JPH01179373A - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JPH01179373A
JPH01179373A JP63000398A JP39888A JPH01179373A JP H01179373 A JPH01179373 A JP H01179373A JP 63000398 A JP63000398 A JP 63000398A JP 39888 A JP39888 A JP 39888A JP H01179373 A JPH01179373 A JP H01179373A
Authority
JP
Japan
Prior art keywords
layer
bsf
solar cell
semiconductor layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63000398A
Other languages
Japanese (ja)
Other versions
JPH0573357B2 (en
Inventor
Satoru Suzuki
悟 鈴木
Kunihiro Matsukuma
邦浩 松熊
Shigeru Kokuuchi
滋 穀内
Keiichi Morita
守田 啓一
Hideyuki Yagi
秀幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63000398A priority Critical patent/JPH01179373A/en
Publication of JPH01179373A publication Critical patent/JPH01179373A/en
Publication of JPH0573357B2 publication Critical patent/JPH0573357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve conversion efficiency and form an electrode easily, by causing a highly concentrated impurity layer functioning as a BSF to be adjacent partially to a plane opposite to a light receiving plane and making the rear electrode come into ohmic contact with the highly concentrated impurity layer and providing a metallic film at the other part. CONSTITUTION:An n<+> type layer 13 is formed at one side of a principal surface 11 which forms a light receiving plane by using a p-type silicon substrate 1 with a diffusing process. A resist 6 is printed at a BSF layer formation part of the other side of the principal surface 12 which forms the rear to form metallic oxide films 4 of TiO2 or SnO2. After that, the resist 6 is removed and patterning is carried out. An Al paste 5 consisting of Al and silicon is printed at the rear and the BSF is formed by heat treatment at a p<+> type layer 15 which forms a BSF layer and at the interface between an electrode 5 of the other side of Al and the metallic oxide films 4 simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 PN接合を有する結晶形シリコン太陽電池素子の構造に
係り、少数キャリアの収集効率の向上に適した構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a crystalline silicon solar cell element having a PN junction, and relates to a structure suitable for improving minority carrier collection efficiency.

〔従来の技術〕[Conventional technology]

従来のPN接合を有する結晶形シリコン太陽電池素子は
第3図に示すように、太陽電池素子の裏面にB S F
 (Back 5urface Field)およびB
SR(Back 5urface Reflector
)を有し、BSFによる光生成キャリアの反射およびB
SRによる入射光の反射によって太陽電池素子の交換効
率の向上を図っている(特開昭59−32179号)。
As shown in FIG. 3, a conventional crystalline silicon solar cell element having a PN junction has BSF on the back side of the solar cell element.
(Back 5 surface Field) and B
SR (Back 5 surface reflector)
), the reflection of photogenerated carriers by BSF and B
The exchange efficiency of solar cell elements is improved by reflecting incident light by SR (Japanese Patent Laid-Open No. 59-32179).

この構造では、ベース層の厚さがうすくなるに従い光の
裏面反射の比率が増すため、BSFの部分でのキャリア
の発生量が増加する。しかし、BSFは高濃度のP型不
純物のドーピングによってのみその機能を発揮すること
から通常1019■−2以上の高濃度層7となっている
ため、オージェ効果および不純物ドーピング効果によっ
てキャリアのライフタイムは極めて短くなり、この層の
キャリアは再結合し光生成電流にほとんど寄与しない。
In this structure, as the thickness of the base layer decreases, the ratio of light reflected from the back surface increases, so the amount of carriers generated in the BSF portion increases. However, since BSF only exhibits its function by doping with a high concentration of P-type impurity, it is usually a high concentration layer 7 of 1019■-2 or more, so the lifetime of carriers is shortened due to the Auger effect and impurity doping effect. The carriers in this layer recombine and contribute little to the photogenerated current.

従って、従来構造ではBSRの機能が十分に全上記従来
構造の問題点を避けるためには、BSFとBSRとを分
離してBSRの機能を強化すると同時に、BSR下部の
表面再結合速度を低減させ少数キャリアの表面再結合を
低減する必要がある。
Therefore, in order to avoid the above-mentioned problems of the conventional structure, it is necessary to separate the BSF and BSR to strengthen the function of the BSR, and at the same time reduce the surface recombination rate under the BSR. It is necessary to reduce surface recombination of minority carriers.

また1分離されたBSF上に電極を形成することは、フ
ォトリソグラフィーなどの技術を必要とし経済性に問題
がある。
Furthermore, forming electrodes on one separated BSF requires techniques such as photolithography, which poses an economical problem.

本発明の目的は、分離したBSFとBSRを有し、電極
形成が容易な太陽電池素子構造を提供すかかる目的を奏
する本発明太陽電池素子の特徴とするところは、受光面
とは反対側の面にBSFとして機能する高不純物濃度層
を部分的に隣接させ、高不純物濃度層に裏面電極をオー
ミック接触させ、他の部分に金属酸化膜を設けた点にあ
る。
An object of the present invention is to provide a solar cell element structure that has separate BSF and BSR and facilitates electrode formation. The main feature is that a high impurity concentration layer functioning as a BSF is partially adjacent to the front surface, a back electrode is brought into ohmic contact with the high impurity concentration layer, and a metal oxide film is provided on other parts.

〔作用〕[Effect]

BSFとしての高不純物濃度層と、BSRとして機能す
る半導体基板と金属酸化膜との界面とが分離されている
ので、BSF及びBSRの機能が十分発揮でき、変換効
率の高い太陽電池素子を得ることができる。
Since the high impurity concentration layer serving as the BSF and the interface between the semiconductor substrate and the metal oxide film functioning as the BSR are separated, the functions of the BSF and BSR can be fully exhibited and a solar cell element with high conversion efficiency can be obtained. Can be done.

また、シリコン裏面上に適宜パターニングされた金属酸
化膜上を含む基板裏面全面に裏面電極を設けた構造のた
め、分離されたBSFとBSHの形成ならびにBSFに
電極をホトリソグラフィー等をすることなく経済的に形
成することができる。
In addition, because the back electrode is provided on the entire back surface of the substrate, including the metal oxide film appropriately patterned on the back surface of the silicon, it is economical because there is no need to form separate BSF and BSH, and to attach electrodes to the BSF using photolithography. It can be formed as follows.

〔発明の実施例〕[Embodiments of the invention]

第1図において、1は一対の主表面11.12間に、一
方の主表面11に隣接するn土層13゜n中層、に隣接
すると共に他方の主表面12に一部が隣接するn土層1
3より低不純物濃度の2層14、他方の主表面12の残
部に隣接すると共に2層14に隣接する2層14より高
不純物濃度のp+十層5を有する半導体基板、2は一方
の主表面11の選ばれた個所にオーミック接触した一方
の主電極、3は一方の主表面11の露出面及び一方の主
電極2上に形成した5iOzの如き反射防止膜、4は他
方の主表面12の2層14の露出部上に形成した金属酸
化膜、5は他方の主表面12のp+十層5の露出部及び
金属酸化膜4上に形成した他方の主電極である。
In FIG. 1, 1 is a soil layer 13, which is located between a pair of main surfaces 11 and 12, adjoins the middle layer of the soil layer 13, which is adjacent to one of the main surfaces 11, and which is partially adjacent to the other main surface 12. layer 1
A semiconductor substrate having two layers 14 having an impurity concentration lower than 3 and a p+ layer 5 having a higher impurity concentration than the second layer 14 adjacent to the remainder of the other main surface 12 and adjacent to the second layer 14; 11 is in ohmic contact with one main electrode, 3 is an antireflection film such as 5iOz formed on the exposed surface of one main surface 11 and one main electrode 2, and 4 is an antireflection film such as 5iOz on the other main surface 12. The metal oxide film 5 formed on the exposed portion of the second layer 14 is the other main electrode formed on the exposed portion of the p+ layer 5 and the metal oxide film 4 on the other main surface 12.

かかる構成の本発明太陽電池素子の製造法を第2図に従
って説明する。P型のシリコン基板1を用い、拡散法に
より、受光面となる一方の主表面11側に接合深さ0.
3  μm前後のn土層13を形成し、PN接合Jを形
成する(第2図a)。この時、端部および裏面のn中層
はエツチング等により除去する。
A method of manufacturing the solar cell element of the present invention having such a structure will be explained with reference to FIG. Using a P-type silicon substrate 1, a junction depth of 0.0 mm is formed on one main surface 11 side, which will become the light-receiving surface, by a diffusion method.
An N soil layer 13 of approximately 3 μm is formed to form a PN junction J (Fig. 2a). At this time, the n-middle layer at the end and back surface is removed by etching or the like.

次に裏面となる他方の主表面12のBSF層形成部にレ
ジスト6をスクリーン印刷する(第2図b)、、この後
に、常圧CVD装置等により、Ti0zまたは、5no
2の金属酸化膜4を成膜させる(第2図C)。この時の
金属酸化膜は100Å以上の膜厚が必要である。
Next, a resist 6 is screen-printed on the BSF layer forming portion of the other main surface 12, which will become the back surface (FIG. 2b). After this, Ti0z or 5no.
A metal oxide film 4 of No. 2 is formed (FIG. 2C). The metal oxide film at this time needs to have a thickness of 100 Å or more.

その後、レジスト6を除去する(第2図d))。Thereafter, the resist 6 is removed (FIG. 2d)).

これによりパターニングされた金属酸化膜が形成される
A patterned metal oxide film is thereby formed.

次に、裏面にAlペースト5を印刷しく第2図e)、7
50℃、3分間の熱処理を行う。この熱処理により、B
SF層となるp中層15と、Alの他方の電極5と金属
酸化膜4の界面にBSRが同時に形成される(第2図f
)。
Next, print Al paste 5 on the back side (Fig. 2e), 7
Heat treatment is performed at 50°C for 3 minutes. Through this heat treatment, B
A BSR is simultaneously formed at the interface between the p-middle layer 15 that becomes the SF layer, the other Al electrode 5, and the metal oxide film 4 (FIG. 2 f)
).

その次に、受光面11に一方の主電極2を形成し、さら
に反射防止膜3を形成することにより、第1図に示す太
陽電池素子が得られる。
Next, one main electrode 2 is formed on the light-receiving surface 11, and an antireflection film 3 is further formed, thereby obtaining the solar cell element shown in FIG. 1.

太陽電池は、従来の太陽電池に比べて、より以上の変換
効率を得ることができる。また、スクリーン印刷法で形
成できるので、経済的にすぐれている。
Solar cells can achieve higher conversion efficiency than conventional solar cells. Furthermore, since it can be formed by screen printing, it is economically advantageous.

拡散法にてn中層13の形成を行っているが、イオン打
込み法でも同等の結果を得ることができる。
Although the n-middle layer 13 is formed by a diffusion method, the same result can be obtained by an ion implantation method.

また、表面電極形成後に反射防止膜3を形成しているが
、反射防止膜形成後にファイヤースルーるが、プラズマ
CVD、光CVD装置又は蒸着装置等にて形成しても同
様の結果を得ることができる。
In addition, although the antireflection film 3 is formed after the surface electrode is formed, it fires through after the antireflection film is formed, but the same result can be obtained even if it is formed using plasma CVD, photoCVD equipment, vapor deposition equipment, etc. can.

分離されたBSF層とBSR層のパターンは、レジスト
印刷の印刷パターンにより各種のパターンが可能である
Various patterns are possible for the separated BSF layer and BSR layer depending on the printing pattern of resist printing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、BSFとして機能するp中層とBSR
として機能する2層と金属酸化膜との界面が分離されて
いるため変換効率を高くすることができる。また電極形
成も容易となる。
According to the present invention, the p-middle layer functioning as a BSF and the BSR
Since the interface between the two layers that function as a metal oxide film and the metal oxide film are separated, the conversion efficiency can be increased. Further, electrode formation becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明太陽電池素子の一実施例を示す概断面図
、第2図は本発明太陽電池素子の製造工程図、第3図は
従来の太陽電池素子の概略路断面図である。 1・・・半導体基板、2・・・一方の主電極、3・・・
反射防止膜、4・・・金属酸化膜、5・・・他方の主電
極、13・・・n中層、14・・・2層、J・・・PN
接合、15・・・、p中層。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the solar cell element of the present invention, FIG. 2 is a manufacturing process diagram of the solar cell element of the present invention, and FIG. 3 is a schematic cross-sectional view of a conventional solar cell element. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... One main electrode, 3...
Antireflection film, 4...Metal oxide film, 5...Other main electrode, 13...N middle layer, 14...2 layer, J...PN
Junction, 15..., p middle layer.

Claims (1)

【特許請求の範囲】 1、互いに反対側に位置する一対の主表面と、一方の主
表面に隣接する一方導電型の第1の半導体層と、他方の
主表面の一部及び第1の半導体層に隣接する第1の半導
体層より低不純物濃度を有する他方導電型の第2の半導
体層と、他方の主表面の残りの部分及び第2の半導体層
に隣接する第2の半導体層より高不純物濃度を有する他
方導電型の第3の半導層とを有する半導体基体、 半導体基体の一方の主表面の選択された個所にオーミッ
ク接触した第1の主電極、 半導体基体の他方の主表面において第2の半導体層の露
出面に設けた金属酸化膜、 半導体基体の他方の主表面において第3の半導体層の露
出面にオーミック接触した第2の主電極、 を具備することを特徴とする太陽電池素 子。 2、特許請求の範囲第1項において、第3の半導体層が
Alとシリコンとの合金層で形成されていることを特徴
とする太陽電池素子。 3、特許請求の範囲第1項において、金属酸化膜がSn
O_2、TiO_2から選ばれたものであることを特徴
とする太陽電池素子。
[Claims] 1. A pair of main surfaces located on opposite sides, a first semiconductor layer of one conductivity type adjacent to one main surface, a part of the other main surface and the first semiconductor a second semiconductor layer of the other conductivity type that has a lower impurity concentration than the first semiconductor layer adjacent to the second semiconductor layer; a semiconductor substrate having an impurity concentration and a third semiconductor layer of the other conductivity type; a first main electrode in ohmic contact with a selected location on one main surface of the semiconductor substrate; A solar cell characterized by comprising: a metal oxide film provided on the exposed surface of the second semiconductor layer; and a second main electrode in ohmic contact with the exposed surface of the third semiconductor layer on the other main surface of the semiconductor substrate. battery element. 2. The solar cell element according to claim 1, wherein the third semiconductor layer is formed of an alloy layer of Al and silicon. 3. In claim 1, the metal oxide film is Sn.
A solar cell element characterized in that it is selected from O_2 and TiO_2.
JP63000398A 1988-01-06 1988-01-06 Solar cell element Granted JPH01179373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000398A JPH01179373A (en) 1988-01-06 1988-01-06 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000398A JPH01179373A (en) 1988-01-06 1988-01-06 Solar cell element

Publications (2)

Publication Number Publication Date
JPH01179373A true JPH01179373A (en) 1989-07-17
JPH0573357B2 JPH0573357B2 (en) 1993-10-14

Family

ID=11472700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000398A Granted JPH01179373A (en) 1988-01-06 1988-01-06 Solar cell element

Country Status (1)

Country Link
JP (1) JPH01179373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119673A1 (en) * 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha Solar cell, solar cell module using the solar cell and method for manufacturing the solar cell module
DE112010001822T5 (en) 2009-04-29 2012-06-14 Mitsubishi Electric Corp. SOLAR BATTERY CELL AND METHOD FOR THE PRODUCTION THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395583A (en) * 1980-04-30 1983-07-26 Communications Satellite Corporation Optimized back contact for solar cells
JPS58157176A (en) * 1982-03-15 1983-09-19 Hitachi Ltd Solar battery element
JPS629680A (en) * 1985-07-08 1987-01-17 Hitachi Ltd Manufacture of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395583A (en) * 1980-04-30 1983-07-26 Communications Satellite Corporation Optimized back contact for solar cells
JPS58157176A (en) * 1982-03-15 1983-09-19 Hitachi Ltd Solar battery element
JPS629680A (en) * 1985-07-08 1987-01-17 Hitachi Ltd Manufacture of solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119673A1 (en) * 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha Solar cell, solar cell module using the solar cell and method for manufacturing the solar cell module
DE112010001822T5 (en) 2009-04-29 2012-06-14 Mitsubishi Electric Corp. SOLAR BATTERY CELL AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH0573357B2 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
KR100366349B1 (en) solar cell and method for manufacturing the same
TWI489641B (en) Solar cell and fabrication method thereof
US7339110B1 (en) Solar cell and method of manufacture
US6524880B2 (en) Solar cell and method for fabricating the same
KR101219926B1 (en) Heterocontact solar cell with inverted geometry of its layer structure
US20040200520A1 (en) Metal contact structure for solar cell and method of manufacture
US20100024880A1 (en) Solar cell and method for manufacturing the same
JP2009535845A (en) Solar cell with doped semiconductor heterojunction electrode
JPH06169096A (en) Silicon solar cell for spatial application
KR100366354B1 (en) manufacturing method of silicon solar cell
KR100366348B1 (en) manufacturing method of silicon solar cell
JP5645734B2 (en) Solar cell element
JP2866982B2 (en) Solar cell element
KR101135590B1 (en) Solar cell and method for manufacturing the same
JP3448098B2 (en) Crystalline silicon solar cells
JPH01179373A (en) Solar cell element
JPH11266029A (en) Solar cell, manufacture and connection thereof
JPH08274356A (en) Solar cell element
JP2003101053A (en) Solar battery device and manufacturing method therefor
JPH09181343A (en) Photoelectric conversion device
US20240021742A1 (en) Solar cell and method for manufacturing solar cell
JPH0945945A (en) Solar cell element and fabrication thereof
KR100408527B1 (en) Solar cell and method for manufacturing thereof
JPS58157176A (en) Solar battery element
JPH0230190B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees