JPH0118132B2 - - Google Patents

Info

Publication number
JPH0118132B2
JPH0118132B2 JP22777085A JP22777085A JPH0118132B2 JP H0118132 B2 JPH0118132 B2 JP H0118132B2 JP 22777085 A JP22777085 A JP 22777085A JP 22777085 A JP22777085 A JP 22777085A JP H0118132 B2 JPH0118132 B2 JP H0118132B2
Authority
JP
Japan
Prior art keywords
cooling
roll
buckling
stress
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22777085A
Other languages
Japanese (ja)
Other versions
JPS6289823A (en
Inventor
Shuzo Fukuda
Naotake Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP22777085A priority Critical patent/JPS6289823A/en
Publication of JPS6289823A publication Critical patent/JPS6289823A/en
Publication of JPH0118132B2 publication Critical patent/JPH0118132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は冷却ロール接触方式による金属ストリ
ツプの冷却方法に関する。 〔従来の技術〕 金属ストリツプの連続焼鈍設備等において、冷
却ロールにストリツプを接触させ冷却する方法が
知られている。 第1図はこの種の冷却方式を利用した連続焼鈍
設備を示すもので、均熱帯5及び過時処理帯7の
各後面に複数の冷却ロール12を備えた冷却ロー
ル帯6,8が設けられている。この冷却ロール1
2としては、例えば第2図に示されるようにロー
ルシエル13の内側に螺旋状の冷媒液通路14を
有した構造のものが用いられ、冷却ロールのロー
ル軸に設けられた通路15とロール軸端に連結さ
れたロータリージヨイント16とにより冷媒液通
路14内に冷却水等の冷媒液を流通させ得るよう
になつている。 第3図は第1図の連続焼鈍設備における熱サイ
クルを示すものであり、テンシヨンリール1から
巻戻された金属ストリツプXは、クリーニングセ
クシヨン2及び入側ルーパ3を経て加熱帯4及び
均熱帯5に送られ、約700℃に加熱された後、冷
却ロール帯6で約400℃に100〜200℃/secの冷却
速度で急速冷却される。次いで金属ストリツプX
は過時効処理帯7で処理後、再び冷却ロール帯8
で冷却され、出側ルーパ9及びテンパミル10を
経てテンシヨンリール11に巻取られる。 以上のような冷却ロールによる金属ストリツプ
Xの冷却においては、冷却過程で生ずる熱応力の
ために金属ストリツプXの形状がくずれやすく、
冷却ロール12間の非接触部で座屈が生じ易い欠
点がある。そして甚だしい場合にはこの座屈から
“絞り”と称するライン方向の縦ジワが生じ、ラ
イン内での金属ストリツプXの破断などにもつな
がる重大な支障となる。 〔発明が解決しようとする問題点〕 従来、このような金属ストリツプに生ずる熱応
力及びこれに基づく座屈・絞りについては、座屈
危険部位は板幅方向に圧縮応力の発生する所であ
り、この値が座屈抵抗値を越えると座屈し、絞り
に至る危険が極めて高いということが、例えば特
開昭56−5930号、特開昭59−28532号等において
明らかにされているが、その防止のための具体的
な方策については未だ十分な解明がなされている
とは言い難い。 〔問題を解決するための手段〕 本発明はこのような事情に鑑みなされたもの
で、ストリツプのロール接触冷却時における座
屈、絞り特性を仔細に検討した結果、絞りについ
ても特定のインデツクスに基づき、各冷却ロール
における冷却条件及びライン条件を規制すること
により、金属ストリツプを絞りを生ずることなく
冷却できることを見い出した。 すなわち本発明は、金属ストリツプをロール接
触冷却するに当り、下式を満足するようライン条
件及び冷却条件を制御するようにしたものであ
る。 V/α・{a・σe/E(R・t/W)2+b・φs1/
1−ν2 (t/W)3}>1 但し、v :ライン速度〔mpm〕 α :ロール冷却の総括熱貫流率
(Kcal/m2h℃) E :ヤング率〔Kg/mm2〕 σe:降伏応力〔Kg/mm2〕 R :水冷ロールの半径(m) t :板 厚(m) W :板 幅(m) ν :ポアソン比 φs:2軸応力場の座屈抵抗係数 a、b:ロール冷却装置固有の定数値 以下、本発明の詳細を説明する。 金属ストリツプをロール接触冷却する場合、ス
トリツプが冷却ロールに接触開始する部分の板幅
中央部に、圧縮の熱応力が長手方向及び板幅方向
のいずれにも発生し、これが座屈、さらには絞り
の原因となる。第4図はストリツプのロール接触
冷却時の形状変化を示すもので、冷却されるスト
リツプの形状変化は同図に示されるような条件で
決まると考えることができる。すなわち座屈危険
部の圧縮応力(σ1ave(一様な板幅方向圧縮応
力)が臨界座屈応力σBになると座屈し、軽いふく
らみ状となる。そしてさらにこの座屈危険部位の
圧縮応力(σ1aveがσBを越え、臨界応力σPに達す
ると絞りが発生する。 第5図−に一様な2軸応力状態の種々の模式
図を、第5図−にそれらの状態の臨界座屈応力
値を示す。ストリツプのロール冷却時を想定し、
第5図−のy方向をライン方向、x方向を板幅
方向とすれば、ライン方向応力が圧縮の時にく
らべ、比較的大きな引張り状態では板幅方向圧
縮σXがかなり大きくないと座屈しないことが判
る。 一辺B、板厚tで周辺が単純支持された矩形板
が、一方向にのみ一様な圧縮を受けるときの臨界
座屈応力σcrは次式で表わすことができる。 σcr=4x2E/12(1−ν2)(t/B)2 但し、E:ヤング率 ν:ポアソン比 これによれば、板幅方向圧縮応力以外にライン
方向引張り応力が加わつた場合、より大きな板幅
方向圧縮応力にならないと座屈しないことを示し
ている。例えば、ライン方向応力σL=σcrが加わ
ると、板幅方向圧縮だけによる座屈限界応力σcr
からσなる幅方向圧縮応力にまで増加しないと座
屈しない。この比率σ/σcrを2軸応力場座屈の
1軸応力場座屈に対する係数φs(2軸応力場の座
屈抵抗係数)と定義する。φsは第1表に示す式で
表現される。
[Industrial Field of Application] The present invention relates to a method for cooling metal strips using a cooling roll contact method. [Prior Art] In continuous annealing equipment for metal strips, a method is known in which the strip is cooled by bringing it into contact with a cooling roll. FIG. 1 shows a continuous annealing facility using this type of cooling system, in which cooling roll zones 6 and 8 each having a plurality of cooling rolls 12 are provided at the rear of a soaking zone 5 and an over-temperature treatment zone 7. There is. This cooling roll 1
2, for example, as shown in FIG. 2, a structure having a spiral refrigerant liquid passage 14 inside the roll shell 13 is used, and a passage 15 provided in the roll shaft of the cooling roll and a roll shaft are used. A rotary joint 16 connected to the end allows a refrigerant liquid such as cooling water to flow into the refrigerant liquid passage 14. FIG. 3 shows the thermal cycle in the continuous annealing equipment shown in FIG. 1, in which the metal strip After being sent to the tropical zone 5 and heated to about 700°C, it is rapidly cooled to about 400°C in a cooling roll zone 6 at a cooling rate of 100 to 200°C/sec. Then metal strip
After being treated in the overaging treatment zone 7, it is transferred to the cooling roll zone 8 again.
It is cooled, passed through an exit looper 9 and a temper mill 10, and then wound onto a tension reel 11. When the metal strip X is cooled by the cooling roll as described above, the shape of the metal strip X is easily distorted due to thermal stress generated during the cooling process.
There is a drawback that buckling is likely to occur in the non-contact portion between the cooling rolls 12. In extreme cases, this buckling causes vertical wrinkles in the line direction called "squeezing", which becomes a serious problem that may lead to breakage of the metal strip X within the line. [Problems to be Solved by the Invention] Conventionally, regarding the thermal stress generated in such metal strips and the resulting buckling/restriction, buckling-prone areas are locations where compressive stress occurs in the width direction of the strip, If this value exceeds the buckling resistance value, there is an extremely high risk of buckling and constriction, as disclosed in, for example, JP-A-56-5930 and JP-A-59-28532. It cannot be said that sufficient elucidation has been made regarding specific measures for prevention. [Means for Solving the Problem] The present invention was made in view of the above circumstances, and as a result of careful study of the buckling and drawing characteristics during roll contact cooling of the strip, the drawing was also developed based on a specific index. discovered that by regulating the cooling conditions and line conditions in each cooling roll, the metal strip could be cooled without throttling. That is, the present invention controls the line conditions and cooling conditions so that the following equation is satisfied when a metal strip is cooled by roll contact. V/α・{a・σ e /E(R・t/W) 2 +b・φ s 1/
1-ν 2 (t/W) 3 }>1 However, v: Line speed [mpm] α: Overall heat transmission coefficient of roll cooling (Kcal/m 2 h℃) E: Young's modulus [Kg/mm 2 ] σ e : Yield stress [Kg/ mm2 ] R: Radius of water-cooled roll (m) t: Plate thickness (m) W: Plate width (m) ν: Poisson's ratio φ s : Buckling resistance coefficient of biaxial stress field a , b: constant value specific to the roll cooling device The details of the present invention will be described below. When a metal strip is cooled by roll contact, compressive thermal stress is generated in both the longitudinal and width directions at the center of the strip width where the strip starts contacting the cooling roll, which can lead to buckling and even squeezing. It causes FIG. 4 shows the change in shape of the strip during roll contact cooling, and it can be considered that the change in shape of the cooled strip is determined by the conditions shown in the figure. In other words, when the compressive stress (σ 1 ) ave (uniform compressive stress in the sheet width direction) in the buckling-prone area reaches the critical buckling stress σ B , buckling occurs, resulting in a slight bulge. Furthermore, when the compressive stress (σ 1 ) ave of this buckling-prone area exceeds σ B and reaches the critical stress σ P , a constriction occurs. FIG. 5 shows various schematic diagrams of uniform biaxial stress states, and FIG. 5 shows critical buckling stress values for those states. Assuming that the strip roll is cooling,
If the y direction in Figure 5 is the line direction and the x direction is the sheet width direction, buckling will not occur unless the sheet width direction compression σ I understand that. The critical buckling stress σ cr when a rectangular plate whose periphery is simply supported with one side B and a plate thickness t is uniformly compressed only in one direction can be expressed by the following equation. σ cr = 4x 2 E/12 (1-ν 2 ) (t/B) 2 However, E: Young's modulus ν: Poisson's ratio According to this, when tensile stress in the line direction is applied in addition to the compressive stress in the width direction , indicating that buckling does not occur unless a larger compressive stress in the width direction is applied. For example, when line direction stress σ Lcr is applied, the buckling limit stress σ cr due only to compression in the width direction
Buckling does not occur unless the stress in the width direction increases from σ to σ. This ratio σ/σ cr is defined as the coefficient φ s (buckling resistance coefficient of biaxial stress field) of biaxial stress field buckling with respect to uniaxial stress field buckling. φ s is expressed by the formula shown in Table 1.

【表】【table】

〔実施例〕〔Example〕

第8図に示されているような冷却ロール装置を
用い、約700℃に加熱された鋼帯を600〜400℃の
温度までロール冷却し、絞り発生の有無について
調べた。第2表は、その結果とライン・冷却条件
及び絞りP.I.を示すものであり、本発明法により
絞りP.I.>1で冷却を行うことにより、絞りの発
生が適切に抑えられていることが判る。
A steel strip heated to approximately 700°C was roll-cooled to a temperature of 600 to 400°C using a cooling roll apparatus as shown in FIG. 8, and the presence or absence of squeezing was examined. Table 2 shows the results, line/cooling conditions, and aperture PI, and it can be seen that the occurrence of aperture is appropriately suppressed by performing cooling with the aperture PI>1 according to the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、金属ストリツプを
そのサイズにかかわらず絞りを生ずることなく冷
却できる効果があり、特に鋼帯の連続焼鈍等にお
いて好適なものであるということができる。
According to the present invention described above, there is an effect that a metal strip can be cooled without causing throttling regardless of its size, and it can be said that it is particularly suitable for continuous annealing of steel strips.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はストリツプの連続焼鈍ラインを示す説
明図である。第2図は冷却ロールの縦断面図であ
る。第3図は第1図の連続焼鈍ラインにおける熱
サイクルを示すものである。第4図はストリツプ
のロール接触冷却時の形状変化を示す説明図であ
る。第5図−は一様な2軸応力状態の模式図、
第5図−はそれらの状態の臨界座屈応力値を示
す。第6図はロール接触冷却時のストリツプの座
屈形状、第7図は同じく絞り形状を示す説明図で
ある。第8図は本発明の実施例に供される冷却ロ
ール装置を示す説明図である。第9図イ及びロは
それぞれ第8図に示す冷却ロール装置の使用態様
を示す説明図である。 図において、12,12a,12bは冷却ロー
ル、Xは金属ストリツプである。
FIG. 1 is an explanatory diagram showing a continuous annealing line of a strip. FIG. 2 is a longitudinal sectional view of the cooling roll. FIG. 3 shows a thermal cycle in the continuous annealing line of FIG. 1. FIG. 4 is an explanatory diagram showing the change in shape of the strip during roll contact cooling. Figure 5- is a schematic diagram of a uniform biaxial stress state;
Figure 5- shows the critical buckling stress values for those conditions. FIG. 6 is an explanatory view showing the buckled shape of the strip during roll contact cooling, and FIG. 7 is an explanatory diagram showing the constricted shape. FIG. 8 is an explanatory diagram showing a cooling roll device used in an embodiment of the present invention. FIGS. 9A and 9B are explanatory views showing how the cooling roll device shown in FIG. 8 is used, respectively. In the figure, 12, 12a, 12b are cooling rolls, and X is a metal strip.

Claims (1)

【特許請求の範囲】 1 金属ストリツプを冷却ロールによりロール接
触冷却するに当り、下式を満足するようライン条
件及び冷却条件を制御することを特徴とする金属
ストリツプのロール接触冷却方法。 V/α・{a・σe/E(R・t/W)2+b・φs1/
1−ν2 (t/W)3}>1 但し、v :ライン速度〔mpm〕 α :ロール冷却の総括熱貫流率
(Kcal/m2h℃) E :ヤング率〔Kg/mm2〕 σe:降伏応力〔Kg/mm2〕 R :水冷ロールの半径(m) t :板 厚(m) W :板 幅(m) ν :ポアソン比 φs:2軸応力場の座屈抵抗係数 a、b:ロール冷却装置固有の定数値
[Scope of Claims] 1. A roll contact cooling method for a metal strip, which comprises controlling line conditions and cooling conditions so as to satisfy the following formula when performing roll contact cooling of a metal strip using a cooling roll. V/α・{a・σ e /E(R・t/W) 2 +b・φ s 1/
1-ν 2 (t/W) 3 }>1 However, v: Line speed [mpm] α: Overall heat transmission coefficient of roll cooling (Kcal/m 2 h℃) E: Young's modulus [Kg/mm 2 ] σ e : Yield stress [Kg/ mm2 ] R: Radius of water-cooled roll (m) t: Plate thickness (m) W: Plate width (m) ν: Poisson's ratio φ s : Buckling resistance coefficient of biaxial stress field a , b: constant value specific to the roll cooling device
JP22777085A 1985-10-15 1985-10-15 Method for cooling metallic strip by contact with roll Granted JPS6289823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22777085A JPS6289823A (en) 1985-10-15 1985-10-15 Method for cooling metallic strip by contact with roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22777085A JPS6289823A (en) 1985-10-15 1985-10-15 Method for cooling metallic strip by contact with roll

Publications (2)

Publication Number Publication Date
JPS6289823A JPS6289823A (en) 1987-04-24
JPH0118132B2 true JPH0118132B2 (en) 1989-04-04

Family

ID=16866104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22777085A Granted JPS6289823A (en) 1985-10-15 1985-10-15 Method for cooling metallic strip by contact with roll

Country Status (1)

Country Link
JP (1) JPS6289823A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789819B2 (en) * 1990-12-27 1998-08-27 住友金属工業株式会社 Method of preventing drawing of steel strip in continuous annealing furnace

Also Published As

Publication number Publication date
JPS6289823A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
JPS59143028A (en) Cooler for metallic strip in continuous heat treating furnace
JPH0118132B2 (en)
JPH02274823A (en) Equipment and method for continuously annealing metal sheet
JPS63115654A (en) Method and apparatus for casting metal sheet
JPS6043429A (en) Method for refining cold rolled austenitic stainless steel sheet
JPS62149820A (en) Method for cooling steel strip
JP3168753B2 (en) Threading method in direct reduction heating equipment of continuous metal strip processing line
JP3547431B2 (en) Continuous recrystallization annealing method for thin steel sheet
JPH01234524A (en) Continuous annealing method for non-oriented silicon steel sheet
JPH07179950A (en) Method for controlling tension of passing strip in continuous annealing furnace and device therefor
JPS5493621A (en) Method and equipment for manufacturing cold rolled steel sheet
JPS59220202A (en) Cold rolling method of steel sheet
JPH01234525A (en) Continuous annealing method for non-oriented silicon steel sheet
JPS5818412B2 (en) Continuous annealing furnace
JPH09168802A (en) Continuous warm rolling mill of stainless steel strip
JPH0118131B2 (en)
JPS62161921A (en) Heat treatment of strip
JPS59116325A (en) Method for continuously annealing dead soft steel strip
JP2789819B2 (en) Method of preventing drawing of steel strip in continuous annealing furnace
JPH051333A (en) Roll cooling device for metal strip
JPH07150259A (en) Method and device for cooling strip in continuous annealing furnace
JPH04198421A (en) Manufacture of austenitic stainless stell strip
JPH07116524B2 (en) In-furnace roll of continuous annealing furnace
JP2005179774A (en) Continuous annealing equipment for steel sheet and method for producing steel sheet
JPH08127819A (en) Method and device for flattened annealing for grain oriented silicon steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees