JPH01180980A - Coated tool material - Google Patents

Coated tool material

Info

Publication number
JPH01180980A
JPH01180980A JP531788A JP531788A JPH01180980A JP H01180980 A JPH01180980 A JP H01180980A JP 531788 A JP531788 A JP 531788A JP 531788 A JP531788 A JP 531788A JP H01180980 A JPH01180980 A JP H01180980A
Authority
JP
Japan
Prior art keywords
aluminum oxide
coated
al2o3
layer
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP531788A
Other languages
Japanese (ja)
Other versions
JP2677288B2 (en
Inventor
Katsumi Uemura
植村 勝己
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Original Assignee
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daijietsuto Kogyo Kk, Dijet Industrial Co Ltd filed Critical Daijietsuto Kogyo Kk
Priority to JP531788A priority Critical patent/JP2677288B2/en
Publication of JPH01180980A publication Critical patent/JPH01180980A/en
Application granted granted Critical
Publication of JP2677288B2 publication Critical patent/JP2677288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a coated tool material having superior wear and chipping resistances by coating the surface of a hard material as a base material with an Al2O3 layer consisting of a lower layer part of alpha-Al2O3 and an upper layer part of K-Al2O3. CONSTITUTION:The surface of a hard material such as a sintered hard alloy, cermet, ceramic or special steel as a base material is coated with an Al2O3 layer of 0.5-20mu thickness to produce a tool material. The surface of the base material may be previously coated with the carbide, nitride or carbonitride of Ti, Zr or Hf or the surface of the Al2O3 layer may be coated with the compd. The Al2O3 layer is composed of a lower layer part of alpha-Al2O3 and an upper layer part of K-Al2O3, the ratio of K-Al2O3 to alpha-Al2O3 is regulated to 0.1-10 and the thickness of the Al2O3 layer is preferably regulated to 0.5-10mu. A coated tool material maintaining stable machining performance is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工具として用いる被覆工具材料に係り、さら
に詳細には少な(とも酸化アルミニウムの被覆層を有す
る被覆工具材料の性能を向上させるように改良したもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coated tool material used as a tool, and more particularly to a method for improving the performance of a coated tool material having a coating layer of aluminum oxide. This is an improved version.

〔従来技術〕[Prior art]

従来、少な(とも酸化アルミニウムを被覆した工具材料
として、特公昭52−13201号公報に開示されてい
るように硬物質体からなる母材に隣接してTi 、 Z
r、 Hf 、 Taの炭化物および窒化物の被膜を形
成し、次いで酸化アルミニウムまたは酸化ジルコニウム
の被膜を設けた工具材料がある。
Conventionally, as a tool material coated with aluminum oxide, Ti and Z were used adjacent to a base material made of a hard material as disclosed in Japanese Patent Publication No. 52-13201.
There are tool materials in which a coating of carbides and nitrides of r, Hf, Ta is formed, followed by a coating of aluminum oxide or zirconium oxide.

また、特公昭53−28872号公報に示されているよ
うに超硬合金を母材とし、その表面へα−酸化アルミニ
ウムを1〜20μ鯛被覆した工具材料もある。
Furthermore, as shown in Japanese Patent Publication No. 53-28872, there is also a tool material in which the base material is made of cemented carbide and the surface thereof is coated with 1 to 20 μm of α-aluminum oxide.

〔従来技術が有する問題点〕[Problems with conventional technology]

しかしながら、硬物質体を母材とし、その表面へ前記し
たような酸化アルミニウムを被覆した工具材料は、炭化
チタンや窒化チタンまたは炭窒化チタンなどを1層以上
被覆した工具材料に比べると、すぐれた耐摩耗性を示す
が、高速切削における連続切削加工において安定した耐
摩耗性を示さなかったり、断続の旋削加工やフライス切
削加工などにおいて耐欠損性にや\問題を有している。
However, tool materials whose base material is a hard material and whose surface is coated with aluminum oxide as described above are superior to tool materials whose surfaces are coated with one or more layers of titanium carbide, titanium nitride, titanium carbonitride, etc. Although it exhibits wear resistance, it does not show stable wear resistance during continuous cutting at high speeds, and has problems with chipping resistance during intermittent turning and milling.

