JPH01178745A - Idling control valve - Google Patents

Idling control valve

Info

Publication number
JPH01178745A
JPH01178745A JP63000884A JP88488A JPH01178745A JP H01178745 A JPH01178745 A JP H01178745A JP 63000884 A JP63000884 A JP 63000884A JP 88488 A JP88488 A JP 88488A JP H01178745 A JPH01178745 A JP H01178745A
Authority
JP
Japan
Prior art keywords
coil
open
control pulse
electromagnetic coil
magnet coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000884A
Other languages
Japanese (ja)
Inventor
Hisaaki Sato
佐藤 久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP63000884A priority Critical patent/JPH01178745A/en
Publication of JPH01178745A publication Critical patent/JPH01178745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To simplify a magnet coil in structure by forming winding phase of the magnet coil into a single-phase structure, and making a reversible current so as to flow in the magnet coil according to height of a control pulse. CONSTITUTION:Winding phase of a magnet coil 11 is formed into a single-phase structure. When a control pulse to be impressed on a power source 6 is in high voltage, open-side transistors 12, 13 are conducted, and a current flows into the magnet coil in its forward direction. When the control pulse is in low voltage, closed-side transistors 14, 15 are conducted, and the current flows into the magnet coil in its reverse direction. Accordingly, electromagnetic force in both valve opening and closing directions can be generated by a single-phase structural coil. With this constitution, a temperature difference is in no case produced in the magnet coil, and thus a flow characteristic conformed to a duty of the control pulse is secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジンのアイドル制御弁に関し、牛〜に巻線
相か単一の電磁コイルを用いて有体を開閉駆動できるよ
うにしたアイ1−ル制御弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an engine idle control valve, and relates to an engine idle control valve, and an eye 1 which can be driven to open and close using a winding phase or a single electromagnetic coil. - related to control valves.

(従来の技術) 42に、アイドル制御弁は、エンジン吸気管の途中にス
ロワ1へルハルフをバイパスするように形成された補助
空気通路途中に配設され開側コイルと閉側コイルとによ
って弁体な開閉駆動することにより、該補助空気通路を
流れるアイドル空気fiを調節し、エンジンのアイ1−
ル回転数を制御するものである。
(Prior art) 42, the idle control valve is disposed in the middle of the auxiliary air passage formed in the middle of the engine intake pipe so as to bypass the throat 1, and is connected to the valve body by an open side coil and a closed side coil. By opening and closing the engine, the idle air fi flowing through the auxiliary air passage is adjusted, and the engine eye 1-
This is to control the number of rotations.

このようなアイドル制御ゴrとして第2図及び第3図に
示すものか知られている。
As such an idle control system, those shown in FIGS. 2 and 3 are known.

図において、■は吸気管の補助空気通路途中に配設され
たアイドル制御弁を示ず。2,3は該アイドル制御弁J
を構成する開側コイルと閉側コイルをそれぞれ示し、該
各コイル2,3は第3[′Aに示すように、絶縁性樹脂
からなるコイルホヒン4の外側に層間紙5を介して巻線
2A、3Aを同軸多層状に巻回した2相構造からなって
いる。そして、該各コイル2,3はアーマチュアを回転
し、該アーマデユアによって弁体(いずれも図示せず)
を開閉するように構成されている。
In the figure, ■ does not indicate the idle control valve disposed in the middle of the auxiliary air passage of the intake pipe. 2 and 3 are the idle control valves J
The open side coil and the closed side coil constituting the coil are shown respectively, and each coil 2, 3 is connected to the winding 2A through an interlayer paper 5 on the outside of the coil hoin 4 made of insulating resin, as shown in the third ['A]. , 3A are coaxially wound in multiple layers. Each of the coils 2 and 3 rotates an armature, and a valve body (both not shown) is rotated by the armature.
is configured to open and close.

