JP3148252U - Latch solenoid valve with drive circuit - Google Patents

Latch solenoid valve with drive circuit Download PDF

Info

Publication number
JP3148252U
JP3148252U JP2008008014U JP2008008014U JP3148252U JP 3148252 U JP3148252 U JP 3148252U JP 2008008014 U JP2008008014 U JP 2008008014U JP 2008008014 U JP2008008014 U JP 2008008014U JP 3148252 U JP3148252 U JP 3148252U
Authority
JP
Japan
Prior art keywords
solenoid valve
power supply
transistor
drive circuit
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008008014U
Other languages
Japanese (ja)
Inventor
卓郎 田中
卓郎 田中
克通 平岡
克通 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Controls Co Ltd
Original Assignee
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Controls Co Ltd filed Critical Shinwa Controls Co Ltd
Priority to JP2008008014U priority Critical patent/JP3148252U/en
Application granted granted Critical
Publication of JP3148252U publication Critical patent/JP3148252U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

【課題】マイコンを使わずに電源電圧のON/OFFを検知して電磁弁を開/閉動作させる駆動回路を付けたことで通常の電磁弁と同様に使用することができる安価なラッチ式電磁弁を提供する。【解決手段】流体の流れを制御するラッチ式電磁弁において、電磁ソレノイドへの印加電圧を正逆に反転させる通電回路をトランジスタ3個とダイオード1個で構成し、電磁弁の開時動作にはマイコンに比べ安価なICタイマーを使用し、電源電圧のOFFの検知にはツェナーダイオードとトランジスタを使用した駆動回路をつけた。【選択図】図3An inexpensive latching electromagnetic that can be used in the same manner as a normal electromagnetic valve by adding a drive circuit that opens / closes the electromagnetic valve by detecting ON / OFF of a power supply voltage without using a microcomputer. Provide a valve. In a latch-type solenoid valve that controls the flow of fluid, an energization circuit that reverses the voltage applied to the solenoid in a forward and reverse direction is composed of three transistors and one diode. A cheaper IC timer than a microcomputer was used, and a drive circuit using a Zener diode and a transistor was attached to detect the power supply voltage OFF. [Selection] Figure 3

Description

本考案は、電磁力により弁体を動作させることで流体の制御をおこなう電磁弁に関し、特に開閉に際し弁体の駆動時のみに電力を必要とする1コイルのラッチ式電磁弁に関する。  The present invention relates to an electromagnetic valve that controls a fluid by operating a valve body by electromagnetic force, and more particularly to a 1-coil latching electromagnetic valve that requires electric power only when the valve body is driven during opening and closing.

流体の流量を制御するバルブには電磁弁が広く使用されている。電磁弁は応答速度が速いという特徴から流路の切換弁や方向制御弁として使用される。  Solenoid valves are widely used as valves for controlling the flow rate of fluid. Solenoid valves are used as flow path switching valves and directional control valves because of their high response speed.

電磁弁の中でもラッチ式電磁弁は、開/閉動作の切り替えの際に電力を瞬間的に消費するのみであり、開または閉の状態を保持するのに通常の電磁弁では電力を必要とするのに対し、ラッチ式電磁弁は電力を必要としないという利点がある。こういった利点から、一般に多用され、また家庭用燃料電池システムをはじめとする他の使用も試みられている。  Among solenoid valves, latch solenoid valves only consume power instantaneously when switching between open / close operations, and ordinary solenoid valves require power to maintain an open or closed state. On the other hand, the latch type solenoid valve has an advantage of not requiring electric power. Because of these advantages, it is generally used frequently, and other uses such as a home fuel cell system have been tried.

しかし、1コイルのラッチ式電磁弁を電源一つで制御するためには開動作時に正電圧を印加し、閉動作時に逆電圧を電磁ソレノイドに印加する駆動回路が必要となる。また電源2つを使用する場合は、電源2つを開動作と閉動作に分けて使用し3線式にすることで制御する方法もある。一方、ラッチ式電磁弁自体のコイルを開動作用コイルと閉動作用コイルに分けて2コイルのラッチ式電磁弁とすることで駆動回路を簡単なものにする方法もある。  However, in order to control a single-coil latching solenoid valve with a single power supply, a drive circuit is required that applies a positive voltage during an opening operation and applies a reverse voltage to the electromagnetic solenoid during a closing operation. When two power sources are used, there is a method of controlling by using two power sources separately for an opening operation and a closing operation and using a three-wire system. On the other hand, there is also a method of simplifying the drive circuit by dividing the coil of the latching solenoid valve itself into an opening operation coil and a closing operation coil to form a two-coil latching solenoid valve.

前記のように1コイルのラッチ式電磁弁を電源2つで制御する3線式の場合、電磁ソレノイドへの接続端子の1つは+電源、もう1つは−電源に接続しスイッチで切換える。電磁ソレノイドのもう1つの接続端子はこの2電源の反対側端子を共通端子として接続する。この電源2つの使い分けにより電磁ソレノイドへ正逆の電圧を印加することができる。  As described above, in the case of a three-wire system in which a single-coil latching solenoid valve is controlled by two power sources, one of the connection terminals to the electromagnetic solenoid is connected to the + power source, and the other is connected to the -power source and switched by a switch. The other connection terminal of the electromagnetic solenoid connects the opposite terminals of the two power sources as a common terminal. By selectively using the two power supplies, forward and reverse voltages can be applied to the electromagnetic solenoid.

1コイルのラッチ式電磁弁を駆動回路で制御する場合、電磁ソレノイドへの印加電圧を正逆に反転させる必要があり、従来では印加電圧を反転させるためにドライブトランジスタ4個を使用したH型ブリッジ回路(図4)を使用している。また、H型ブリッジ回路はDCモータの制御にも使用されている。  When a 1-coil latching solenoid valve is controlled by a drive circuit, it is necessary to reverse the applied voltage to the electromagnetic solenoid in the forward and reverse directions. Conventionally, an H-type bridge that uses four drive transistors to reverse the applied voltage A circuit (FIG. 4) is used. The H bridge circuit is also used for controlling a DC motor.

これに対し前記2コイルのラッチ式電磁弁の場合、電源1つとスイッチを2つ使用するだけで開/閉動作させることができる。印加電圧を正逆に反転させるH型ブリッジ回路などを使用する必要はないため、駆動回路は簡単なものになるが、2コイルを使用するため、ラッチ式電磁弁の寸法も大きくなり、電磁弁部分がコスト高となる欠点がある。  In contrast, the two-coil latching solenoid valve can be opened / closed by using only one power source and two switches. Since it is not necessary to use an H-type bridge circuit that reverses the applied voltage forward and backward, the drive circuit is simple. However, since two coils are used, the size of the latch-type solenoid valve also increases. There is a drawback that the part is expensive.

以上のように、2コイルのラッチ式電磁弁を制御する場合、駆動回路は単純になるが、電磁弁が高コストになる一方、1コイルのラッチ式電磁弁を制御する場合、ドライブトランジスタ4個を使用したH型ブリッジ回路やマイコンを使用するため、駆動回路が高コストになる。  As described above, when a two-coil latching solenoid valve is controlled, the drive circuit becomes simple, but the solenoid valve is expensive. On the other hand, when controlling a one-coil latching solenoid valve, four drive transistors are used. Since an H-type bridge circuit and a microcomputer using the above are used, the drive circuit becomes expensive.

然るに、1つの用途として考えられ、経済産業省が提示している家庭用燃料電池システムの目標スペックで見られるように電磁弁の目標コストがあることを考えると、電磁弁はもちろん駆動回路のコストを下げることは現状の課題である。  However, considering that there is a target cost for a solenoid valve as seen in the target specifications of a household fuel cell system proposed by the Ministry of Economy, Trade and Industry, which is considered as one application, the cost of the drive circuit is of course the solenoid valve. Lowering is a current issue.

本考案の課題はマイコンを使わずに電源電圧のON/OFFを検知して開/閉動作の電流を流す駆動回路を付けたラッチ式電磁弁であって、通常の電磁弁と同様に電源ON時またはOFF時に開または閉動作をさせることができる安価なラッチ式電磁弁を提供することである。  The subject of the present invention is a latch type solenoid valve with a drive circuit that detects the ON / OFF of the power supply voltage and flows the current of the open / close operation without using a microcomputer. It is an object to provide an inexpensive latching solenoid valve that can be opened or closed at the time of turning on or off.

そこで本考案では、流体の流れを制御するラッチ式電磁弁であって、電磁弁の動作を制御する駆動回路を有し、その駆動回路は電源およびGNDの2線で制御されることを特徴とするラッチ式電磁弁において、駆動回路内の通電回路がトランジスタ3個とダイオード1個により形成されたブリッジ回路で電磁ソレノイドへの電流を制御すると共に、コンデンサを有し、コンデンサの下流側に抵抗を置くことで電磁ソレノイドに抵抗の損失がなく通電させ、電磁弁開時の突入電流を抑えることを特徴とするラッチ式電磁弁とした。  Therefore, the present invention is a latch type solenoid valve for controlling the flow of fluid, and has a drive circuit for controlling the operation of the solenoid valve, and the drive circuit is controlled by two lines of a power source and GND. In the latch type solenoid valve, the energization circuit in the drive circuit controls the current to the electromagnetic solenoid by a bridge circuit formed by three transistors and one diode, and has a capacitor, and a resistor is provided downstream of the capacitor. The latch type solenoid valve is characterized in that the electromagnetic solenoid is energized without any loss of resistance by placing it, and the inrush current when the solenoid valve is opened is suppressed.

また本考案に係るラッチ式電磁弁は、トランジスタにツェナーダイオードを介して接続することで、例えば故障等で瞬間にOFFにならない緩やかな電源電圧低下に対しても電磁弁を閉動作できることを特徴とするラッチ式電磁弁とした。  In addition, the latch type solenoid valve according to the present invention is characterized in that the solenoid valve can be closed even when the power supply voltage is gradually lowered due to a failure or the like by being connected to the transistor via a Zener diode. Latch type solenoid valve.

一般的なHブリッジ回路において、ドライブトランジスタ4個使用する箇所を、本考案ではドライブトランジスタ3個とダイオード1個にすることでラッチ式電磁弁のコストダウンにつながる。コンデンサの後に抵抗を置くことで電磁ソレノイドに抵抗の損失なく通電させ、突入電流を抑えることができ、ドライブトランジスタが破損した場合の短絡を防止する。電源電圧OFFによる電磁弁閉時にコンデンサの電力使用しているため、電源およびGND側に電流は流れず、電源電圧OFF時のサージ電流を抑えることができる。  In a general H-bridge circuit, by using four drive transistors in the present invention, three drive transistors and one diode are used in the present invention, which leads to cost reduction of the latch type solenoid valve. By placing a resistor after the capacitor, the electromagnetic solenoid can be energized without a loss of resistance, and the inrush current can be suppressed, and a short circuit when the drive transistor is damaged is prevented. Since the power of the capacitor is used when the solenoid valve is closed when the power supply voltage is OFF, current does not flow to the power supply and the GND side, and the surge current when the power supply voltage is OFF can be suppressed.

また本考案では、電源端子とGNDの間にツェナーダイオード、トランジスタを接続している。このため、トラシジスタのコレクタ電流の有無は電源電圧とツェナー電圧の関係により決まり、電源電圧がツェナー電圧を下回った場合に電源電圧のOFFを検知し、トランジスタのベース電流は流れなくなる。それに伴い、コレクタ電流も流れなくなり、電源電圧低下時もラッチ式電磁弁を閉動作することができる。  In the present invention, a Zener diode and a transistor are connected between the power supply terminal and GND. For this reason, the presence or absence of the collector current of the transistor is determined by the relationship between the power supply voltage and the Zener voltage. When the power supply voltage falls below the Zener voltage, the power supply voltage is detected to be OFF, and the base current of the transistor does not flow. Accordingly, the collector current does not flow, and the latching solenoid valve can be closed even when the power supply voltage is lowered.

本考案に係る実施例を図面に基づいて説明する。図1と図2は本考案の一実施例を示すラッチ式電磁弁であり電磁ソレノイドに接続される駆動回路も含めて図示している。図1ではラッチ式電磁弁11が閉弁状態にある場合、図2ではラッチ式電磁弁11の開弁状態にある場合を示している。矢印は流体が電磁弁に取込まれる方向を示している。  An embodiment according to the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 are latch type solenoid valves showing an embodiment of the present invention, and also include a drive circuit connected to the solenoid solenoid. FIG. 1 shows a case where the latching electromagnetic valve 11 is in a closed state, and FIG. 2 shows a case where the latching electromagnetic valve 11 is in an opened state. The arrow indicates the direction in which fluid is taken into the solenoid valve.

図1及び図2によれば、ラッチ式電磁弁11は本体12、電磁ソレノイド42、固定コア17、その下にある移動コア15、これらの固定コアと移動コアの間に設け移動コア15を軸線に沿って下方に付勢するためのスプリング16、移動コア15の下部先端頭部に当たる弁体13、磁気回路を構成させるグランド14、コイルフレーム19及び移動コア15を開弁状態でラッチする永久磁石18等で構成される。なおラッチ式電磁弁11の本体12には流体の流入孔及び流出孔を有する。  1 and 2, the latch-type solenoid valve 11 includes a main body 12, an electromagnetic solenoid 42, a fixed core 17, a movable core 15 below the movable core 15, and a movable core 15 provided between the fixed core and the movable core. A permanent magnet that latches the valve core 13 and the moving core 15 in an open state. 18 etc. The main body 12 of the latch type solenoid valve 11 has a fluid inflow hole and an outflow hole.

図1ではラッチ式電磁弁11が閉弁状態であり、移動コア15はスプリング16により軸線に沿って下方向に付勢されている。移動コア15の下部の先端頭部に当たる弁体13は軸方向下向きに付勢され本体12に押し付けられているので流体の流路が閉じられている状態で流体は流れない。このとき電磁ソレノイド42に電流を通電すると、発生する電磁力により移動コア15は固定コア17側に吸引力を受け軸線に沿って上方に移動する。前記の通り、移動コア15と一体になっている弁体13は電磁弁の軸線方向の上方に移動し、開口部が開く。移動コア15と固定コア17が吸着したことで、グランド14、移動コア15、固定コア17、コイルフレーム19及び永久磁石18により磁気抵抗の小さい磁気回路が形成される。電磁ソレノイド42に通電を止めた状態でも移動コア15は固定コア17との吸着状態を保つ。これにより図2に示すように流路が開通して本体12の流入孔から開口部を経由して流体が流入し、さらに弁体15の下部に開通した流路を通り弁本体1の流出孔を経て流出する。  In FIG. 1, the latch type electromagnetic valve 11 is in a closed state, and the moving core 15 is urged downward along the axis by a spring 16. Since the valve element 13 that contacts the tip of the lower end of the moving core 15 is urged downward in the axial direction and pressed against the main body 12, no fluid flows in a state where the fluid flow path is closed. At this time, when a current is applied to the electromagnetic solenoid 42, the moving core 15 receives an attractive force on the fixed core 17 side by the generated electromagnetic force and moves upward along the axis. As described above, the valve body 13 integrated with the moving core 15 moves upward in the axial direction of the electromagnetic valve, and the opening is opened. By adsorbing the moving core 15 and the fixed core 17, a magnetic circuit having a small magnetic resistance is formed by the ground 14, the moving core 15, the fixed core 17, the coil frame 19, and the permanent magnet 18. Even when the electromagnetic solenoid 42 is de-energized, the moving core 15 maintains the attracted state with the fixed core 17. As a result, as shown in FIG. 2, the flow path is opened, the fluid flows from the inflow hole of the main body 12 through the opening, and further passes through the flow path opened to the lower part of the valve body 15, and the outflow hole of the valve main body 1. It flows out through.

図2のラッチ式電磁弁11の開弁状態において、電磁ソレノイド42に逆電流を通電すると電磁力が発生し、グランド14、移動コア15、固定コア17、コイルフレーム19及び永久磁石18により形成された磁気抵抗の小さい磁気回路は消磁され、移動コア15、固定コア17はスプリング16の力により軸方向下向きに付勢され、弁体13は本体12に押し付けられる。これにより図1に示すように閉弁状態になり流体は流れなくなる。  2, when a reverse current is passed through the electromagnetic solenoid 42, an electromagnetic force is generated, which is formed by the ground 14, the moving core 15, the fixed core 17, the coil frame 19, and the permanent magnet 18. The magnetic circuit having a small magnetic resistance is demagnetized, the moving core 15 and the fixed core 17 are urged downward in the axial direction by the force of the spring 16, and the valve body 13 is pressed against the main body 12. As a result, the valve is closed as shown in FIG.

図3及び図5は本考案のラッチ式電磁弁の駆動回路を示している。その構成は後で述べる。また図4はトランジスタのH型ブリッジ回路であり、本考案に対応し、従来使用されている通電回路を示している。本考案に係る図3に対応する従来の駆動回路は図示していないが、図3に対応させることとして、電源端子51とGNDの間にトランジスタ35とトランジスタ34が接続され、トランジスタ35とトラシジスタ34の間に電磁ソレノイド42の+側が接続されている。また、電源端子51とGND52の間にトランジスタ32とトランジスタ33が接続され、トランジスタ32とトランジスタ33の間に電磁ソレノイドのもう一方が接続されている。  3 and 5 show a drive circuit for the latch type solenoid valve of the present invention. Its configuration will be described later. FIG. 4 shows an H-type bridge circuit of a transistor, and shows a conventional energization circuit corresponding to the present invention. Although the conventional driving circuit corresponding to FIG. 3 according to the present invention is not shown, the transistor 35 and the transistor 34 are connected between the power supply terminal 51 and the GND, and the transistor 35 and the transistor 34 are associated with FIG. The + side of the electromagnetic solenoid 42 is connected between the two. Further, the transistor 32 and the transistor 33 are connected between the power supply terminal 51 and the GND 52, and the other electromagnetic solenoid is connected between the transistor 32 and the transistor 33.

図5は、図3で示す本考案に係る駆動回路のうち通電回路部のみを抜き出し図示したものである。電源端子51とGND52の間に接続されたダイオード37、コンデンサ39、抵抗36のコンデンサ39、抵抗36の間がトランジスタ34のエミッタに接続されている。電源端子51とトランジスタ34のエミッタは接続され、その間は電磁ソレノイド42の+側が接続されている。ダイオード37、コンデンサ39の間にトランジスタ32のエミッタ、トランジスタ33のコレクタを介してGND52に接続されている。トランジスタ32コレクタ、トランジスタ33のコレクタの間には電磁ソレノイド42のもう一方が接続されている。  FIG. 5 shows only the energizing circuit portion extracted from the drive circuit according to the present invention shown in FIG. The diode 37 connected between the power supply terminal 51 and the GND 52, the capacitor 39, the capacitor 39 of the resistor 36, and the resistor 36 are connected to the emitter of the transistor 34. The power supply terminal 51 and the emitter of the transistor 34 are connected, and the + side of the electromagnetic solenoid 42 is connected between them. The diode 37 and the capacitor 39 are connected to the GND 52 via the emitter of the transistor 32 and the collector of the transistor 33. The other side of the electromagnetic solenoid 42 is connected between the collectors of the transistor 32 and the transistor 33.

図6は電源電圧と電磁ソレノイドに流れる電流の関係であって、本考案の駆動回路付きのラッチ式電磁弁と通常の電磁弁との電源電圧と電磁ソレノイドに流れる電流の比較を示している。  FIG. 6 shows the relationship between the power supply voltage and the current flowing through the electromagnetic solenoid, and shows a comparison between the power supply voltage and the current flowing through the electromagnetic solenoid between the latch type solenoid valve with a drive circuit of the present invention and a normal solenoid valve.

図4の従来のトランジスタのH型ブリッジ回路ではドライブトランジスタ33,35にベース電流が流れることで電源端子51、ドライブトランジスタ35、電磁ソレノイド42、ドライブトランジスタ33、GND52の順に電流が流れ、電磁ソレノイド42に正電圧が印加される。また、ドライブトランジスタ32、34にベース電流が流れることで、電源端子51、ドライブトランジスタ32、電磁ソレノイド42、ドライブトランジスタ34、GND52の順に電流が流れ、電磁ソレノイド42に逆電圧が印加される。  In the conventional transistor H-type bridge circuit of FIG. 4, when a base current flows through the drive transistors 33 and 35, a current flows in the order of the power supply terminal 51, the drive transistor 35, the electromagnetic solenoid 42, the drive transistor 33, and the GND 52. A positive voltage is applied to. Further, when a base current flows through the drive transistors 32 and 34, a current flows in the order of the power supply terminal 51, the drive transistor 32, the electromagnetic solenoid 42, the drive transistor 34, and the GND 52, and a reverse voltage is applied to the electromagnetic solenoid 42.

図3に示す本考案の駆動回路では、電源電圧をONするとツェナーダイオード40により低下した電圧がICタイマー41に印加され、抵抗43およびコンデンサ44の時定数により決まる1パルスの信号がICタイマー41からドライブトランジスタ33のベースに出力される。それにより、ドライブトランジスタ33のコレクタ電流は流れ、電源端子51からダイオード38、電磁ソレノイド42、およびドライブトランジスタ33を通じGND52に電流が通電される。電磁ソレノイド42に正電流が流れたことで発生する電磁力により移動コア15が固定コア17側に吸引動作する。移動コア15と固定コア17が吸着することにより、永久磁石18は磁気回路を形成する。磁気回路を形成することで吸着状態を保持でき、電磁弁の開状態を保持できる。  In the drive circuit of the present invention shown in FIG. 3, when the power supply voltage is turned on, the voltage reduced by the Zener diode 40 is applied to the IC timer 41, and a one-pulse signal determined by the time constant of the resistor 43 and the capacitor 44 is output from the IC timer 41. Output to the base of the drive transistor 33. Thereby, the collector current of the drive transistor 33 flows, and the current is supplied to the GND 52 from the power supply terminal 51 through the diode 38, the electromagnetic solenoid 42, and the drive transistor 33. The moving core 15 is attracted to the fixed core 17 side by an electromagnetic force generated by a positive current flowing through the electromagnetic solenoid 42. When the moving core 15 and the fixed core 17 are attracted, the permanent magnet 18 forms a magnetic circuit. By forming the magnetic circuit, the attracted state can be maintained, and the open state of the solenoid valve can be maintained.

電源電圧OFF時または電源電圧低下時、電源電圧がツェナーダイオード40のツェナー電圧以下になると、トランジスタ31のベース電流は流れなくなり、コレクタ電流も流れなくなる。そのため、コンデンサ39から放電された電力はドライブトランジスタ34のベース電流に流れ、コレクタ電流も流れるようになる。ドライブトランジスタ34が通電されることで、ドライブトランジスタ32にベース電流が流れ、コレクタ電流も流れる。ドライブトランジスタ32,34が通電されることで、コンデンサ39から放電された電力はドライブトランジスタ32、電磁ソレノイド42、ドライブトランジスタ34に流れる。電磁ソレノイド42に逆電流が流れたことで発生する電磁力によりグランド14、移動コア15、固定コア17、コイルフレーム19、永久磁石18で形成された磁気回路は消磁され、移動コア15と固定コア17はスプリング16の力により閉動作される。このことにより、電磁弁は閉弁状態となる。When the power supply voltage is OFF or when the power supply voltage is lowered, if the power supply voltage becomes equal to or lower than the Zener voltage of the Zener diode 40, the base current of the transistor 31 does not flow and the collector current does not flow. Therefore, the power discharged from the capacitor 39 flows to the base current of the drive transistor 34, and the collector current also flows. When the drive transistor 34 is energized, a base current flows through the drive transistor 32 and a collector current also flows. When the drive transistors 32 and 34 are energized, the electric power discharged from the capacitor 39 flows to the drive transistor 32, the electromagnetic solenoid 42, and the drive transistor 34. The magnetic circuit formed by the ground 14, the moving core 15, the fixed core 17, the coil frame 19, and the permanent magnet 18 is demagnetized by the electromagnetic force generated by the reverse current flowing through the electromagnetic solenoid 42, and the moving core 15 and the fixed core are demagnetized. 17 is closed by the force of the spring 16. As a result, the solenoid valve is closed.

以上述べた通り、本考案ではドライブトランジスタ32〜34の3個とダイオード37の1個にすることでラッチ式電磁弁のコストダウンにつながる。コンデンサ39の後に抵抗36を置くことで電磁ソレノイド35に抵抗の損失なく通電させ、突入電流を抑えることができ、ドライブトランジスタ34が破損した場合の短絡を防止する。電源電圧OFFによる電磁弁閉時にコンデンサ39の電力使用しているため、電源およびGND側に電流は流れず、電源電圧OFF時のサージ電流を抑えることができる。  As described above, in the present invention, by using three drive transistors 32 to 34 and one diode 37, the cost of the latch type solenoid valve is reduced. By placing the resistor 36 after the capacitor 39, the electromagnetic solenoid 35 can be energized without loss of resistance, and the inrush current can be suppressed, and a short circuit when the drive transistor 34 is damaged is prevented. Since the power of the capacitor 39 is used when the solenoid valve is closed when the power supply voltage is OFF, no current flows to the power supply and the GND side, and the surge current when the power supply voltage is OFF can be suppressed.

更に本考案では、電源端子51とGND52の間にツェナーダイオード40、トランジスタ31を接続している。このため、トランジスタ31のコレクタ電流の有無は電源電圧とツェナー電圧の関係により決まり、電源電圧がツェナー電圧を下回った場合に電源電圧のOFFを検知し、トランジスタ31のベース電流は流れなくなる。それに伴い、コレクタ電流も流れなくなり、電源電圧低下時もラッチ式電磁弁を閉動作することができる。  Further, in the present invention, the Zener diode 40 and the transistor 31 are connected between the power supply terminal 51 and the GND 52. Therefore, the presence or absence of the collector current of the transistor 31 is determined by the relationship between the power supply voltage and the Zener voltage, and when the power supply voltage falls below the Zener voltage, the power supply voltage is detected to be OFF, and the base current of the transistor 31 does not flow. Accordingly, the collector current does not flow, and the latching solenoid valve can be closed even when the power supply voltage is lowered.

図6は電源電圧と電磁ソレノイドに流れる電流の関係であって、本考案の駆動回路付きのラッチ式電磁弁と通常の電磁弁との電源電圧と電磁ソレノイドに流れる電流の比較を示している。通常の電磁弁の場合では電圧を印加しコイルに電流を流している場合のみ電磁弁は開弁状態になり、電圧をOFFした場合に電磁弁を閉弁状態になる。本考案のラッチ式電磁弁では電源に電圧を印加することで、電磁ソレノイド42に電流が瞬間的に流れ、電磁弁は開動作される。その後、電圧を印加している間は電磁ソレノイド42に電流は流れず、グランド14、移動コア15、固定コア17、コイルフレーム19、永久磁石18により形成された磁気抵抗の小さい磁気回路により開弁状態を保持したままとなる。電源をOFFした場合、コンデンサから電流が電磁ソレノイド42に瞬間的に流れ、電磁弁は閉動作される。これらのことから電磁弁ON時に使用する消費電力を抑えながらも、通常の電磁弁と同様に電源ON時に電磁弁ON状態、電源OFF時に電磁弁OFF状態とすることができる。  FIG. 6 shows the relationship between the power supply voltage and the current flowing through the electromagnetic solenoid, and shows a comparison between the power supply voltage and the current flowing through the electromagnetic solenoid between the latch type solenoid valve with a drive circuit of the present invention and a normal solenoid valve. In the case of a normal solenoid valve, the solenoid valve is opened only when a voltage is applied and a current is passed through the coil, and when the voltage is turned off, the solenoid valve is closed. In the latch type solenoid valve of the present invention, by applying a voltage to the power source, a current flows instantaneously in the solenoid solenoid 42, and the solenoid valve is opened. Thereafter, while the voltage is applied, no current flows through the electromagnetic solenoid 42, and the valve is opened by a magnetic circuit having a small magnetic resistance formed by the ground 14, the moving core 15, the fixed core 17, the coil frame 19, and the permanent magnet 18. The state is maintained. When the power is turned off, current flows instantaneously from the capacitor to the electromagnetic solenoid 42, and the electromagnetic valve is closed. Accordingly, while suppressing power consumption used when the solenoid valve is turned on, the solenoid valve can be turned on when the power is turned on, and the solenoid valve can be turned off when the power is turned off, as in a normal solenoid valve.

本考案の一実施例を示すラッチ式電磁弁の閉状態の断面図Sectional drawing of the closed state of the latch type solenoid valve which shows one Example of this invention 本考案の一実施例を示すラッチ式電磁弁の開状態の断面図Sectional drawing of the open state of the latch type solenoid valve which shows one Example of this invention 本考案のラッチ式電磁弁の駆動回路図Drive circuit diagram of latch type solenoid valve of the present invention 図3の駆動回路の通電回路部Current-carrying circuit section of the drive circuit of FIG. 従来のトランジスタのH型ブリッジ回路Conventional transistor H-type bridge circuit 電源電圧とコイル電流の関係Relationship between power supply voltage and coil current

符号の説明Explanation of symbols

11:ラッチ式電磁弁
12:本体
13:弁体
14:グランド
15:移動コア
16:スプリング
17:固定コア
18:永久磁石
19:コイルフレーム
31:トランジスタ
32〜35:ドライブトランジスタ
36:抵抗
37〜38:整流ダイオード
39:コンデンサ
40:ツェナーダイオード
41:ICタイマー
42:電磁ソレノイド
43:抵抗
44:コンデンサ
51:電源端子
52:GND
11: Latch type solenoid valve 12: Body 13: Valve body 14: Ground 15: Moving core 16: Spring 17: Fixed core 18: Permanent magnet 19: Coil frame 31: Transistors 32-35: Drive transistor 36: Resistors 37-38 : Rectifier diode 39: Capacitor 40: Zener diode 41: IC timer 42: Electromagnetic solenoid 43: Resistor 44: Capacitor 51: Power supply terminal 52: GND

Claims (2)

流入孔と流出孔を有し、流体の流れを制御するラッチ式電磁弁であって、電磁弁の動作を制御する駆動回路を有し、その駆動回路は電源およびGNDの2線で制御されることを特徴とするラッチ式電磁弁において、駆動回路内の通電回路がトランジスタ3個とダイオード1個により形成されたブリッジ回路で電磁ソレノイドへの電流を制御すると共に、コンデンサを有し、コンデンサの下流側に抵抗を置くことで電磁ソレノイドに抵抗の損失がなく通電させ、電磁弁開時の突入電流を抑えることを特徴とするラッチ式電磁弁  A latch-type solenoid valve that has an inflow hole and an outflow hole and controls the flow of fluid, and has a drive circuit that controls the operation of the solenoid valve, and the drive circuit is controlled by a power source and a GND line. In the latch type solenoid valve, the energization circuit in the drive circuit controls the current to the electromagnetic solenoid by a bridge circuit formed by three transistors and one diode, and has a capacitor, and is provided downstream of the capacitor. Latch type solenoid valve characterized in that the solenoid is energized without loss of resistance by placing a resistance on the side, and suppresses inrush current when the solenoid valve is open 請求項1において、トランジスタのベースにツェナーダイオードを介して接続することで、ツェナー電圧に応じて電源電圧のOFFを検知し、トランジスタの動作を制御することを特徴とするラッチ式電磁弁  2. The latching solenoid valve according to claim 1, wherein the latch is connected to the base of the transistor via a Zener diode to detect the OFF of the power supply voltage in accordance with the Zener voltage and to control the operation of the transistor.
JP2008008014U 2008-10-21 2008-10-21 Latch solenoid valve with drive circuit Expired - Fee Related JP3148252U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008014U JP3148252U (en) 2008-10-21 2008-10-21 Latch solenoid valve with drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008014U JP3148252U (en) 2008-10-21 2008-10-21 Latch solenoid valve with drive circuit

Publications (1)

Publication Number Publication Date
JP3148252U true JP3148252U (en) 2009-02-12

Family

ID=54781816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008014U Expired - Fee Related JP3148252U (en) 2008-10-21 2008-10-21 Latch solenoid valve with drive circuit

Country Status (1)

Country Link
JP (1) JP3148252U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661745A (en) * 2012-09-25 2014-03-26 株式会社昭和 Vehicle height adjusting device for motorcycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661745A (en) * 2012-09-25 2014-03-26 株式会社昭和 Vehicle height adjusting device for motorcycle

Similar Documents

Publication Publication Date Title
CN111120716B (en) Micro-power consumption electromagnetic valve
CN109958816B (en) Control system, electromagnetic valve and control method thereof
CN110488140A (en) A kind of electromagnet fault detection circuit device and its detection method
CN102931897A (en) Motor control device
TW201931414A (en) Relay controller system, bi-stable relay control circuit and method for controlling bi-stable relay
JP3148252U (en) Latch solenoid valve with drive circuit
US6262620B1 (en) Driver circuitry for latching type valve and the like
US20090237856A1 (en) Solenoid valve drive control apparatus and method for driving a solenoid valve
JP3822937B2 (en) Small solenoid valve
JP2006500526A (en) Valve amperage control mechanism
CN107918427B (en) Contactor with electronic coil control system
WO2003026124A1 (en) Torque stabilizer for brushless servo motor
JP2002221280A (en) Device for driving fluid control valve
JP2000113788A (en) Drive circuit for self-holding electromagnetic relay, and power supply control circuit
JP2003042330A (en) Driving device for fluid control valve, and fuel cell power generating device
JP2582460B2 (en) Solenoid operation status detection device
JPS62167985A (en) Electromagnetic valve and detecting method for its operating condition
JP4711315B2 (en) Abnormality detection device for solenoid valve drive circuit
JPH03277884A (en) Direct current (dc) current valve control circuit
JP5717171B2 (en) Control circuit, solenoid valve, valve selector and fluid transfer device
JP3965588B2 (en) Inductive load controller
JP5227066B2 (en) Solenoid valve drive control device
JP2021110438A (en) Drive circuit of latch solenoid valve
JP2003097758A (en) Solenoid valve control device and air conditioner with solenoid valve control device
JPH0893956A (en) Step flow control valve

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees