JPH01180521A - Active matrix substrate for liquid crystal display panel - Google Patents

Active matrix substrate for liquid crystal display panel

Info

Publication number
JPH01180521A
JPH01180521A JP63004601A JP460188A JPH01180521A JP H01180521 A JPH01180521 A JP H01180521A JP 63004601 A JP63004601 A JP 63004601A JP 460188 A JP460188 A JP 460188A JP H01180521 A JPH01180521 A JP H01180521A
Authority
JP
Japan
Prior art keywords
film
resin film
electrode film
active matrix
matrix substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004601A
Other languages
Japanese (ja)
Inventor
Toshiaki Kato
利明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63004601A priority Critical patent/JPH01180521A/en
Publication of JPH01180521A publication Critical patent/JPH01180521A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To eliminate the rupture of a connecting film and to smoothen a step difference of a driving element part by connecting mutually an electrode film and a driving element, and also, insulating the connecting film from the lower part of a resin film by the resin film and orienting a liquid crystal molecule for coming into contact with the surface of the resin film in the prescribed direction on the surface of the resin film on a picture element electrode film. CONSTITUTION:A resin film 7 is applied and attached thinly onto the whole surface of an active matrix substrate into which an electrode film and a driving element 30 have been integrated, and thereafter, windows 7a-7c are opened on the resin film 7 of a part for performing a connection to the electrode film and the driving element 30, a connecting film 9 consisting of a conductive material which has been stuck onto the resin film 7 for coming into conductive contact with the connecting part through these windows 7a-7c is provided by a prescribed pattern and the electrode film and the driving element 30 are connected mutually. Subsequently, the connecting film 9 is insulated from the lower part of the resin film by the resin film 7, and to the surface of the resin film 7 on a picture element electrode film 10, a rubbing processing Rb for orienting a liquid crystal molecule for coming into contact with said surface in the prescribed direction is performed. In such a way, a step difference of the driving element part becomes a gentle inclination, and the connecting film to be stuck is not ruptured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示パネルに用いられるアクティブマトリ
ックス基板、すなわち各画素の表示用の画素を捲膜と複
数個の画素電極膜に対して共通に設けられた走査電極膜
と各画素電極膜と走査電極膜との間に接続された表示駆
動用の駆動素子とを組み込んでなるアクティブマトリッ
クス基板に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an active matrix substrate used in a liquid crystal display panel, that is, a display pixel of each pixel is commonly used for a winding film and a plurality of pixel electrode films. The present invention relates to an active matrix substrate incorporating a scan electrode film and a drive element for display driving connected between each pixel electrode film and the scan electrode film.

〔従来の技術〕[Conventional technology]

よく知られているように、テレビ用などの大画面でかつ
可変画像を表示するための液晶表示パネルには、その面
内に画素を二次元的ないしは行列状に多数配列したマト
リックス形のものが用いられるが、表示パネルがますま
す大形化ないしは高表示密度化されてそれに含まれる画
素数が増加して来ると、その表示駆動回路を含めた全体
構成を簡単化しかつ画面の表示状態を鮮明にする上で、
トランジスタなどの三端子素子やダイオードなどの二端
子素子からなる表示駆動素子を表示パネルの面内に分布
させて組み込むアクティブマトリックス方式が存利にな
って来る。かかる駆動素子としては、二端子、三端子素
子いずれについても、表示パネルを構成する1対の基板
間の10ミクロン以下の狭い間隙内に収納しなければな
らないので、その高さを低く構成できる薄膜構造のもの
が採用され、この駆動素子用の半導体には薄膜の形に成
長できる非晶質シリコンや多結晶シリコンが用いられる
。第3図はかかる駆動素子としてダイオードが用いられ
る表示パネルの等価回路図である。
As is well known, liquid crystal display panels for displaying variable images on large screens such as those for televisions are matrix-type, in which a large number of pixels are arranged two-dimensionally or in rows and columns. However, as display panels become larger or have higher display densities, and the number of pixels included in them increases, it is necessary to simplify the overall configuration, including the display drive circuit, and to make the display state of the screen clearer. In order to
The active matrix method, in which display driving elements consisting of three-terminal elements such as transistors and two-terminal elements such as diodes are distributed and incorporated within the plane of the display panel, is becoming popular. As such driving elements, both two-terminal and three-terminal elements must be accommodated within a narrow gap of 10 microns or less between a pair of substrates that constitute a display panel, so a thin film that can be configured to have a low height is used. Amorphous silicon or polycrystalline silicon, which can be grown in the form of a thin film, is used as the semiconductor for this drive element. FIG. 3 is an equivalent circuit diagram of a display panel using diodes as such driving elements.

第3図において太線で示された側が駆動素子30が組み
込まれるアクティブマトリックス基板であって、これと
対向するもう一方の基板側は細線で示されている。アク
ティブマトリックス基板上には図示のようにほぼ方形の
画素電極膜10が各画素の表示用に口の上下、左右両方
向にそれぞれ複数個マトリックス状に配列される。これ
らの画素電極膜に所定の表示電圧を与えるため、所定方
向。
In FIG. 3, the side indicated by thick lines is the active matrix substrate in which the driving element 30 is incorporated, and the other substrate side facing this is indicated by thin lines. As shown in the figure, a plurality of substantially rectangular pixel electrode films 10 are arranged in a matrix on the active matrix substrate in both the upper and lower and left and right directions of the mouth for displaying each pixel. in order to apply a predetermined display voltage to these pixel electrode films in a predetermined direction.

図では左右方向に並ぶ複数個の画素電極膜に対して共通
に図では横線で簡略に示された走査電極膜20が設けら
れる。駆動素子がダイオードの場合には逆並列接続され
た正負1対のダイオード30p、30nから駆動素子3
0が構成され、さらに正、負の各ダイオード30p、3
0nは単数とは限らず、必要に応じてこの例のようにそ
れぞれ2個ないしは複数個のダイオードを直列接続して
構成されて、画素電極膜10と走査電極膜20との間に
接続される。このアクティブマトリックス基板対向配置
されるもう1対の基板側には、この例では上下方向に並
ぶ画素電極膜10に対して共通に列電極膜50が左右方
向に並べて設けられ、この各列電極膜50は図示のよう
に画素電極Wjt10と同じ幅をもつ細長な形状に形成
される。
In the figure, a scanning electrode film 20, which is simply indicated by horizontal lines in the figure, is provided in common to a plurality of pixel electrode films arranged in the left-right direction. When the drive element is a diode, the drive element 3 is connected from a pair of positive and negative diodes 30p and 30n connected in antiparallel.
0 is configured, and furthermore, positive and negative diodes 30p, 3
0n is not limited to a single number, and may be configured by connecting two or more diodes in series as in this example, and is connected between the pixel electrode film 10 and the scanning electrode film 20, if necessary. . On the side of the other pair of substrates disposed opposite to the active matrix substrate, in this example, a column electrode film 50 is provided in common to the pixel electrode films 10 arranged in the vertical direction, and arranged in the left-right direction, and each column electrode film 50 is formed into an elongated shape having the same width as the pixel electrode Wjt10, as shown in the figure.

表示パネルの表示に当たっては、アクティブマトリック
ス基板側の走査電極膜20を垂直走査し、対向基板側の
列電極膜50を水平走査しながら、両電掻膜10.50
間に所望の表示電圧を走査周期ごとにその橿性を正負に
切り換えながら与える。垂直。
When displaying on the display panel, the scanning electrode film 20 on the active matrix substrate side is vertically scanned, and the column electrode film 50 on the counter substrate side is horizontally scanned, while both electroplating films 10.50
In the meantime, a desired display voltage is applied while changing its polarity between positive and negative at each scanning period. vertical.

水平両走査により特定された画素では、走査電極膜20
に正の表示電圧が掛かっているときには正方向のダイオ
ード309 fJ<導通し、負の表示電圧示掛かってい
るときには負の方向のダイオード3Onが導通して、そ
れぞれ走査電極膜20上の表示電圧を画素電極膜10に
伝え、これによって特定の画素電極膜10と対向列電極
膜50との間の液晶に表示電圧が掛かってそれに基づく
表示がなされる。
In the pixels specified by both horizontal scanning, the scanning electrode film 20
When a positive display voltage is applied, the diode 309 in the positive direction conducts, and when a negative display voltage is applied, the diode 3On in the negative direction conducts, and the display voltage on the scan electrode film 20 changes. The voltage is transmitted to the pixel electrode film 10, whereby a display voltage is applied to the liquid crystal between a specific pixel electrode film 10 and the opposing column electrode film 50, and a display is performed based on the voltage.

第4図はこの第3図に対応するアクティブマトリックス
基板の1画素分の従来構造を示すものである。この例で
は正負両方向のダイオード30p、30nがそれぞれ2
個のダイオードで構成されるので、画g電極膜10と走
査電極膜20の相互間には中間電極膜11と12とが設
けられている。2個の正方向のダイオード309は走査
電極膜20と中間電極膜11の上に設けられ、それぞれ
接続膜8を介して中間電極膜11と画素電i膜10に接
続され、2個の負方向のダイオード30nは画素電極膜
10と中間電極膜12の上に設けられ、同様にそれぞれ
中間電極W!J12と走査電極膜20に接続され、これ
によってそれぞれ2個の正、負方向のダイオード30p
、 30nが直列接続された上で画素電極膜10と走査
電極膜20との間に互いに逆並列接続される。
FIG. 4 shows a conventional structure for one pixel of an active matrix substrate corresponding to FIG. 3. In this example, the diodes 30p and 30n in both the positive and negative directions are 2
Since it is composed of two diodes, intermediate electrode films 11 and 12 are provided between the picture g electrode film 10 and the scanning electrode film 20. Two positive direction diodes 309 are provided on the scanning electrode film 20 and the intermediate electrode film 11, and are connected to the intermediate electrode film 11 and the pixel electrode film 10 via the connection film 8, respectively. The diodes 30n are provided on the pixel electrode film 10 and the intermediate electrode film 12, and similarly, the respective intermediate electrodes W! J12 and the scanning electrode film 20, thereby forming two positive and negative direction diodes 30p, respectively.
, 30n are connected in series and connected in antiparallel to each other between the pixel electrode film 10 and the scanning electrode film 20.

第5図は第4図のY−Y矢視断面によりこの従来のアク
ティブマトリックス基板のさらに詳しい構造を示すもの
である。アクティブマトリックス基板用の絶縁基板1は
ふつう透明なガラス板であり、その上にITO(インジ
ウム・錫酸化物)等の透明な導電膜を0.1ミクロン程
度の厚みに薄く全面被着した上で、そのフォトエツチン
グにより画素電極膜10.中間電極膜11および走査電
極膜を上の第4図に示したようなパターンに形成する。
FIG. 5 shows a more detailed structure of this conventional active matrix substrate through a cross section taken along the Y--Y arrow in FIG. The insulating substrate 1 for the active matrix substrate is usually a transparent glass plate, and a transparent conductive film such as ITO (indium tin oxide) is coated on the entire surface to a thickness of about 0.1 micron. , the pixel electrode film 10. is formed by photoetching. The intermediate electrode film 11 and the scanning electrode film are formed in a pattern as shown in FIG. 4 above.

駆動素子部は上下を遮光膜3.5で挟まれた半導体膜4
からなり、このためにまず下側遮光膜3用にクローム等
の金属を0.1ミクロン程度の厚みに全面被着し、その
上に半導体Wl!4用に例えば非晶質シリコンを+5+
1+”の3層構成で0.3〜0.6ミクロンの厚みに全
面成長させ、さらに上側遮光膜5用に同様に金属を0.
1ミクロン程度の厚みに全面被着した上で、フォトエツ
チングにより第3図のように例えば方形の形状にダイオ
ード30 p + 30 nの部分をバターニングする
。絶縁膜6は例えば窒化シリコンであって、これを0.
2〜0.4ミクロンの厚みに全面被着した上で、そのフ
ォトエツチングにより第4図に示されたようにやや複雑
であるが4個のダイオード30p、30nを共通に覆う
パターンで絶縁膜6を形成するとともに、第5図に示さ
れたように各駆動素子部の頂面の中央部に窓を抜く、接
続膜8はふつうアルミであって、これを1ミクロン程度
の厚みに全面被着した後に前述のような接続が得られる
ようにパターニングして接続膜8とする。
The drive element portion includes a semiconductor film 4 sandwiched between upper and lower sides of a light shielding film 3.5.
For this purpose, a metal such as chrome is first deposited on the entire surface to a thickness of about 0.1 micron for the lower light shielding film 3, and then the semiconductor Wl! For example, amorphous silicon +5+ for 4
A three-layer structure of 1+" is grown on the entire surface to a thickness of 0.3 to 0.6 microns, and a metal layer of 0.1" is similarly grown for the upper light-shielding film 5.
After coating the entire surface to a thickness of about 1 micron, the diode 30 p + 30 n portion is patterned into, for example, a rectangular shape as shown in FIG. 3 by photoetching. The insulating film 6 is made of silicon nitride, for example, and is made of silicon nitride.
After coating the entire surface to a thickness of 2 to 0.4 microns, the insulating film 6 is formed in a slightly complicated pattern that commonly covers the four diodes 30p and 30n as shown in FIG. 4 by photo-etching. At the same time, as shown in FIG. 5, a window is cut out in the center of the top surface of each drive element part.The connection film 8 is usually made of aluminum and is coated on the entire surface to a thickness of about 1 micron. After that, the connection film 8 is patterned to obtain the connection as described above.

上述のような構成で製作されたアクティブマトリックス
基板は対向基板と組み合わされてその周縁部が接着され
、前基板の空隙内に液晶を封入して使用に供されるが、
画素電極膜10に接する液晶分子を所定方向に配向させ
る要があるので、基板の組み合わせに先立って第4図で
部分ハンチングを施して示した画素電極膜10の有効表
示部に配向膜13が設けられる。この配向膜としては酸
化シリコンやポリイミド樹脂などの薄膜が用いられ、こ
れを画素電極膜10等の上に蒸着ないしは塗着した上で
その表面をパフでこするいわゆるラビング処理Rhを矢
印のよに斜めの方向に施す、よく知られているように、
この配向膜13の表面に接する細長な液晶分子は、画素
電8iWIに表示電圧が与えられていないときおおむね
このラビング処理1?bが施された方向に整列される。
The active matrix substrate manufactured with the above-described configuration is combined with a counter substrate, its periphery is adhered, and the liquid crystal is sealed in the gap of the front substrate for use.
Since it is necessary to align the liquid crystal molecules in contact with the pixel electrode film 10 in a predetermined direction, an alignment film 13 is provided in the effective display area of the pixel electrode film 10 shown by partial hunting in FIG. 4 before the substrates are assembled. It will be done. A thin film such as silicon oxide or polyimide resin is used as this alignment film, and after this is vapor-deposited or painted on the pixel electrode film 10 etc., the so-called rubbing treatment Rh in which the surface is rubbed with a puff is applied as shown in the arrow. Apply diagonally, as is well known.
The elongated liquid crystal molecules in contact with the surface of the alignment film 13 generally undergo this rubbing process 1? when no display voltage is applied to the pixel electrode 8iWI. They are aligned in the direction in which b is applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述のような従来のアクティブマトリックス基
板では、それに含まれる多数の画素中に欠陥画素が発生
することがあり、これによってアクティブマトリックス
基板が大形化してその画素数が増加されると製作歩留ま
りが下がって表示パネルが高くついてしまう問題がある
。この欠陥の主なものは短絡や断線であってで、とくに
駆動素子部りに発生しやすい、さらに、この駆動素子に
発生する欠陥のかなりの部分が絶縁膜の不良に起因する
ことが多い、これは第5図に示すように、半導体膜4と
それを挟む遮光膜3,5がもつ段差部に絶縁膜6を被着
するためで、この段差のために絶縁膜6が破断Bを発生
することがあり、それに起因して接続膜8の破断や下側
遮光膜3との短絡が生じやすいからである。また、半導
体膜4のフォトエツチング時のいわゆるサイドエツチン
グにより上部遮光膜6の下にアンダーみットUが発生す
ると、その上に被着される絶縁膜6に破断が発生しやす
い。
However, in the conventional active matrix substrate as described above, defective pixels may occur among the many pixels contained therein, and as a result, as the active matrix substrate becomes larger and the number of pixels increases, the manufacturing yield decreases. There is a problem that the display panel becomes expensive due to lowering. The main types of these defects are short circuits and disconnections, which are particularly likely to occur in the drive element area.Furthermore, a significant portion of the defects that occur in drive elements are often caused by defects in the insulating film. As shown in FIG. 5, this is because the insulating film 6 is deposited on the stepped portion between the semiconductor film 4 and the light shielding films 3 and 5 sandwiching it, and this step causes the insulating film 6 to break B. This is because the connecting film 8 is likely to break or a short circuit with the lower light shielding film 3 may occur. Further, if an undercut U is generated under the upper light shielding film 6 due to so-called side etching during photoetching of the semiconductor film 4, the insulating film 6 deposited thereon is likely to be broken.

もちろん、かかる欠陥の発生率自体はそれほど高いわけ
ではな(,1個の画素についての発生率は10−4〜1
0−S程度と常識的にはかなり低いのであるが、大形の
表示パネルでは例えば画素が400行。
Of course, the occurrence rate of such defects itself is not that high (the occurrence rate for one pixel is 10-4 to 1
Common sense says that it is quite low at about 0-S, but a large display panel has, for example, 400 rows of pixels.

640列に配列されてその全体の画素数が白黒表示のと
き25万個、カラー表示のとき75万個にも達するので
、アクティブマトリックス基板あたり数個から数十個の
欠陥画素が発生してしまうことになる。この欠陥に対す
る許容限はふつう10個程度であるから、アクテ・イブ
マトリックス基板の製作歩留まりが低下してしまう、半
導体チップの場合はふつう1枚のウェハ内に数百から数
千のチップが作られ、若干の不良チップが発生しても良
品チップのみを生かして使うことができるが、アクティ
ブマトリックス基板の場合には許容限度以上の欠陥が発
生するとその基板全体を廃棄するしかないので、製作歩
留まりを上げないと非常に高価についてしまうことにな
る。
Arranged in 640 columns, the total number of pixels reaches 250,000 for monochrome display and 750,000 for color display, resulting in several to dozens of defective pixels per active matrix board. It turns out. The tolerance for these defects is usually around 10, which reduces the manufacturing yield of active matrix substrates.In the case of semiconductor chips, hundreds to thousands of chips are usually manufactured on a single wafer. Even if a few defective chips occur, only good chips can be used, but in the case of active matrix substrates, if defects exceeding the allowable limit occur, the entire board must be discarded, which reduces manufacturing yield. If you don't raise the price, it will be very expensive.

本発明はかかる問題点を解決して絶縁膜に欠陥が発生す
る確率が低く、従ってその製作歩留まりを向上できるア
クティブマトリックス基板を得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to obtain an active matrix substrate that has a low probability of causing defects in an insulating film and can therefore improve its manufacturing yield.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的は本発明によれば、冒頭記載のアクティブマ
トリックス基板において、電極膜および駆動素子が組み
込まれたアクティブマトリックス基板の全面上に樹脂膜
を薄く塗着した上で電極膜および駆動素子に接続を施す
べき部位の樹脂膜に窓を開口し、この窓を介して接続部
位に導電接触する樹脂膜上に被着された導電材からなる
接続膜を所定のパターンで設けて電極膜と駆動素子とを
相互接続するとともに樹脂膜により接続膜を樹脂膜下部
分から絶縁し、画素電極膜上の樹脂膜の表面にこれと接
触する液晶分子を所定の方向に配向させるラビング処理
を施すことによって達成される。
According to the present invention, the above-mentioned object is achieved by applying a thin resin film to the entire surface of the active matrix substrate in which the electrode film and the driving element are incorporated, and then connecting the electrode film and the driving element to the active matrix substrate described at the beginning. A window is opened in the resin film at the area where the electrode film and drive element are to be applied, and a connection film made of a conductive material is provided in a predetermined pattern on the resin film that makes conductive contact with the connection area through the window. This is achieved by interconnecting the two layers, insulating the connection film from the bottom of the resin film with a resin film, and performing a rubbing process on the surface of the resin film on the pixel electrode film to orient the liquid crystal molecules in contact with it in a predetermined direction. be done.

〔作用〕[Effect]

従来の問題点が駆動素子部がもつ段差のためにその上に
被着される絶縁膜の破断等により駆動素子部の側面に対
する被覆が不充分になりやすいことに起因することに着
目して、本発明ではこの絶縁膜として従来から用いられ
て来た窒化シリコンや酸化シリコンの薄膜を被着するか
わりに、樹脂膜を用いることによりその塗着時に段差が
もつ隅部を下から埋めて駆動素子部の側面に対する被覆
を完全にするとともに、段差の傾斜もなだらかにしてそ
の上に被着される接続膜に破断が生じる危険を有効に減
少させる。さらに本発明ではこの樹脂膜が配向膜として
も利用可能な点に着目して、樹脂膜にポリイミド樹脂な
どの配向膜に適するものを用いて樹脂膜を従来の絶縁膜
と配向膜とに共用する。かかる配向膜と兼用の樹脂膜は
、従来と異なり接続膜を施す前に、上記構成にいうよう
に画素電極膜や走査電極膜等の電極膜と駆動素子とを組
み込んだアクティブマトリックス基板の全面上に塗着さ
れる。この塗着はスピンコード法やロールコート法を用
いて全体的には0.05〜2ミクロン程度に薄く施すこ
とができ、かつこれを充分薄く塗着しても駆動素子部が
もつ0.5〜0.8ミクロン程度の段差の隅部に樹脂を
充分付けて、前述のように駆動素子部の半導体膜にアン
ダーカットが発生していてもこれを完全に埋めてしまう
ことができる。また樹脂膜を薄く塗着することによりそ
の乾燥と熱硬化により気泡のない良質の膜で駆動素子部
の側面が安全に保護される。
Focusing on the fact that the conventional problem is caused by the fact that the side surface of the drive element tends to be insufficiently coated due to breakage of the insulating film applied thereon due to the step difference in the drive element, In the present invention, instead of depositing a thin film of silicon nitride or silicon oxide, which has been conventionally used as the insulating film, by using a resin film, the corners of the steps are filled from below when the resin film is applied, and the driving element is The side surfaces of the part are completely covered, and the slope of the step is made gentle, thereby effectively reducing the risk of breakage of the connecting film applied thereon. Furthermore, the present invention focuses on the fact that this resin film can also be used as an alignment film, and uses a material suitable for alignment films such as polyimide resin for the resin film so that the resin film can be used both as a conventional insulating film and as an alignment film. . Unlike conventional methods, the resin film that also serves as an alignment film is applied over the entire surface of the active matrix substrate in which the electrode films such as the pixel electrode film and the scanning electrode film and the driving elements are incorporated, as described in the above structure, before the connection film is applied. is painted on. This coating can be applied thinly to about 0.05 to 2 microns overall using a spin code method or a roll coating method, and even if this coating is applied thinly enough, the drive element portion will still have a thickness of 0.05 to 2 microns. By sufficiently applying resin to the corners of the step of about 0.8 microns, even if an undercut occurs in the semiconductor film of the drive element portion as described above, it can be completely buried. Furthermore, by applying a thin resin film, the sides of the drive element portion can be safely protected with a high quality film free of bubbles by drying and heat curing.

樹脂膜を上のように塗着した後、上述の構成にいうよう
に電極膜や駆動素子の接続を施すべき部位の樹脂膜にフ
ォトエツチングにより窓を明け、この窓を介して接続部
位に導電接触するように接続膜用に金属を被着する。駆
動素子部の段差の隅部が樹脂膜により埋められて段差が
なだらかになっているので、この接続膜用金属には段差
に基づく破断の危険は本発明の場合はとんど皆無になり
、もちろん樹脂膜下のアクティブマトリックス基板の非
接続部と接続膜の金属とは樹脂膜により充分に絶縁され
る。フォトエツチングにより接続膜を所定のパターンで
形成した後は、画素電極膜上に塗着された樹脂膜の表面
にラビング処理を施した上でアクティブマトリックス基
板を表示パネルに組み立てることができる。
After applying the resin film as shown above, photo-etching is used to open a window in the resin film at the area where the electrode film and drive element should be connected, as described in the above structure, and electrical conductivity is applied to the connection area through this window. Deposit metal for the connecting membrane so that it makes contact. Since the corners of the step in the drive element portion are filled with the resin film and the step is smooth, in the case of the present invention, there is almost no risk of breakage of the metal for the connecting film due to the step. Of course, the non-connected portion of the active matrix substrate under the resin film and the metal of the connection film are sufficiently insulated by the resin film. After the connection film is formed in a predetermined pattern by photoetching, the surface of the resin film coated on the pixel electrode film is subjected to a rubbing treatment, and then the active matrix substrate can be assembled into a display panel.

なお、上記の樹脂膜により駆動素子部の段差をなだらか
にして接続膜の破断の危険を防止する効果は非常に顕著
で、従来破断防止のため接続膜の厚みを1ミクロン前後
にしていたのを、本発明により接続膜の厚みを0.1〜
0.2ミクロンに減少させることが可能になる。これに
より、アクティブマトリックス基板上の駆動素子部の突
出高さを従来の2ミクロン程度からほぼ半減することが
でき、表示パネルの1対の基板間の間隙を従来の10ミ
クロン程度から6ミクロン程度にまで減少させてその表
示画質を本発明により向上させることができる。
The above resin film has a very remarkable effect in smoothing out the steps in the driving element part and preventing the risk of breakage of the connection film. , according to the present invention, the thickness of the connection film is 0.1~
It becomes possible to reduce the thickness to 0.2 microns. As a result, the protrusion height of the drive element section on the active matrix substrate can be reduced by almost half from the conventional approximately 2 microns, and the gap between a pair of substrates of the display panel can be reduced from the conventional approximately 10 microns to approximately 6 microns. The display image quality can be improved by the present invention.

(実施例) 以下、第1図および第2図を参照しながら本発明の詳細
な説明する。第1図は駆動素子がダイオードである場合
の本発明による液晶表示パネル用アクティブマトリック
ス基板の実施例をそのフォトエツチング工程ごとに要部
の断面で示し、第2図はその完成時の上面図であり、第
1図は第2図のY−Y矢視断面に当たる。
(Example) Hereinafter, the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 shows a cross-section of the main parts of an embodiment of an active matrix substrate for a liquid crystal display panel according to the present invention in which the driving elements are diodes at each photo-etching process, and FIG. 2 shows a top view of the completed substrate. 1 corresponds to the cross section taken along YY arrow in FIG. 2.

第t a la)は電極膜形成工程で、従来技術におけ
ると同じくガラス等の透明な絶縁基板1の表面にr T
 O+5nOt+ InJa等の透明な導電膜2を蒸着
法。
Step t a la) is an electrode film forming step in which r T
A transparent conductive film 2 such as O+5nOt+ InJa is deposited by vapor deposition.

スパッタ法等で0.1ミクロン程度の厚みで全面被着し
た後に、塩化第2鉄系等の化学エツチング液を用いるフ
ォトエツチングにより第2図に示すようなパターンで画
素電極膜IO1中間電極膜11.12および走査電極1
1!I20を形成する。第1図(′b)の駆動素子部形
成工程も従来技術と同じであってよく、半導体膜4を上
下から挟む遮光膜3.5用にはクローム、チタン等の金
属を蒸着法やスバ・ツタ法でそれぞれa、1ミクロン前
後の厚みに被着し、半導体膜4用には例えば非晶質シリ
コンをプラズマCVD法により下側から1)+  ’+
  nの順あるいは逆のn+l+  pの順で3層構造
に全体で0.3〜0.5ミクロンの厚みに成長させる。
After coating the entire surface to a thickness of about 0.1 micron by sputtering or the like, the pixel electrode film IO1 intermediate electrode film 11 is formed in a pattern as shown in FIG. 2 by photo-etching using a chemical etching solution such as ferric chloride. .12 and scanning electrode 1
1! Form I20. The process of forming the drive element part shown in FIG. 1('b) may be the same as that of the prior art, and for the light shielding film 3.5 that sandwiches the semiconductor film 4 from above and below, a metal such as chromium or titanium is formed by vapor deposition or submerged film. They are deposited using the ivy method to a thickness of around 1 micron, and for the semiconductor film 4, for example, amorphous silicon is deposited from the bottom using the plasma CVD method.
A three-layer structure is grown in the order of n or in the reverse order of n+l+p to a total thickness of 0.3 to 0.5 microns.

このフォトエツチングには化学エツチング、プラズマエ
ツチングいずれも採用できるが、一般には後者の方が非
晶質シリコンに対するサイドエツチングが小で上側遮光
膜5の下のアンダーカットの発生が少ない点で有利であ
り、遮光膜3.5用のクローム等には塩素系の、半導体
膜4用の非晶質シリコンには弗素系の反応ガスを用いる
プラズマエツチング法により、この例では中間電極膜1
1および走査電極膜20上に設けられたダイオード30
pである駆動素子部を第2図に示したような例えば方形
にパターニングする。
Although either chemical etching or plasma etching can be used for this photoetching, the latter is generally advantageous in that it causes less side etching to the amorphous silicon and less occurrence of undercuts under the upper light shielding film 5. In this example, the intermediate electrode film 1 is etched using a plasma etching method using a chlorine-based reactive gas for chromium, etc. for the light-shielding film 3.5, and a fluorine-based reactive gas for the amorphous silicon for the semiconductor film 4.
1 and a diode 30 provided on the scanning electrode film 20
The drive element portion p is patterned into, for example, a rectangular shape as shown in FIG.

第1図(C1は本発明の特徴である樹脂膜7の形成後の
状態を示す、この樹脂膜用には配向膜用に従来から用い
られているポリイミド系やポリアミド系の樹脂材料を利
用するのがよく、例えば日立化成9荀製のハイマルHL
IIIOを用いることができる。
FIG. 1 (C1 shows the state after formation of the resin film 7, which is a feature of the present invention. For this resin film, polyimide-based or polyamide-based resin materials conventionally used for alignment films are used. For example, Hitachi Chemical's Hymar HL
IIIO can be used.

これらの樹脂材料はいずれもかなり高分子の高粘度の液
状であるが、溶媒で粘度を10〜40cp程度に調整し
た上で例えばスピンコード法によりアクティブマトリッ
クス基板の全面に塗着し、まず150〜180℃程度の
比較的軽い加熱により予備硬化された樹脂膜とする。こ
の樹脂膜の厚みが画素電極膜10の面上で0.07〜0
.15ミクロンになるように、樹脂液の粘度とスピンコ
ード条件を選定する。スピンコード法のかわりにロール
コート法によることも可能である。このように塗着され
た樹脂膜7は、駆動素子周りでは図示のようにその段差
の隅部をいわば三角形状に埋めるように駆動素子の側面
を覆う、これに対するフォトエツチングにはアルカリ系
のエツチング液1例えばフォトレジストの現像用と同系
のエツチング液を用いることができ、このフォトエツチ
ングにより駆動素子部の頂面上に窓7aおよび電極膜上
に窓7bを樹脂膜7に図示のように開口させる。フォト
エツチング後は200℃以上の温度で樹脂膜7を完全硬
化させる。なお、この樹脂膜用の樹脂材料にそれ自体感
光性をもつ例えば感光性ポリイミド樹脂を用いることも
可能である9以上の樹脂膜の形成によって、駆動素子部
のもつ段差部の基板に垂直なけわしい側面が図示のよう
になだらかな傾斜側面にならされる。
All of these resin materials are liquids with high molecular weight and high viscosity, but after adjusting the viscosity to about 10 to 40 cp with a solvent, they are applied to the entire surface of the active matrix substrate by, for example, a spin code method. The resin film is precured by relatively light heating at about 180°C. The thickness of this resin film on the surface of the pixel electrode film 10 is 0.07 to 0.
.. The viscosity of the resin liquid and spin code conditions are selected so that the thickness becomes 15 microns. It is also possible to use a roll coat method instead of the spin code method. The resin film 7 applied in this manner covers the sides of the drive element so as to fill the corners of the steps in a so-called triangular shape around the drive element as shown in the figure. Solution 1 For example, an etching solution similar to that used for developing photoresist can be used, and by this photoetching, a window 7a on the top surface of the drive element portion and a window 7b on the electrode film are opened in the resin film 7 as shown in the figure. let After photoetching, the resin film 7 is completely cured at a temperature of 200° C. or higher. Note that it is also possible to use a photosensitive polyimide resin, which is itself photosensitive, as the resin material for this resin film. The side surfaces are gently sloped as shown.

第1図(d)は接続膜9の形成工程であって、まずこの
接続膜用にアルミ、チタン等の金属をスパッタ法や1着
法により、本発明の場合は従来よりはかなり薄い0.1
〜0.2ミクロンの厚みに全面被着した上で、通常のフ
ォトエツチング法によって第2回に示すような接続膜9
を形成する。この接続膜9は窓7aを介して駆動素子の
頂面に導電接触し、これにより中間電極膜11と走査電
極膜20の上に作り込まれた正方向のダイオード30p
はそれぞれ窓7bを介して画素電極膜10と中間電極M
11とに接続される。同様に画素電極膜10と中間電極
膜12の上に作り込まれた負方向のダイオード30nは
それぞれ接続膜9により中間電極膜12と走査電極膜2
0に接続されるが、この実施例では接続膜9の走査電極
膜20との接続部は走査電極膜上で図の左右方向に延在
されて走査電極膜20上をほぼ覆うように設けられる。
FIG. 1(d) shows the process of forming the connecting film 9. First, a metal such as aluminum or titanium is deposited using a sputtering method or a one-coat method. 1
After coating the entire surface to a thickness of ~0.2 microns, a connecting film 9 as shown in Part 2 is formed using a normal photoetching method.
form. This connection film 9 is in conductive contact with the top surface of the driving element through the window 7a, and thereby the forward diode 30p formed on the intermediate electrode film 11 and the scanning electrode film 20 is connected.
are connected to the pixel electrode film 10 and the intermediate electrode M through the window 7b, respectively.
11. Similarly, the negative diode 30n formed on the pixel electrode film 10 and the intermediate electrode film 12 is connected to the intermediate electrode film 12 and the scanning electrode film 2 by the connection film 9, respectively.
In this embodiment, the connecting portion of the connecting film 9 with the scanning electrode film 20 is provided so as to extend in the horizontal direction in the figure on the scanning electrode film so as to substantially cover the scanning electrode film 20. .

この接続膜の延在部9aは樹脂膜7に明けられた細長な
窓7cを介してその下の走査電極膜20と導電接触され
、図かられかるように走査電極膜20上に設けられたダ
イオード30pの付近には渡り部9bが設けられている
。かかる接続膜の延在部9aや渡り部9bは走査電極膜
20のもつ抵抗値を下げ、かつそれを保護する役目を果
たす0図かられかるように、接続膜形成後の本発明によ
るアクティブマトリックス基板40の上面は接続膜が露
出しているだけで残部はすべて樹脂膜7によって覆われ
ている。
The extending portion 9a of this connection film is in conductive contact with the scanning electrode film 20 below through the elongated window 7c opened in the resin film 7, and is provided on the scanning electrode film 20 as shown in the figure. A transition portion 9b is provided near the diode 30p. The extending portions 9a and the transition portions 9b of the connecting film serve to reduce the resistance value of the scanning electrode film 20 and protect it.As can be seen from FIG. Only the connecting film is exposed on the upper surface of the substrate 40, and the rest is entirely covered with the resin film 7.

この後、図で矢印により示した方向にラビング処理1?
bを例えば木綿とナイロンの混合布のバフローラを用い
て0.5 m /秒程度の周速で施し、画素電極膜10
上の樹脂膜に液晶に対する配向性を賦与することにより
、アクティブマトリックス基板が完成される。従来は接
続膜のアクティブマトリックス基板からの突出高さが2
ミクロン程度あって、このラビング処理が画素電極膜の
全面上に充分行き渡らないなやみがあったが、本発明に
よるアクティブマトリックス基板では樹脂股上に0.2
ミクロンまでの接続膜が突出しているだけなので、ラビ
ング処理を容易にその全面に行き渡らせることができる
After this, rubbing process 1? in the direction indicated by the arrow in the figure.
b is applied at a circumferential speed of about 0.5 m/sec using, for example, a buff roller made of cotton and nylon mixed cloth, and the pixel electrode film 10 is
An active matrix substrate is completed by imparting orientation to the liquid crystal to the upper resin film. Conventionally, the protrusion height of the connection film from the active matrix substrate was 2.
However, in the active matrix substrate according to the present invention, the resin rise is 0.2
Since only the connecting film of micron size is protruding, the rubbing treatment can be easily spread over the entire surface.

以上のようにして完成された本発明によるアクティブマ
トリックス基板は、従来と同様にもう一方の基板と組み
合わせて両基板を周縁部で相互接着した上で、両基板の
相互間隙内に液晶を封入して表示パネルとされる。この
両基板の組み立て時に間隙長の1差はふつう±0.5ミ
クロン程度に抑えることが必要であるが、本発明による
アクティブマトリックス基板はその駆動素子部の突出高
さを従来よりも小にできるのでこの間隙長を正確に管理
する上でを利なことが認められている。すなわら、液晶
表示パネルではその大形の基板間の間隙長をその全面に
亘り均一に保つために、液晶内に短いガラス繊維等のス
ペーサが微量混入されるが、このスペーサがアクティブ
マトリックス基板の突出部に当たるとその突出高さがそ
のまま間隙長の1差となって現われることになる。従来
のアクティブマトリックス基板ではその駆動素子部の突
出高さが1゜8〜2.3ミクロン、平均で約2ミクロン
であったが、本発明の場合は接続膜の厚みを前述のよう
に大幅に減少させることができ、かつ樹脂膜も従来の絶
縁膜よりも若干薄くできるので、突出高さは0.7〜1
.2ミクロン、平均約1ミクロンとほぼ半減される。従
って、従来のアクティブマトリックス基板では間隙長の
1差は±1ミクロンになるが、本発明の場合は±0.5
ミクロンに抑えることができる。この利点は間隙長つま
り液晶の厚みを薄くして表示パネルの画質を向上させる
上で重要で、従来のアクティブマトリックス基板では間
隙長はlOミクロン程度が適当であったが、本発明によ
りこれを6ミクロン程度にすることが可能である。
The active matrix substrate according to the present invention completed as described above is assembled with another substrate in the same way as before, and after bonding both substrates together at the peripheral edge, liquid crystal is sealed in the mutual gap between the two substrates. It is used as a display panel. When assembling these two substrates, it is necessary to suppress the difference in gap length to approximately ±0.5 microns, but the active matrix substrate according to the present invention allows the protrusion height of the drive element portion to be smaller than that of the conventional one. Therefore, it has been recognized that this is advantageous in accurately controlling the gap length. In other words, in liquid crystal display panels, a small amount of spacers such as short glass fibers are mixed into the liquid crystal in order to keep the gap length between the large substrates uniform over the entire surface. When it hits a protrusion, the height of the protrusion appears as one difference in the gap length. In conventional active matrix substrates, the protruding height of the drive element portion was 1.8 to 2.3 microns, with an average of about 2 microns, but in the case of the present invention, the thickness of the connection film has been significantly increased as described above. Since the resin film can be made slightly thinner than the conventional insulating film, the protrusion height can be reduced to 0.7 to 1.
.. 2 microns, an average of about 1 micron, which is almost halved. Therefore, in the conventional active matrix substrate, one difference in gap length is ±1 micron, but in the case of the present invention, it is ±0.5 micron.
It can be reduced to microns. This advantage is important in reducing the gap length, that is, the thickness of the liquid crystal, and improving the image quality of the display panel.For conventional active matrix substrates, the appropriate gap length was about 10 microns, but the present invention reduces this to 6. It is possible to reduce the size to about microns.

(発明の効果〕 以上説明したとおり本発明では、各画素の表示用の画素
電極膜と複数個の画素電極膜に対して共通に設けられた
走査電極膜と各画素電極膜と走査電極膜との間に接続さ
れた表示駆動用の駆動素子とをアクティブマトリックス
基板の絶縁基板上に組み込むに当たうて、電極膜および
駆動素子が組み込まれたアクティブマトリックス基板の
全面上に樹脂膜を薄く塗着した上で電極膜および駆動素
子に接続を施すべき部位の樹脂膜に窓を開口し、この窓
を介して接続部位に導電接触する樹脂膜上に被着された
導電材からなる接続膜を所定のパターンで設けて電極膜
と駆動素子とを相互接続するとともに樹脂膜により接続
膜を樹脂膜下部分から絶縁し、画素電極膜上の樹脂膜の
表面にこれと接触する液晶分子を所定の方向に配向させ
るラビング処理を施すようにしたので、従来アクティブ
マトリックス基板に短絡や断線などの欠陥画素が発生す
る原因となっていた駆動素子部の段差の隅部を樹脂膜に
より埋めて、駆動素子部の側面に充分な絶縁被覆を施す
ことにより短絡欠陥の発生を防止するとともに、この段
差をゆるやかな傾斜にしてその上に被着される接続膜が
破断するおそれを少なくすることにより断線欠陥の発生
を防止することができる。従来この駆動素子の段差の側
面被覆用には窒化シリコンや酸化シリコンの絶縁膜が用
いられ、前述のようにこの絶縁膜に段差による破断が生
じやすい欠点があったが、このほかにも絶縁膜とフォト
レジストとの密着性が必ずしも充分でなくフォトレジス
トが浮きやすいために絶縁膜にバターニング不良が生じ
たり、逆にフォトエツチング後にも除去されない絶縁膜
が画素電極膜上に若干残ったり、絶縁膜のその下地であ
る導電膜や絶縁基板との密着性が不充分で絶縁膜のはが
れが若千生じたりする絶縁膜にまつわる問題があって、
欠陥発生の原因となっていたが、これらの問題や欠点は
本発明の実施によりすべてほぼ完全に根絶される。アク
ティブマトリックス基板内の欠陥画素の発生原因は駆動
素子周りだけではないので、本発明の実施により欠陥発
生をもちろん根絶はできないが、その発生率を従来の1
73から1桁程度下に減少させることが可能である。
(Effects of the Invention) As explained above, in the present invention, a pixel electrode film for display of each pixel, a scanning electrode film provided in common for a plurality of pixel electrode films, and a scanning electrode film for each pixel electrode film and a scanning electrode film are provided. When incorporating the drive element for display driving connected between the two onto the insulating substrate of the active matrix substrate, a thin resin film is applied over the entire surface of the active matrix substrate in which the electrode film and the drive element are incorporated. Then, a window is opened in the resin film at the part where connection is to be made to the electrode film and the drive element, and a connection film made of a conductive material is deposited on the resin film which makes conductive contact with the connection part through this window. The electrode film and the driving element are interconnected by forming a predetermined pattern, and the connecting film is insulated from the lower part of the resin film by a resin film, and liquid crystal molecules in contact with the resin film on the surface of the resin film on the pixel electrode film are arranged in a predetermined pattern. Since we applied a rubbing treatment to align the drive elements in the direction, the corners of the steps in the drive element section, which conventionally caused defective pixels such as short circuits and disconnections on active matrix substrates, are filled with a resin film, and the drive elements The generation of short-circuit defects can be prevented by applying sufficient insulating coating to the side surfaces of the parts, and the occurrence of disconnection defects can be prevented by making the steps gently sloped to reduce the risk of breaking the connecting film coated on top. Conventionally, an insulating film of silicon nitride or silicon oxide has been used to cover the side surfaces of the step of this drive element, but as mentioned above, this insulating film has the disadvantage of being prone to breakage due to the step. However, in addition to this, the adhesion between the insulating film and the photoresist is not always sufficient, and the photoresist tends to float, resulting in defective patterning of the insulating film, and conversely, the insulating film that is not removed even after photoetching may be attached to the pixel electrode. There are problems with insulating films, such as some remaining on the film, or the insulating film peeling off due to insufficient adhesion to the underlying conductive film or insulating substrate.
All of these problems and drawbacks, which have been a source of defects, are almost completely eradicated by implementation of the present invention. The cause of defective pixels in the active matrix substrate is not only around the driving elements, so implementing the present invention cannot of course eradicate the occurrence of defects, but the occurrence rate has been reduced to 1.
It is possible to reduce it by about one order of magnitude from 73.

このほか、本発明によるアクティブマトリックス基板は
前述のように基板面からの駆動素子の突出高さを従来の
約1/2に減少させうる利点があり、これにより液晶表
示パネルの基板間の間隙長を小にしてその表示画質を高
めろる著効を有する。また、従来の絶縁膜と配向膜とを
樹脂膜によって兼用させるようにしたので、アクティブ
マトリックス基板の製作のための工程数を本発明により
減少させて製造の合理化を図ることができる。
In addition, as mentioned above, the active matrix substrate according to the present invention has the advantage that the protrusion height of the driving element from the substrate surface can be reduced to approximately 1/2 of that of the conventional one. It has the remarkable effect of reducing the size of the image and improving the display image quality. Furthermore, since the resin film is used as both the conventional insulating film and alignment film, the present invention can reduce the number of steps for manufacturing the active matrix substrate and streamline manufacturing.

以上のように本発明は液晶表示パネル用アクティブマト
リックス基板の欠陥画素の発生率を減少させ、かつその
製作を合理化できる利点をもち、今後の液晶表示パネル
の大形化や画質の向上が進むとともに本発明の真価がま
すます発輝されるものと期待される。
As described above, the present invention has the advantage of reducing the incidence of defective pixels in active matrix substrates for liquid crystal display panels and streamlining its production. It is expected that the true value of the present invention will become even more apparent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図までが本発明に関し、第1図は駆動素
子にダイオードを用いた本発明による液晶表示パネル用
アクティブマトリックス基板の実施例をその主な製作工
程ごとに示す要部の断面図、第2図はその上面図、第3
図は本発明の対象であるアクティブマトリックス基板の
駆動素子にダイオードを用いたときの等価回路図である
。第4図以降は従来技術に関し、第4図は従来のアクテ
ィブマトリックス基板の一画素分の上面図、第5図はそ
の要部の断面図である0図において、1:絶縁基板、2
:導電膜、3.5:駆動素子用遮光膜、4:駆動素子用
半導体膜、6:絶縁膜、7:樹脂膜、7a、 7b、 
7c :樹脂膜の窓、8:従来の接続膜、9:本発明に
おける接続膜、9a:接続膜の延在部、9b:延在部の
渡り部、10:画素電極膜、If、12:中間i8i膜
、20:走査[極膜、30:駆動素子、30p、30r
+:駆動素子としての正負方向のダイオード、40ニア
クチイブマトリツクス基板、B:破断部、Rbニラピン
グ処理ないしはその方向、U:第5図
Figures 1 to 3 relate to the present invention, and Figure 1 is a cross section of the main parts showing each of the main manufacturing steps of an embodiment of an active matrix substrate for a liquid crystal display panel according to the present invention using diodes as drive elements. Figure 2 is the top view, Figure 3 is the top view.
The figure is an equivalent circuit diagram when a diode is used as a driving element of an active matrix substrate, which is the object of the present invention. 4 and subsequent figures relate to the prior art. FIG. 4 is a top view of one pixel of a conventional active matrix substrate, and FIG. 5 is a cross-sectional view of its main parts.
: conductive film, 3.5: light shielding film for driving element, 4: semiconductor film for driving element, 6: insulating film, 7: resin film, 7a, 7b,
7c: window of resin film, 8: conventional connection film, 9: connection film in the present invention, 9a: extension part of connection film, 9b: transition part of extension part, 10: pixel electrode film, If, 12: Intermediate i8i film, 20: Scanning [pole film, 30: Drive element, 30p, 30r
+: Diodes in positive and negative directions as driving elements, 40N active matrix substrate, B: Broken portion, Rb niraping treatment or its direction, U: Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1)表示パネル内の各画素の表示用の画素電極膜と複数
個の画素電極膜に対して共通に設けられた走査電極膜と
各画素電極膜と走査電極膜との間に接続された表示駆動
用の駆動素子とを絶縁基板上に組み込んでなるアクティ
ブマトリックス基板であって、電極膜および駆動素子が
組み込まれたアクティブマトリックス基板の全面上に樹
脂膜を薄く塗着した上で電極膜および駆動素子に接続を
施すべき部位の樹脂膜に窓を開口し、この窓を介して接
続部位に導電接触する樹脂膜上に被着された導電材から
なる接続膜を所定のパターンで設けて電極膜と駆動素子
とを相互接続するとともに樹脂膜により接続膜を樹脂膜
下部分から絶縁し、画素電極膜上の樹脂膜の表面にこれ
と接触する液晶分子を所定の方向に配向させるラビング
処理を施してなる液晶表示パネル用アクティブマトリッ
クス基板。
1) A pixel electrode film for display of each pixel in a display panel, a scanning electrode film provided in common for a plurality of pixel electrode films, and a display connected between each pixel electrode film and the scanning electrode film. An active matrix substrate in which a driving element for driving is assembled on an insulating substrate, in which a resin film is thinly applied on the entire surface of the active matrix substrate in which the electrode film and the driving element are installed, and then the electrode film and the driving element are assembled. A window is opened in the resin film at the part where the connection is to be made to the element, and a connection film made of a conductive material is provided in a predetermined pattern on the resin film that makes conductive contact with the connection part through the window. and the driving element, the connecting film is insulated from the lower part of the resin film by a resin film, and a rubbing process is applied to the surface of the resin film on the pixel electrode film to orient the liquid crystal molecules in contact with it in a predetermined direction. Active matrix substrate for liquid crystal display panels.
JP63004601A 1988-01-12 1988-01-12 Active matrix substrate for liquid crystal display panel Pending JPH01180521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004601A JPH01180521A (en) 1988-01-12 1988-01-12 Active matrix substrate for liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004601A JPH01180521A (en) 1988-01-12 1988-01-12 Active matrix substrate for liquid crystal display panel

Publications (1)

Publication Number Publication Date
JPH01180521A true JPH01180521A (en) 1989-07-18

Family

ID=11588565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004601A Pending JPH01180521A (en) 1988-01-12 1988-01-12 Active matrix substrate for liquid crystal display panel

Country Status (1)

Country Link
JP (1) JPH01180521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165304A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165304A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI249066B (en) Color filter substrate of a liquid crystal display device
US5124823A (en) Active matrix addressed liquid crystal image display and method for fabricating the same
WO1992004654A1 (en) Color filter, method of producing the same, color liquid crystal panel and method of driving the same
EP0211402A2 (en) Process and structure for thin film transistor matrix addressed liquid crystal displays
JP2002169167A (en) Liquid crystal display, method for manufacturing the same and equipment applying image display
US4855806A (en) Thin film transistor with aluminum contacts and nonaluminum metallization
US4889411A (en) Process and structure for thin film transistor with aluminum contacts and nonaluminum metallization in liquid crystal displays
JP3445402B2 (en) Thin film transistor, method of manufacturing the same, active matrix substrate and method of manufacturing the same
JPH01180521A (en) Active matrix substrate for liquid crystal display panel
JPH06250222A (en) Liquid crystal display device
JPH07175088A (en) Substrate for liquid crystal panel and its production
JP2535414B2 (en) Liquid crystal display
JPS6037590A (en) Liquid crystal display
JPH06281958A (en) Liquid crystal display device
KR0182019B1 (en) Liquid crystal cell and its manufacturing method
JPH0943640A (en) Liquid crystal display device
JPH11271805A (en) Liquid crystal display device
JP3666771B2 (en) Switching element
KR920003351B1 (en) Liquid crystal tv panel
JPH03211528A (en) Production of active matrix substrate
JPS60191289A (en) Color display unit
JPS63314521A (en) Liquid crystal color display device
JPH0272329A (en) Liquid crystal display device
JPS61173222A (en) Liquid crystal display device
KR940004286B1 (en) Method of making liquid crystal display devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A761 Written withdrawal of application

Effective date: 20050905

Free format text: JAPANESE INTERMEDIATE CODE: A761

RD02 Notification of acceptance of power of attorney

Effective date: 20050912

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD02 Notification of acceptance of power of attorney

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A7422