6は前記開側コイル2、閉側コイル3に所定の直流電圧
を印加する共通電源となる定電圧電源、7.8はアイド
ル制御弁1の駆動制御装置を構成し、前記開側コイル2
、閉、側コイル3とそれぞれ直列に接続された開側トラ
ンジスタ及び開側トランジスタを示し、該各トランジス
タ7.8はNPN型のパワートランジスタからなってお
り、開側トランジスタ7のコレクタは閉側トランジスタ
8のベースと接続されると共に、例えばマイクロコンピ
ュータ等によフて構成される制御回路部9の出力側か開
側トランシスタフのベースと接続されている。
6 constitutes a constant voltage power source serving as a common power source that applies a predetermined DC voltage to the open side coil 2 and the closed side coil 3; 7.8 constitutes a drive control device for the idle control valve 1;
, closed, and an open-side transistor connected in series with the side coil 3, respectively, and each transistor 7.8 is an NPN type power transistor, and the collector of the open-side transistor 7 is connected to the closed-side transistor. 8, and is also connected to the output side of a control circuit section 9 constituted by, for example, a microcomputer or the like, or to the base of the open transistough.

従来技術は」−述の構成からなっており、例えば水温セ
ンサか外囲気条件としての水温を検出して制御回路部9
に水温信号を入力すると、例えばROM等に格納されて
いる水温と制御パルスチューティとのデータチーフルを
参照し、前記水温信号に対応したパルスチューティを有
する制御パルスか開側トランジスタ7に出力される。
The prior art has the configuration described above, for example, a water temperature sensor detects the water temperature as an ambient air condition and controls the control circuit section 9.
When a water temperature signal is input to , for example, by referring to the data file of water temperature and control pulse duty stored in a ROM etc., a control pulse having a pulse duty corresponding to the water temperature signal is output to the open side transistor 7. be done.

この結果、開側トランジスタ7は制御パルスか立上って
いる間、即ち高電圧レベルのときのみrONJ (導通
状態)となり、開側コイル2には制御パルスのデユーテ
ィに対応した電圧か定電圧電源6から印加される。
As a result, the open side transistor 7 becomes rONJ (conducting state) only while the control pulse is rising, that is, when the voltage level is high, and the open side coil 2 is connected to a voltage corresponding to the duty of the control pulse or a constant voltage power source. It is applied from 6.

一方、前記開側トランジスタ7は、これかrONJとな
っているときには、コレクタ側はアース電位となり、こ
れかrOFFJ  (非導通状態)となっているときに
は、コレクタ側は定電圧電源6の電源電位となる。この
結果、閉側トランジスタ8のベースは開側トランジスタ
フのコレクタ側と接続されているから、該閉側トランジ
スタ8は制御パルスか立下っている間、即ち低電圧レベ
ルのときのみrONJとなるように、開側トランジスタ
7とは逆動作を行ない、この間定電圧電源6からの電圧
か閉側コイル3に印加される。
On the other hand, when the open-side transistor 7 is at rONJ, the collector side is at the ground potential, and when it is at rOFFJ (non-conducting state), the collector side is at the power supply potential of the constant voltage power supply 6. Become. As a result, the base of the closed-side transistor 8 is connected to the collector side of the open-side transistor 8, so that the closed-side transistor 8 becomes rONJ only while the control pulse is falling, that is, when the voltage level is low. During this period, the voltage from the constant voltage power supply 6 is applied to the closed coil 3.

かくして、アイドル制御弁lはその各コイル2.3か制
御パルスのデユーティに対応して励磁され、弁体の開度
設定か行なわれることになり、補助空気通路を流れるア
イドル空気量の制御か行なわれる。
In this way, each coil 2.3 of the idle control valve l is excited in accordance with the duty of the control pulse, and the opening degree of the valve body is set, thereby controlling the amount of idle air flowing through the auxiliary air passage. It will be done.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

ところて、従来技術にあっては、開側コイル2と開側コ
イル3は第3図に示すように、コイルボビン4の外周に
1本の巻線2Aを巻回して例えば開側コイル2を形成し
、しかる後、層間紙5を介して開側コイル2の外周側に
他の巻線3Aを同軸多層状に巻回して閉側コイル3を形
成した2相構造からなっており、開側コイル2と閉側コ
イル3の各巻@2A、3Aは層間紙5によって隔絶され
、しかも別々の巻線工程によって巻回されている。
However, in the prior art, as shown in FIG. 3, the open coil 2 and the open coil 3 are formed by winding one winding 2A around the outer periphery of the coil bobbin 4, for example. After that, the other winding 3A is coaxially multilayered around the outer periphery of the open coil 2 via the interlayer paper 5 to form the closed coil 3, resulting in a two-phase structure. 2 and each winding @2A, 3A of the closed-side coil 3 are separated by an interlayer paper 5 and are wound in separate winding steps.

一方、例えば弁体を開弁すべく開側コイル2にパルスデ
ューティ70%の制御パルスに対応する電圧を定電圧電
源6から印加した場合、印加される電圧は一定であるか
ら、開側コイル2に流れる電流は閉側コイル3に流れる
電流よりデユーティ比に応して大きくなる。しかも、開
側コイル2、閉側コイル3を形成している巻線2A、3
Aの固有抵抗は同しであるから、電流の大きい開側コイ
ル20発熱量か閉側コイル3よりも多くなり、開側コイ
ル2と閉側コイル3に温度差か生しることになる。
On the other hand, for example, when a voltage corresponding to a control pulse with a pulse duty of 70% is applied from the constant voltage power source 6 to the opening side coil 2 in order to open the valve body, the applied voltage is constant, so the opening side coil 2 The current flowing through the coil 3 becomes larger than the current flowing through the closed coil 3 according to the duty ratio. Moreover, the windings 2A and 3 forming the open side coil 2 and the closed side coil 3
Since the specific resistance of A is the same, the calorific value of the open side coil 20, which has a large current, is greater than that of the closed side coil 3, resulting in a temperature difference between the open side coil 2 and the closed side coil 3.

そして、開側コイル2か閉側コイル3よりも高温になる
とその巻線2Aの抵抗値か増大し、−層間側コイル2の
発熱量か大きくなり、これに伴なって抵抗値か大きくな
るという現象か生じる。
When the temperature becomes higher than that of the open coil 2 or the closed coil 3, the resistance value of the winding 2A increases, the amount of heat generated by the interlayer coil 2 increases, and the resistance value increases accordingly. A phenomenon occurs.

斜上の如く、開側コイル2の巻線2Aの抵抗値か大きく
なった場合、制御パルスにより定電圧電源6から印加さ
れる直流電圧は一定であるから、電流か減少することに
なり、開側コイルの磁界が減少し電磁力か小さくなる。
As shown diagonally above, when the resistance value of the winding 2A of the open side coil 2 becomes large, the DC voltage applied from the constant voltage power supply 6 by the control pulse is constant, so the current decreases, and the open coil 2 is closed. The magnetic field of the side coil decreases and the electromagnetic force becomes smaller.

かくして、開側コイル2と閉側コイル3に温度差か生じ
た場合、高温側のコイル2(3)に希望のデユーティを
有する制御パルスによって電圧を印加しても、希望する
デユーティに対応した開閉駆動力か発生せず、弁体は所
定の開度にならず制御パルスのデユーティに対応した流
量特性を得ることかできないから、アイドル安定性か劣
るという欠点がある。
In this way, when a temperature difference occurs between the open coil 2 and the closed coil 3, even if a voltage is applied to the high temperature coil 2 (3) by a control pulse having a desired duty, the opening/closing will not correspond to the desired duty. Since no driving force is generated and the valve body does not reach a predetermined opening degree, it is not possible to obtain flow characteristics corresponding to the duty of the control pulse, resulting in poor idle stability.

しかも、前述の如く開側コイル2と閉側コイル3をコイ
ルホビン4の外周に同軸多層状に形成した従来技術にあ
っては、1下方向内側に巻回された開側コイル2又は開
側コイル3は電圧か印加されて発熱した場合、放熱性か
悪いために閉側コイル3又は開側コイル2との間の温度
差か更に大きくなってしまうという欠点かある。
Moreover, in the prior art in which the open side coil 2 and the closed side coil 3 are formed in a coaxial multi-layered manner around the outer periphery of the coil hobbin 4 as described above, the open side coil 2 or the open side coil 1 is wound downwardly and inwardly. 3 has a drawback in that when a voltage is applied and heat is generated, the temperature difference between the closed coil 3 and the open coil 2 becomes even larger due to poor heat dissipation.

本発明は上述した従来技術の欠点に鑑みなされたもので
、単相構造の電磁コイルによって弁体を開閉駆動するこ
とにより、従来技術における複数のコイル間の温度差に
よる弊害を解消して流量特性を向1−できると共に、巻
線の線材量と巻線時間を半減して製造コヌ1−を低減で
きるアイドル制御弁を提供することを1]的とする。
The present invention was developed in view of the above-mentioned drawbacks of the prior art. By driving the valve body to open and close using a single-phase electromagnetic coil, the present invention eliminates the disadvantages caused by temperature differences between multiple coils in the prior art and improves flow rate characteristics. It is an object of the present invention to provide an idle control valve that can reduce manufacturing costs by reducing the winding wire amount and winding time by half.

〔課題を解決するだめの手段〕[Failure to solve the problem]

」−述した課題を解決するために構成された本発明の手
段の特徴は、弁体な開閉駆動する電磁コイルを巻線相が
単一の単相構造に形成し、該電磁コイルには制御パルス
か高電圧レベルのときに該電磁コイルに所定の方向に電
流を通電させる1組の開側トランジスタと、制御パルス
か低電圧レベルのときには前記電磁コイルに逆方向に電
流を通電させる1組の閉側トランジスタとを接続したこ
とにある。
” - A feature of the means of the present invention configured to solve the above-mentioned problems is that the electromagnetic coil for driving the opening and closing of the valve body is formed into a single-phase structure with a single winding phase, and the electromagnetic coil has a control a set of open transistors that conduct current through the electromagnetic coil in a predetermined direction during pulses or high voltage levels; and a set of open side transistors that conduct current through the electromagnetic coil in the opposite direction during control pulses or low voltage levels. This is due to the fact that it is connected to the closed side transistor.

〔作用〕[Effect]

弁体を開閉駆動する電磁コイルは巻線相が単一の単相構
造からなっており、制御パルスか高電圧レベルのときに
は開側トランジスタか導通して該電磁コイルには所定の
方向に電流か流れ、制御パルスが低電圧レベルのときに
は閉側トランジスタか導通して該電磁コイルには逆方向
に電流か流れる。
The electromagnetic coil that drives the valve body to open and close has a single-phase structure with a single winding phase, and when there is a control pulse or a high voltage level, the open transistor conducts, and current flows through the electromagnetic coil in a predetermined direction. When the control pulse is at a low voltage level, the closed transistor becomes conductive and current flows in the opposite direction through the electromagnetic coil.

このため、電磁コイルには制御パルスのデユーティに対
応して開弁方向と閉弁方向の電磁力が発生し、単相構造
の′電磁コイルで弁体の開度設定か行われる。
Therefore, electromagnetic forces are generated in the electromagnetic coil in the valve opening direction and the valve closing direction in accordance with the duty of the control pulse, and the opening degree of the valve body is set by the electromagnetic coil having a single-phase structure.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に基づき詳述する。なお
、前述した従来技術の構成凹素と回−の構成要素には同
一・符−;を付し、その説明を省略する。
Embodiments of the present invention will be described in detail below with reference to FIG. It should be noted that the constituent elements of the concave element and the circuit of the prior art described above are given the same symbol and the explanation thereof will be omitted.

図において、11は弁体(図示せず)を開閉駆動する電
磁コイルで、該電磁コイル11はコイルホビンの外周に
巻線を巻回して単・の巻線相を形成した単相構造からな
っている。12.13は一対の開側I−ランジスタ、1
.4.15は−・対の閉側トランジスタて、該トランジ
スター2.13゜1.4.15はNPN型のパワートラ
ンジスタからなっている。16は同様にNPN型パワー
1へランシスタからなるスイッチング1ヘランシスタ、
17は固定抵抗で、18はアースを示している。
In the figure, reference numeral 11 denotes an electromagnetic coil that opens and closes a valve body (not shown), and the electromagnetic coil 11 has a single-phase structure in which a winding is wound around the outer circumference of a coil hobbin to form a single winding phase. There is. 12.13 is a pair of open side I-transistors, 1
.. 4.15 is a pair of closed-side transistors, and the transistors 2.13.1.4.15 are NPN type power transistors. Similarly, 16 is a switching 1 power transistor consisting of an NPN power 1 power transistor,
17 is a fixed resistor, and 18 is a ground.

ここて、制御回路部9は前記開側トランジスタ12.1
3及びスイッチンク1ヘランシスター6の各ベースと接
続され、定電圧電源6は抵抗17を介してスイッヂンク
+−ランシスター6のコレクタと接続されると共に、一
方の開側トランジスタ12及び閉側トランジスター4の
各コレクタと接続されている。また、閉側トランジスタ
ー4゜15の各ベースは前記抵抗17とスイッチンク1
へランシスタJ6のコレクタとの間に接続されている。
Here, the control circuit section 9 includes the open side transistor 12.1.
The constant voltage power supply 6 is connected to the collector of the switching link +-Lan sister 6 via a resistor 17, and one of the open side transistors 12 and the closed side transistor 4 are connected to each collector. In addition, each base of the closed side transistor 4.15 is connected to the resistor 17 and the switch 1.
It is connected between the collector of Heransister J6.

次に、前記電磁コイル]、lの−・側接続部aは−・方
の開側トランジスタ12のエミッタと接続されると共に
、他方の閉側トランジスタ】5のコレクタと接続されて
いる。また、訪コイル11の他側接続部すは他方の開側
トランジスタ13のコレクタと接続されると共に、 ・
方の閉側I〜ランシスタのエミッタと接続されている。
Next, the - side connection part a of the electromagnetic coil [1] is connected to the emitter of the - side open side transistor 12, and is also connected to the collector of the other closed side transistor [5]. In addition, the other side connecting portion of the visiting coil 11 is connected to the collector of the other open side transistor 13, and
The closed side I~ is connected to the emitter of the run sister.

そして、他方の開側トランジスタ13、閉側トランジス
タ15及びスイッチンクトランシスタ16の各エミッタ
はアース18と接続されている。
The emitters of the other open transistor 13, the closed transistor 15, and the switching transistor 16 are connected to the ground 18.

本実施例は−1−述の如く構成されるか、次にその作動
について説明する。
The present embodiment is constructed as described in -1- and its operation will now be explained.

制御回路部9か例えは水温信号に対応したチューティア
0%の高電圧レベルの制御パルスを開側1ヘランシスタ
12.13及びスイッチング1ヘランシスタ16の各ベ
ースに出力すると、該開側l〜ランシスタ12,13及
びスイッチング1−ランシスタ16はそれぞれ「ON」
 (導通状態)となるのに対し、該スイッチング1ヘラ
ンシスタ16のコレクタ側はアース電位となって開側1
ヘランシ O スタ14.15はrOFFJ  (非導通状態)になる
。従って、制御パルスのデユーティに対応した電圧か定
電圧電源6から電磁コイル11に印加されると、該電磁
コイル11には一側接続部aから他側接続部す側に電流
か流れる結果、弁体を開弁方向に駆動する電磁力か発生
ずる。
For example, when the control circuit unit 9 outputs a control pulse at a high voltage level of 0%, which corresponds to the water temperature signal, to the bases of the open side 1 Herlan sisters 12 and 13 and the switching 1 Herlan sisters 16, the open side l~Run sisters 12 , 13 and switching 1-run transistor 16 are each "ON".
(conducting state), whereas the collector side of the switching 1 Heransister 16 is at ground potential and the open side 1
The resistor 14.15 becomes rOFFJ (non-conducting state). Therefore, when a voltage corresponding to the duty of the control pulse is applied from the constant voltage power supply 6 to the electromagnetic coil 11, a current flows through the electromagnetic coil 11 from the connection part a on the one side to the connection part A on the other side, and as a result, the valve An electromagnetic force is generated that drives the body in the direction of opening the valve.

一方、制御回路部9か低電圧レベルの制御パルスを開側
トランジスタ12.13及びスイッチンクトランシスタ
16の各ベースに出力すると、該各トランジスタ12,
13.16はrOFFJとなるのに対し、該スイツチン
クトランジスタ16のコレクタ側は電源電位となるから
、閉側トランジスタ14,15は「ON」となる。この
ように閉側トランジスタ14,15は制御パルスか立下
っている間のみrONJとなり、電磁コイル11には制
御パルスのデユーティに対応した電圧か定電圧電源6か
ら印加される。この結果、電磁コイル11には開側トラ
ンジスタ12,13かコイル11には弁体を閉弁方向に
駆動する電磁力か発生する。
On the other hand, when the control circuit section 9 outputs a control pulse at a low voltage level to the bases of the open transistors 12 and 13 and the switching transistor 16,
13.16 becomes rOFFJ, whereas the collector side of the switching transistor 16 is at the power supply potential, so the closed side transistors 14 and 15 are turned "ON". In this way, the closed-side transistors 14 and 15 become rONJ only while the control pulse is falling, and a voltage corresponding to the duty of the control pulse is applied to the electromagnetic coil 11 from the constant voltage power supply 6. As a result, an electromagnetic force is generated in the electromagnetic coil 11 that drives the opening side transistors 12 and 13 or in the coil 11 to drive the valve body in the valve closing direction.

かくして、本実施例によれば、制御パルスか高電圧レベ
ルの時には開側トランジスタ12゜13か「ON」にな
り、電磁コイル11には一側接続部aから他側接続部す
側に電流か流れるのに対し、制御パルスか低電圧レベル
の時には閉側トランジスタ14.15かrONJになり
、該電磁コイル11には他側接続部すから一側接続部a
側に電流か流れる。この結果、電磁コイル1工には制御
パルスのデユーティに対応して弁体を開弁方向に駆動す
る電磁力と弁体を閉弁方向に駆動する電磁力か発生し、
弁体の開度設定を行うことかできる。
Thus, according to this embodiment, when the control pulse is at a high voltage level, the open side transistors 12 and 13 are turned ON, and current flows through the electromagnetic coil 11 from the connection a on one side to the connection on the other side. On the other hand, when there is a control pulse or a low voltage level, the closed side transistor 14.15 or rONJ is connected, and the electromagnetic coil 11 has one side connection a while the other side connection
Current flows to the side. As a result, an electromagnetic force that drives the valve body in the valve opening direction and an electromagnetic force that drives the valve body in the valve closing direction are generated in the first electromagnetic coil in accordance with the duty of the control pulse.
It is possible to set the opening degree of the valve body.

斜上の如く、実施例によれば弁体を開閉駆動する電磁コ
イル11は単相構造からなり、従来技術のように開側コ
イル2と開側コイル3との間に温度差か生して抵抗値か
増大すると共に電流値か減少することかないから、制御
パルスのデユーティに対応した流量特性を得ることかで
きる。
As shown above, according to the embodiment, the electromagnetic coil 11 that drives the valve body to open and close has a single-phase structure, and unlike the prior art, a temperature difference is generated between the open side coil 2 and the open side coil 3. Since the current value does not decrease while the resistance value increases, it is possible to obtain a flow rate characteristic corresponding to the duty of the control pulse.

また、電磁コイル11は巻線用か単一の単相構造に構成
したから、巻線用線材の使用量、巻線時間等を従来技術
の半分に減少することかでき、製造コストを大幅に低減
てきる。
In addition, since the electromagnetic coil 11 is configured for winding or a single single-phase structure, the amount of wire used for winding, the winding time, etc. can be reduced to half that of conventional technology, and the manufacturing cost can be significantly reduced. It will be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明は以J二詳述した如くであって、電磁コイルは巻
線用か単一の単相構造に形成すると共に、開側トランジ
スタと開側1ヘランシスタを接続し、fljJWパルス
か高電圧レベルのときと低電圧レベルのときには該電磁
コイルに逆向きの電流を流して逆向きの電磁力を発生さ
せることにより弁体な開閉駆動するように構成したから
、励磁された電磁コイル内に温度差か生して電磁力か低
下することがなく、制御パルスのデユーティに対応した
流量特性をfIることかでき、アイドル安定性を向上で
きる。
The present invention is as described in detail below, and the electromagnetic coil is formed into a winding or a single single-phase structure, and an open transistor and an open transistor are connected, and a fljJW pulse or a high voltage level is formed. When the voltage is low and when the voltage level is low, current is passed in the opposite direction to the electromagnetic coil to generate an electromagnetic force in the opposite direction to drive the valve body to open and close, so there is no temperature difference within the excited electromagnetic coil. As a result, the electromagnetic force does not decrease, and the flow rate characteristic corresponding to the duty of the control pulse can be adjusted to improve idle stability.

また、電磁コイルは従来必要てあった開側及び閉側の2
相構造のコイルに対して単一の巻線用かあればよいから
、巻線の線材量及び巻線時間を半減でき、製造コス1〜
の低減を実現てきる。
In addition, the electromagnetic coil has two sides, one on the open side and one on the closed side, which was previously required.
Since it is only necessary to use a single winding for a coil with a phase structure, the amount of wire for winding and the winding time can be halved, and the manufacturing cost can be reduced by 1~
It is possible to achieve a reduction in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るアイドル制御弁の回路構
成図、第2図及び第3図は従来技術に係り、第2図はア
イドル制御弁の回路構成図、第3図は開側コイルと閉側
コイルの構成を示す断面図である。 11・・・電磁コイル、12.13・・・開側トランジ
スタ、14.15・・・開側トランジスタ。 特許出願人  日本電子機器株式会社
Figure 1 is a circuit diagram of an idle control valve according to an embodiment of the present invention, Figures 2 and 3 are related to the prior art, Figure 2 is a circuit diagram of an idle control valve, and Figure 3 is an open side diagram. It is a sectional view showing the composition of a coil and a closed side coil. 11... Electromagnetic coil, 12.13... Open side transistor, 14.15... Open side transistor. Patent applicant Japan Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] エンジン吸気管の補助空気通路途中に配設した弁体を電
磁コイルにより開閉駆動することにより、該補助空気通
路を流れるアイドル空気量を制御するアイドル制御弁に
おいて、前記電磁コイルを巻線相が単一の単相構造に形
成し、該電磁コイルには制御パルスが高電圧レベルのと
きに該電磁コイルに所定の方向に電流を通電させる1組
の開側トランジスタと、制御パルスか低電圧レベルのと
きには前記電磁コイルに逆方向に電流を通電させる1組
の閉側トランジスタとを接続したことを特徴とするアイ
ドル制御弁。
In an idle control valve that controls the amount of idle air flowing through the auxiliary air passage by driving an electromagnetic coil to open and close a valve body disposed in the middle of the auxiliary air passage of an engine intake pipe, the electromagnetic coil has a winding phase that is The electromagnetic coil has a set of open transistors that conduct current in a predetermined direction through the electromagnetic coil when the control pulse is at a high voltage level; An idle control valve characterized in that, in some cases, a pair of closed-side transistors are connected to the electromagnetic coil for causing current to flow in opposite directions.
JP63000884A 1988-01-06 1988-01-06 Idling control valve Pending JPH01178745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000884A JPH01178745A (en) 1988-01-06 1988-01-06 Idling control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000884A JPH01178745A (en) 1988-01-06 1988-01-06 Idling control valve

Publications (1)

Publication Number Publication Date
JPH01178745A true JPH01178745A (en) 1989-07-14

Family

ID=11486099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000884A Pending JPH01178745A (en) 1988-01-06 1988-01-06 Idling control valve

Country Status (1)

Country Link
JP (1) JPH01178745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360521B2 (en) 2005-06-03 2013-01-29 Macliver Kevin Scott Harnesses for use with child safety seats

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360521B2 (en) 2005-06-03 2013-01-29 Macliver Kevin Scott Harnesses for use with child safety seats

Similar Documents

Publication Publication Date Title
JPS5986499A (en) Motor
JPH0550224B2 (en)
JPH01178745A (en) Idling control valve
JPH01178746A (en) Idling control valve
JP2546238B2 (en) Rotary Solenoid Actuator
JPH05276710A (en) Motor
JP2555571B2 (en) Rotary Solenoid Actuator
JPH11125355A (en) Motor-driven valve drive circuit and motor-driven valve drive method
JP2598967Y2 (en) Idle speed control valve
JP3148252U (en) Latch solenoid valve with drive circuit
JP2592375Y2 (en) Electromagnetic drive valve
JPS5833799B2 (en) Inductive load drive circuit
JPH0819297A (en) Controller of stepping motor
JPS5915269Y2 (en) Brushless motor drive circuit
JPH0723573Y2 (en) Auxiliary air control valve for internal combustion engine
JPS61203899A (en) Operating method for step motor
JPH08270485A (en) Idling engine speed control device
JP3315815B2 (en) Temperature-sensitive actuator and idle speed controller using it
JPH06253573A (en) Current detecting circuit
JPH09177642A (en) Idle speed control device
JPH1080184A (en) Circuit equipment for controlling reversible dc motor
JPH04136578A (en) Flow control valve
JPS62260597A (en) Current limiting circuit for stepping motor coil
JPH05268034A (en) Drive circuit for current drive type semiconductor switch
JPS6146708U (en) Camera electromagnet drive device