (-Xz) or relative displacement (x+ - The support spring force can be determined from XZ). At the same time, if the sign of the amount of change is positive, the flow in the orifice 11 will flow toward the second chamber 7, and if the sign is negative, the flow in the orifice 11 will flow toward the first chamber 4. Therefore, the change Rpm to orifice 1
The pressure fluctuations in the first chamber 4 due to the flow in the first chamber 4 and the expansion spring force F2 are ascertained. Next, the control circuit 15 calculates the product of both (r'Xz) ・pm or (
x.

Xg)  ・p、が計算され、この計算結果の符号が判
別される。そして、該符号に基づいて電源回路21から
内筒電極9に出力される直流電圧■、が所定値に増加あ
るいはVNO値に減少され、オリフィス11内の電気レ
オロジカル流体13に印加する印加電圧が0N10FF
される。なお、相対加速度(父、−叉2)と相対変位(
XI’  X2)では180°の位相差があるため、第
5.6図に示したそれぞれの制御アルゴリズムの符号判
別結果と電圧0N10FFの関係は逆になっている。
Xg) ·p is calculated, and the sign of this calculation result is determined. Then, based on the sign, the DC voltage (2) output from the power supply circuit 21 to the inner cylinder electrode 9 is increased to a predetermined value or decreased to the VNO value, and the applied voltage applied to the electrorheological fluid 13 in the orifice 11 is increased. 0N10FF
be done. In addition, relative acceleration (father, -叉2) and relative displacement (
XI′

すなわち、支持ばね力F1および拡張ばね力F2が同相
の力としてエンジンに作用するときには印加電圧がON
され、オリフィス11内の流動抵抗が増大して拡張ばね
力F2が減少するよう調節され、一方、支持ばね力F、
および拡張ばね力F2が逆相の力としてエンジンに作用
するときには印加電圧がO,FFされ、オリフィス11
内の流動抵抗が減少して拡張ばね力F2が増大するよう
調節される。
That is, when the support spring force F1 and the expansion spring force F2 act on the engine as forces in the same phase, the applied voltage is ON.
is adjusted such that the flow resistance in the orifice 11 increases and the expansion spring force F2 decreases, while the supporting spring force F,
When the expansion spring force F2 acts on the engine as a force of opposite phase, the applied voltage is turned O and FF, and the orifice 11
The expansion spring force F2 is adjusted so as to decrease the flow resistance within and increase the expansion spring force F2.

したがって、支持ばね力F1および拡張ばね力F2の合
力である振動減衰力が拡張ばね力F2の加減調節によっ
てリアルタイムに最適制御され、十分な振動減衰能が発
揮される。因みに、第3図の共振曲線dは本実施例の作
動時を示すものであり、本実施例では共振曲線C(非作
動時の最適共振曲線)より4〜5 (dB)振動減衰能
を向上させることができ、アイドル振動等に加えてエン
ジンシェイク等を有効に減衰できる。
Therefore, the vibration damping force, which is the resultant force of the support spring force F1 and the expansion spring force F2, is optimally controlled in real time by adjusting the expansion spring force F2, and sufficient vibration damping ability is exhibited. Incidentally, the resonance curve d in Fig. 3 shows the operating state of this embodiment, and in this embodiment, the vibration damping ability is improved by 4 to 5 (dB) compared to the resonance curve C (optimum resonance curve during non-operation). This makes it possible to effectively attenuate engine shake in addition to idle vibration.

なお、本実施例においては、取付部材2.3の相対変位
(X、−X、)を変位加速度冶、父2を積分した後に減
算して求めているが(第6図参照)、本発明はこれに限
らず別の手段によって相対変位(X、−X、)を直接検
出してもよいことはいうまでもない。
Note that in this embodiment, the relative displacement (X, -X,) of the mounting member 2.3 is obtained by integrating the displacement acceleration 2 and then subtracting it (see Fig. 6). Needless to say, the relative displacement (X, -X,) is not limited to this, and the relative displacement (X, -X,) may be directly detected by another means.

(効果) 本発明によれば、オリフィス内の流れ状態を検出する流
れ状態検出手段と取付部材間の相対加速度あるいは相対
変位を検出する変位状態検出手段との検出情報に基づき
、制御手段よりオリフィス内の電気レオロジカル流体に
電圧を印加するとともに、該印加電圧を制御しているの
で、再取付部材の相対変位に対応する支持ばね力とオリ
フィス内の流れに対応して変動する拡張ばね力との位相
差に基づいてオリフィス内の電気レオロジカル流体の粘
性を変化させることができ、拡張ばね力を迅速に加減調
節することができる。この結果、第1の室および第2の
室間を移動する流体によって発生する内圧変化等を含め
て装置内で発生する力を効果的に利用し、十分な振動減
衰能を発揮させることができる。
(Effect) According to the present invention, based on the detection information of the flow state detection means for detecting the flow state in the orifice and the displacement state detection means for detecting the relative acceleration or relative displacement between the mounting members, the control means controls the flow state within the orifice. Since a voltage is applied to the electrorheological fluid and the applied voltage is controlled, the support spring force corresponding to the relative displacement of the reinstallation member and the expansion spring force varying in response to the flow in the orifice are combined. The viscosity of the electrorheological fluid within the orifice can be varied based on the phase difference, and the expansion spring force can be quickly adjusted. As a result, it is possible to effectively utilize the forces generated within the device, including internal pressure changes caused by the fluid moving between the first chamber and the second chamber, and to exhibit sufficient vibration damping ability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は本発明に係る振動減衰装置の一実施例を示
す図であり、第1図はその振動減衰装置の正面断面図、
第2図はその物理モデル図、第3図はその周波数特性を
示すグラフ、第4図はその取付部材間の加振変位、第2
の室の圧力変化および伝達力の関係を示すグラフ、第5
.6図はそれぞれその制御手段の制御アルゴリズムを示
すフローチャートである。 1・・・・・・弾性体、 2・・・・・・機関側の取付部材、 3・・・・・・支持体側の取付部材、 4・・・・・・第1の室、 7・・・・・・第2の室、 11・・・・・・オリフィス、 12・・・・・・流体移動手段、 13・・・・・・電気レオロジカル流体、14・・・・
・・圧力検出器(流れ状態検出手段)、19・・・・・
・変位状態検出手段、 22・・・・・・制御手段。
1 to 6 are diagrams showing an embodiment of the vibration damping device according to the present invention, and FIG. 1 is a front sectional view of the vibration damping device;
Figure 2 is a diagram of its physical model, Figure 3 is a graph showing its frequency characteristics, Figure 4 is the excitation displacement between its mounting members,
Graph showing the relationship between the pressure change in the chamber and the transmitted force, 5th
.. FIG. 6 is a flowchart showing the control algorithm of each control means. 1...Elastic body, 2...Mounting member on the engine side, 3...Mounting member on the support body side, 4...First chamber, 7. ... Second chamber, 11 ... Orifice, 12 ... Fluid moving means, 13 ... Electrorheological fluid, 14 ...
...Pressure detector (flow state detection means), 19...
- Displacement state detection means, 22... Control means.

Claims (1)

【特許請求の範囲】[Claims] 機関側の取付部材と支持体側の取付部材との間に介装さ
れ、内部に第1の室を画成する弾性体と、両取付部材の
少なくとも一方に設けられたオリフィスおよび該オリフ
ィスを介して第1の室に連通する容積変化自在な第2の
室を有し、両取付部材の相対変位による弾性体の変形に
応じて第1の室および第2の室間でオリフィスを通して
流体を移動させることができる流体移動手段と、第1の
室および第2の室に封入され、印加電圧に応じて液体か
らほぼ固体まで粘性が変化しうる電気レオロジカル流体
と、オリフィス内の流れ状態を検出する流れ状態検出手
段と、両取付部材の相対加速度あるいは相対変位を検出
する変位状態検出手段と、流れ状態検出手段および変位
状態検出手段の検出情報に基づいてオリフィス内の電気
レオロジカル流体に電圧を印加し、該印加電圧を制御す
る制御手段と、を備えたことを特徴とする振動減衰装置
an elastic body interposed between the engine-side mounting member and the support-side mounting member and defining a first chamber therein; and an orifice provided in at least one of both mounting members; It has a second chamber whose volume can be changed freely and communicates with the first chamber, and the fluid is moved between the first chamber and the second chamber through the orifice according to the deformation of the elastic body due to the relative displacement of both mounting members. an electrorheological fluid that is sealed in a first chamber and a second chamber and whose viscosity can change from liquid to substantially solid depending on an applied voltage; A voltage is applied to the electrorheological fluid in the orifice based on the detection information of the flow state detection means, the displacement state detection means that detects the relative acceleration or relative displacement of both mounting members, and the flow state detection means and the displacement state detection means. and a control means for controlling the applied voltage.
JP722788A 1988-01-14 1988-01-14 Vibration damping equipment Pending JPH01182106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP722788A JPH01182106A (en) 1988-01-14 1988-01-14 Vibration damping equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP722788A JPH01182106A (en) 1988-01-14 1988-01-14 Vibration damping equipment

Publications (1)

Publication Number Publication Date
JPH01182106A true JPH01182106A (en) 1989-07-20

Family

ID=11660108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP722788A Pending JPH01182106A (en) 1988-01-14 1988-01-14 Vibration damping equipment

Country Status (1)

Country Link
JP (1) JPH01182106A (en)

Similar Documents

Publication Publication Date Title
US4973031A (en) Anti-vibration apparatus
US5060919A (en) Damping coefficient control device for vibration damper
JPS63265715A (en) Fluid-contained suspension and its operation control device
JPH083343B2 (en) Controlled power unit mounting device
JP3407465B2 (en) Liquid filled type vibration damping device
US20020153647A1 (en) Hydraulic mount and control method
JPH0718470B2 (en) Controlled vibration control device
JPH06675Y2 (en) Controlled vibration control device
JPH0450527A (en) Engine support device for vehicle
US5226500A (en) Automotive power unit mounting system
JPH01182106A (en) Vibration damping equipment
JPH10109550A (en) Suspension system of power unit
JPH01188737A (en) Vibration damper
JPH02159437A (en) Control type engine mount
JPH051739A (en) Vibration isolation support device
JPH0366945A (en) Control type engine mount
JPS6030838A (en) Vibration damper
JPH02240427A (en) Control type engine mount
JPS5857536A (en) Vibration proof supporter
JP2629789B2 (en) Functional fluid control type mounting device
JPH04339019A (en) Vibration-proof device
JPH01199031A (en) Actuation control device for vibration isolating device
JPH0289831A (en) Control type engine mount
JPH01135938A (en) Viscosity variable fluid sealed device
JPH04302729A (en) Mount for power unit