以上のように酸化アルミニウムの被膜を形成させた工具
材料においても切削条件によっては必ずしも所望する工
具寿命を満足させてはいない。これは酸化アルミニウム
被膜自体の靭性の不足や、酸化アルミニウム被膜と隣接
する他の層、あるいは硬物質体からなる母材との密着性
が不足することが起因するものと推察される。
As described above, even tool materials on which an aluminum oxide film is formed do not always satisfy the desired tool life depending on the cutting conditions. This is presumed to be due to insufficient toughness of the aluminum oxide coating itself, insufficient adhesion between the aluminum oxide coating and other layers adjacent to it, or with a base material made of a hard material.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点に鑑みなしたもので、酸化ア
ルミニウム自体の靭性を向上させ、しかも硬物質体から
なる母材や他の層との密着性を高めて耐摩耗性ならびに
耐欠損性を大きく改善させ所期の工具寿命が得られる被
覆工具材料を提供せんとするものである。
The present invention was developed in view of the above-mentioned problems, and it improves the toughness of aluminum oxide itself, and also improves the adhesion with the base material made of hard material and other layers, thereby improving wear resistance and chipping resistance. The object of the present invention is to provide a coated tool material that greatly improves the tool life and provides the desired tool life.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前々記した問題点を下記する手段によって解
決したものである。
The present invention solves the above-mentioned problems by the following means.

すなわち、超硬合金やサーメットあるいはセラミックス
または特殊鋼などからなる硬質物体を母材とし、該母材
の表面へ少な(とも酸化アルミニウムを0.5〜20μ
m被覆した工具材料の前記した酸化アルミニウム層部の
下層をα−酸化アルミニウムとし、その上層側をκ−酸
化アルミニウムとさせたものである。
That is, a hard object made of cemented carbide, cermet, ceramics, or special steel is used as a base material, and a small amount (0.5 to 20 μm of aluminum oxide) is applied to the surface of the base material.
The lower layer of the aluminum oxide layer portion of the m-coated tool material is made of α-aluminum oxide, and the upper layer is made of κ-aluminum oxide.

〔発明の作用〕[Action of the invention]

少なくとも酸化アルミニウム被膜を有する被覆工具の切
削特性と、その被膜形成の条件を種々変化させて作った
特性の異なる酸化アルミニウム層との関係を調べたとこ
ろ、α−酸化アルミニウムは酸化アルミニウムのなかで
最も安定した結晶状態であって、しかも高温において形
成され易いことがわかった。
When we investigated the relationship between the cutting characteristics of a coated tool that has at least an aluminum oxide coating and aluminum oxide layers with different characteristics made by varying the coating formation conditions, it was found that α-aluminum oxide is the best among aluminum oxides. It was found that it is in a stable crystalline state and is easily formed at high temperatures.

しかし、高温下でα−酸化アルミニウムを形成させると
酸化アルミニウムの粒子が粗くなり耐摩耗性は低下する
けれども酸化アルミニウム以外の層ないしは前記した硬
物質体からなる母材との密着性にすぐれるものとなるこ
とが分った。
However, when α-aluminum oxide is formed at high temperatures, the particles of aluminum oxide become coarse and the wear resistance decreases; It turns out that

一方、に−酸化アルミニウムは、α−酸化アルミニウム
よりも低い温度で形成させることはできるが、α−酸化
アルミニウムに比べて、や\安定性に欠けるきらいはあ
るけれども粒子そのものは非常に微細であって耐摩耗性
や耐欠損性は良好なものである。
On the other hand, aluminum oxide can be formed at a lower temperature than α-aluminum oxide, but the particles themselves are very fine, although they tend to be less stable than α-aluminum oxide. It has good wear resistance and chipping resistance.

そこで、硬物質体からなる母材に前々記した各層を被覆
するにあたって、密着性および生産性が高く、しかも安
定性に富むα−酸化アルミニウムを下層部とさせ、その
上層部に粒子が微細であるκ−酸化アルミニウムを形成
させることによって酸化アルミニウムに接する酸化アル
ミニウム以外の層、すなわちチタンやジルコニウムまた
はハフニウムの炭化物や窒化物および炭窒化物などと硬
物質体からなる母材との密着性を向上させ、耐摩耗性に
富むのと同時に耐欠損性にもすぐれる少なくとも酸化ア
ルミニウム被膜を有する被覆工具材料が得られることを
見いだしたものである。
Therefore, when coating the above-mentioned layers on the base material made of hard material, α-aluminum oxide, which has high adhesion and productivity, and is highly stable, is used as the lower layer, and the upper layer is made of α-aluminum oxide, which has fine particles. By forming κ-aluminum oxide, the adhesion between a layer other than aluminum oxide in contact with aluminum oxide, such as titanium, zirconium, or hafnium carbide, nitride, and carbonitride, and a base material made of a hard material can be improved. It has been discovered that it is possible to obtain a coated tool material having at least an aluminum oxide coating which has improved wear resistance and chipping resistance at the same time.

なお、硬物質体からなる母材の表面に少なくとも酸化ア
ルミニウム被膜を形成するにあたり、α−酸化アルミニ
ウムを下層部とし、その上層部をκ−酸化アルミニウム
とした理由は、これが逆になると、α−酸化アルミニウ
ムの形成中にκ−酸化アルミニウムの一部がα−酸化ア
ルミニウムに変態してしまうことによって酸化アルミニ
ウム被膜の表面粒子が粗くなって耐摩耗性や耐欠損性が
損われるからである。
The reason for forming at least an aluminum oxide film on the surface of a base material made of a hard material is that α-aluminum oxide is used as the lower layer and κ-aluminum oxide is used as the upper layer. This is because part of the κ-aluminum oxide transforms into α-aluminum oxide during the formation of aluminum oxide, which causes the surface particles of the aluminum oxide coating to become rough, impairing wear resistance and chipping resistance.

また、に−AJhOa/α−Al2O3の2段層のにの
結晶形の比率(に/α)を0.1〜10に限定した理由
は、に/α<0.1になると粒子の細いκ−酸化アルミ
ニウムの効果がほとんどみられず、逆にに/α〉10に
なると、酸化アルミニウム層と、その他の層部(例えば
炭化チタン)との密着性が低下して、いずれも所ル]の
工具寿命は得られない。
In addition, the reason why the ratio of the crystal form (ni/α) in the two-layer layer of Ni-AJhOa/α-Al2O3 was limited to 0.1 to 10 is that when Ni/α<0.1, the grains become thin κ. -Almost no effect of aluminum oxide is observed, and on the contrary, when /α>10, the adhesion between the aluminum oxide layer and other layers (e.g. titanium carbide) decreases, and in both cases Tool life cannot be obtained.

そして、に−酸化アルミニウムとα−酸化アルミニウム
からなる酸化アルミニウムの層厚は、0.5μm未満で
は被覆工具材料としての耐摩耗性が不足し、10μmを
上廻ると被膜形成のための時間が大巾にか\リコスト的
な問題を有するのと耐欠損性が低下する。
If the layer thickness of aluminum oxide consisting of aluminum oxide and α-aluminum oxide is less than 0.5 μm, the wear resistance as a coated tool material will be insufficient, and if it exceeds 10 μm, it will take a long time to form the coating. There are problems with the width and cost, and the fracture resistance decreases.

〔実 施 例〕〔Example〕

以下、本発明の実施例について述べる。 Examples of the present invention will be described below.

実施例1 超硬合金P20相当品からなる硬物質体(形番: CN
MGI 20408GG)をCVDコーティング炉内に
設置し、まず20Torrの減圧下1000℃の加熱雰
囲気で、5%T i CH4,10% CH4、残りを
H2の混合ガスの気流中にて、その表面へTiCを5μ
m被覆した。次いで1100℃まで加熱し596A I
Cl 3.5 % CO2、残りH2からなる混合気流
中において2時間をかけてα−Al2O3を2μm形成
させ、さらに1060℃にて396AICI3、残りH
2からなる混合気流中にて1時間を加えてに−Al2O
3被膜を0.5μm形成させて本発明になる被覆工具A
を得た。
Example 1 Hard material body made of cemented carbide P20 equivalent (model number: CN
MGI 20408GG) was installed in a CVD coating furnace, and TiC was first applied to its surface in a heated atmosphere of 1000°C under a reduced pressure of 20 Torr in an air flow of a mixed gas of 5% Ti CH4, 10% CH4, and the rest H2. 5μ
m coated. Then, it was heated to 1100°C and 596A I
α-Al2O3 was formed to a thickness of 2 μm over 2 hours in a mixed gas flow consisting of 3.5% Cl, CO2, and the remainder H2, and then at 1060°C, 396AICI3, the remainder H2 was formed.
-Al2O for 1 hour in a mixed gas stream consisting of 2
3 Coated tool A of the present invention by forming a coating of 0.5 μm
I got it.

次に上記の方法と類似した条件で、被膜形成時間を変え
て本発明になる被覆工具Bを得た。
Next, a coated tool B according to the present invention was obtained under similar conditions to the above method but with different coating formation times.

なお、上記した本発明になる該工具ならびに比較工具C
,Dの詳細を表−1に示す。
In addition, the above-mentioned tool according to the present invention and comparative tool C
, D are shown in Table 1.

表−1 実施例2 超硬合金P30相当品からなる硬物質体をCVDコーテ
ィング炉内に設置し、まず2゜Torr の減圧下で1
000℃の加熱雰囲気で596TiCI14.10%C
H4、残りH2の混合気流中にて、その表面へTiCを
3μm被覆した。
Table 1 Example 2 A hard material made of cemented carbide P30 or equivalent was placed in a CVD coating furnace, and first coated under a reduced pressure of 2° Torr.
596TiCI14.10%C in a heating atmosphere of 000℃
The surface was coated with TiC to a thickness of 3 μm in a mixed gas flow of H4 and the remaining H2.

次に、596TiCJ4.896CH4,296CO2
、残りH2の混合ガス気流中にてTi(C,O)を1〜
2μm被覆した。その後1100℃にて596 A I
! CAa、5%CO2、残りH2からなる混合ガス気
流中にα−AlzOaを1.5μm被覆 ′し、さらに
1060℃にて3%A I CA’ s、396CO2
、残りH2からなる混合気流中にてに−A620aを0
.5 tttn形成させ、さらに1000℃にて5%T
 i CII 4.1096N2、残りH2からなる混
合気流中にてTiNを1μm被覆させた本発明になる被
覆工具Eを得た。
Next, 596TiCJ4.896CH4,296CO2
, Ti(C,O) from 1 to 1 in the remaining H2 mixed gas stream.
It was coated with a thickness of 2 μm. After that, 596 A I at 1100℃
! α-AlzOa was coated to a thickness of 1.5 μm in a mixed gas stream consisting of CAa, 5% CO2, and the remainder H2, and further coated with 3% AI CA's and 396 CO2 at 1060°C.
, -A620a is 0 in the mixture flow consisting of the remaining H2.
.. 5 tttn was formed, and further 5% T was added at 1000°C.
A coated tool E according to the present invention was obtained in which TiN was coated to a thickness of 1 μm in a mixed air flow consisting of i CII 4.1096N2 and the remainder H2.

また、上記と類似の方法で被覆処理時間のみを変えて本
発明になる被覆工具Fを得た。
Further, a coated tool F according to the present invention was obtained using a method similar to that described above but only changing the coating treatment time.

上記した本発明になる該工具ならびに比較工具G、Hの
詳細を表−2に示した。
Details of the tool according to the present invention and comparative tools G and H described above are shown in Table 2.

表−2 実施例3 AA’203粉末にSiCウィスカーを4Qwt%含有
させた繊維強化型複合焼結硬物質体(SNGI 204
12)をCVDコーティング炉内へ設置し、これを11
00℃の加熱状態で15 Torrの減圧下とさせ、5
4AIC1s、55% CO2、残りH2からなる混合
ガス気流中にて前記硬物質体の表面へα−AI!20a
を2μm被覆し、さらに1060℃にて3%AIC#1
3.396COz、残りH2からなる混合ガス気流中で
に−Al2O3を1μm被覆して本発明になる被覆工具
■を得た。
Table 2 Example 3 Fiber-reinforced composite sintered hard material body (SNGI 204) containing 4Qwt% of SiC whiskers in AA'203 powder
12) is installed in the CVD coating furnace, and this is
Under a reduced pressure of 15 Torr while heating at 00°C,
α-AI! onto the surface of the hard material in a mixed gas stream consisting of 4AIC1s, 55% CO2, and the remainder H2! 20a
coated with 2 μm of AIC #1 at 1060°C.
In a mixed gas flow consisting of 3.396 COz and the remainder H2, -Al2O3 was coated to a thickness of 1 .mu.m to obtain a coated tool (2) of the present invention.

また、上記と類似した被覆方法で被覆処理時間を変えて
被覆工具Iの表面にさらにTiNを1μm被覆した本発
明になる被覆工具Jを得た。
Further, a coated tool J according to the present invention was obtained in which the surface of the coated tool I was further coated with 1 μm of TiN using a coating method similar to that described above but varying the coating treatment time.

以上の本発明になる該工具ならびは比較工具に、Lの詳
細を表−3に示した。
Table 3 shows the details of L in the tool according to the present invention and the comparative tool.

表−3 実施例4 Si3N4  を主成分とする焼結硬物質体(SNG1
20412)をCVDコーティング炉内に設置し、これ
を1000℃の加熱状態で20 Torrの減圧下とさ
せ、5%TiCl4.10%N2、残りH2からなる混
合ガス気流中にてTiNを2.5 μm被覆し、次いで
1100℃にて596AICg3.5%CO2、残りH
2からなる混合ガス気流中にてα−AhOaを1μm、
1050℃にて3%AAICJa、35% CO2、残
りH2からなる混合ガス気流中にてに−A#20gを形
成させて本発明になる被覆工具Mを得た。
Table 3 Example 4 Sintered hard material body mainly composed of Si3N4 (SNG1
20412) was placed in a CVD coating furnace, heated to 1000°C and under a reduced pressure of 20 Torr, 2.5% TiN was coated in a mixed gas flow consisting of 5% TiCl, 4.10% N2, and the remainder H2. μm coating, then 596AICg 3.5% CO2 at 1100℃, balance H
1 μm of α-AhOa in a mixed gas flow consisting of 2,
A coated tool M according to the present invention was obtained by forming 20 g of -A# in a mixed gas stream consisting of 3% AAICJa, 35% CO2, and the remainder H2 at 1050°C.

そして、上記と類似した被覆方法で、被覆処理時間を変
えることによって本発明になる被覆工具N、Oを得た。
Then, coated tools N and O according to the present invention were obtained by using a coating method similar to that described above but varying the coating treatment time.

以上の本発明になる該工具ならびに比較工具P、Q、H
の詳細を表−4に示した。
The above-mentioned tools of the present invention and comparative tools P, Q, and H
The details are shown in Table 4.

表−4 〔発明の効果〕 表−1に示した被覆工具を用いて切削速度120、n/
、1.、送り0.2−/r−v、切込み2.5 mm 
にて被削材SNCM447の連続切削テストを行い、逃
げ面摩耗幅が0.3 、、、nに達するまでの時間を測
定した結果、Aは15分、Bは17分、Cは8分、Dは
6分であった。
Table 4 [Effect of the invention] Using the coated tool shown in Table 1, the cutting speed was 120, n/
, 1. , feed 0.2-/r-v, depth of cut 2.5 mm
A continuous cutting test was conducted on the work material SNCM447 at D was 6 minutes.

また、切削速度120.、/、、i、、送り0.4m 
m/ r t v、切込み2.5m−にて軸方向に4つ
の溝を形成した被削材SCM445を用いて断続切削テ
ストを行い、試料が欠損にいたるまでの衝撃回数を求め
た結果、Aは2840回、Bは3030回に対し、Cは
1760回、Dは2120回であった。
In addition, the cutting speed was 120. , /, ,i, ,Feed 0.4m
An interrupted cutting test was conducted using a workpiece material SCM445 in which four grooves were formed in the axial direction at a depth of cut of 2.5 m and a cutting depth of 2.5 m, and the number of impacts until the sample fractured was determined. was 2,840 times, B was 3,030 times, C was 1,760 times, and D was 2,120 times.

表−2に示した被覆工具を上記と同様の旋削テストをお
こなった結果、逃げ面摩耗幅がQ、3mmに達するまで
の時間は、Eが17分、Fが18分、Gが6分、Hは9
分であった。
As a result of conducting the same turning test as above on the coated tools shown in Table 2, the time required for the flank wear width to reach Q, 3 mm was 17 minutes for E, 18 minutes for F, 6 minutes for G, H is 9
It was a minute.

また衝撃回数はEが3240回、Fが3170回に対し
、Gは1600回、Hは1750回であった。
Further, the number of impacts was 3240 times for E and 3170 times for F, 1600 times for G and 1750 times for H.

表−3に示した被覆工具は、逃げ面摩耗幅がQ、3my
+++に達するまでの時間が、■は20分、Jは18分
、Kは11分、Lは10分であり、衝撃回数は、■が5
860回、Jは5720回に対し、Kは4200回、L
は3160回であった。
The coated tool shown in Table 3 has a flank wear width of Q, 3my.
The time it takes to reach +++ is 20 minutes for ■, 18 minutes for J, 11 minutes for K, and 10 minutes for L, and the number of impacts is 5 for ■.
860 times, J 5720 times, K 4200 times, L
was 3160 times.

また表−4に示した被覆工具においては、逃げ面摩耗幅
が0.3.mに達するまでの時間が、Mは13分、N1
p114分、oは12分、Pは8分、Qは7分、Rは5
分であり、衝撃回数は、Mが6720回、Nは6690
回、0は5950回であったのに対し、Pは4860回
、Qは4790回、Rは2980回であった。
Furthermore, in the coated tools shown in Table 4, the flank wear width was 0.3. The time it takes to reach m is 13 minutes, N1
p114 minutes, o 12 minutes, P 8 minutes, Q 7 minutes, R 5
minutes, and the number of impacts is 6720 times for M and 6690 times for N.
0 was 5950 times, P was 4860 times, Q was 4790 times, and R was 2980 times.

本発明は、以上述べたとおり、酸化アルミニウム層の下
層部をα−酸化アルミニウムとし、その上層部をκ−酸
化アルミニウムトシたことによって優れた耐摩耗性と耐
欠損性を有し、安定した切削性が維持できる被覆工具材
料となった。
As described above, the present invention has excellent wear resistance and chipping resistance, and stable cutting by using α-aluminum oxide as the lower layer of the aluminum oxide layer and κ-aluminum oxide as the upper layer. This resulted in a coated tool material that maintains its properties.

Claims (2)

【特許請求の範囲】[Claims] (1)超硬合金やサーメットあるいはセラミックスまた
は特殊鋼などの硬物質体を母材とし、該母材の表面へ酸
化アルミニウム、または該母材と該酸化アルミニウムと
の間、および前記酸化アルミニウムの表面部へチタンや
ジルコニウムあるいはハフニウムなどの炭化物や窒化物
ないしは炭窒化物の1種以上を0.5〜20μm被覆し
た工具材料において、前記した酸化アルミニウム層の下
層部をα−酸化アルミニウムとし、その上層側をκ−酸
化アルミニウムとさせたことを特徴とする被覆工具材料
(1) A hard material body such as cemented carbide, cermet, ceramics, or special steel is used as a base material, and aluminum oxide is applied to the surface of the base material, or between the base material and the aluminum oxide, and the surface of the aluminum oxide. In a tool material coated with 0.5 to 20 μm of one or more carbides, nitrides, or carbonitrides such as titanium, zirconium, or hafnium, the lower layer of the aluminum oxide layer described above is α-aluminum oxide, and the upper layer is α-aluminum oxide. A coated tool material characterized in that the side thereof is made of κ-aluminum oxide.
(2)酸化アルミニウムの層厚は0.5〜10μmで、
α−酸化アルミニウムとκ−酸化アルミニウムの比率を
κ−Al_2O_3/α−Al_2O_3=0.1〜1
0であることを特徴とする特許請求の範囲第1項に記載
の被覆工具材料。
(2) The layer thickness of aluminum oxide is 0.5 to 10 μm,
The ratio of α-aluminum oxide and κ-aluminum oxide is κ-Al_2O_3/α-Al_2O_3=0.1~1
1. The coated tool material according to claim 1, wherein the coated tool material is 0.
JP531788A 1988-01-12 1988-01-12 Coated tool material Expired - Fee Related JP2677288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP531788A JP2677288B2 (en) 1988-01-12 1988-01-12 Coated tool material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP531788A JP2677288B2 (en) 1988-01-12 1988-01-12 Coated tool material

Publications (2)

Publication Number Publication Date
JPH01180980A true JPH01180980A (en) 1989-07-18
JP2677288B2 JP2677288B2 (en) 1997-11-17

Family

ID=11607881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP531788A Expired - Fee Related JP2677288B2 (en) 1988-01-12 1988-01-12 Coated tool material

Country Status (1)

Country Link
JP (1) JP2677288B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686707A1 (en) * 1992-12-22 1995-12-13 Mitsubishi Materials Corporation Surface coated cutting tool
US5587233A (en) * 1992-03-27 1996-12-24 Widia Gmbh Composite body and its use
JP2004188577A (en) * 2002-06-28 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
USRE41972E1 (en) 1994-07-20 2010-11-30 Sandvik Intellectual Property Ab Aluminum oxide coated tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587233A (en) * 1992-03-27 1996-12-24 Widia Gmbh Composite body and its use
EP0686707A1 (en) * 1992-12-22 1995-12-13 Mitsubishi Materials Corporation Surface coated cutting tool
USRE41972E1 (en) 1994-07-20 2010-11-30 Sandvik Intellectual Property Ab Aluminum oxide coated tool
JP2004188577A (en) * 2002-06-28 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance

Also Published As

Publication number Publication date
JP2677288B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP2007528941A (en) Coated body and method for coating substrate
JP2002543993A (en) Cutting tools coated with PVD-
JP2002543997A (en) Cutting tool coated with Al2O3
CN105463456A (en) Multilayer structured coatings for cutting tools
JP2012144766A (en) Coated member
JPH01180980A (en) Coated tool material
JPS6155591B2 (en)
JPS586969A (en) Surface clad sintered hard alloy member for cutting tool
JPS6354495B2 (en)
JP2646247B2 (en) AlN coated silicon nitride based cutting tool
JPH0364469A (en) Coated sintered hard alloy tool
JPH03180464A (en) Surface coated hard member excellent in wear resistance
JPS6148582B2 (en)
JPS6229507B2 (en)
JPS5853065B2 (en) Nisouhifukukoshitsubutsutai
JPS63306805A (en) Diamond coated cutting tool
JPS6112029B2 (en)
JPS6244572A (en) Surface coated tool
JPS62270775A (en) Alumina coated silicon nitride member
JPS6111724B2 (en)
JP2757580B2 (en) Surface coated cutting tool and method of manufacturing the same
JPS6119777A (en) Abrasion and heat resistant coated cemented hard alloy meterial
JPH04357174A (en) Coated silicon nitride sintered product for tool
JPH03122280A (en) Coated cemented carbide tool
JPS5925972A (en) Coated hard member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees