JPH01173726A - Plasma device and plasma treating method - Google Patents

Plasma device and plasma treating method

Info

Publication number
JPH01173726A
JPH01173726A JP33199087A JP33199087A JPH01173726A JP H01173726 A JPH01173726 A JP H01173726A JP 33199087 A JP33199087 A JP 33199087A JP 33199087 A JP33199087 A JP 33199087A JP H01173726 A JPH01173726 A JP H01173726A
Authority
JP
Japan
Prior art keywords
plasma
chamber
ions
sample
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33199087A
Other languages
Japanese (ja)
Inventor
Takashi Hirao
孝 平尾
Masatoshi Kitagawa
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33199087A priority Critical patent/JPH01173726A/en
Publication of JPH01173726A publication Critical patent/JPH01173726A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a highly densed film and to conduct a uniform doping and the like by a method wherein an electrode, with which the ions in a plasma stream will be scanned, is provided between a plasma generating chamber and a sample chamber, a thin film is deposited while the ions are being scanned, and then a doping and the like is conducted. CONSTITUTION:The microwaves of a microwave power source 1 are supplied to a plasma chamber 2, and electronic cyclotron resonance is generated by an external electromagnet 3. Paralleled flat plate scanning electrodes 4 and 5, with which ions in a plasma stream 8 coming from the plasma chamber 2, will be scanned, are provided between the plasma chamber 2 and a sample chamber 7. Triangular-wave voltage, for example, is applied to the electrodes 4 and 5, a thin film is formed or a doping is conducted on the sample 6 provided on a sample stand 9 while the ions in the plasma stream 8 led out from a divergent magnetic field are being scanned. Through these procedures, a highly densed film can be formed on the whole surface, and a uniform doping can also be conducted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、凹凸を有する表面に緻密なiN tFJを均
一に形成したり、或はダイナミックRAMのトレンチ部
に均一に任意の不純物をドーピングすることでかきる等
高密度半導体集積回路や薄膜デバイスに利用できるきわ
めて波及効果の大きい重要な技術である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can be applied by uniformly forming a dense iN tFJ on an uneven surface or by uniformly doping arbitrary impurities into a trench portion of a dynamic RAM. This is an important technology that can be used for high-density semiconductor integrated circuits and thin film devices, and has an extremely large ripple effect.

従来の技術 半導体デバイスが微細化するとともに、低温化形成及び
低イオンエネルギーの薄膜プロセスが要望され、これに
対する一つの手段として、近年マイクロ波電子サイクロ
トロン共鳴吸収jF:1ectronCyclotro
n  Re5onance)を応用したプラズマCVD
やエツチングが提案された。ECRプラズマを薄膜形成
に用いると室温付近の基板温度で緻密な膜形成ができる
BACKGROUND TECHNOLOGY As semiconductor devices become smaller, there is a demand for thin film processes with low temperature formation and low ion energy.
Plasma CVD applying nRe5onance)
and etching were proposed. When ECR plasma is used to form a thin film, a dense film can be formed at a substrate temperature near room temperature.

発明が解決しようとする問題点 しかし、この方法をVLS I等の層間絶縁膜形成等に
用いる場合、段差部での膜質が平坦部でのそれと異って
、エツチング速度がきわめて大きいとかカバレッジがよ
くないという問題がある。これは、IIQの緻密化にイ
オンが重要な役割を果たしているにも拘らず、側壁部に
は十分なイオン照射がなされないことが原因である。
Problems to be Solved by the Invention However, when this method is used to form an interlayer insulating film such as VLSI, the quality of the film at the step part is different from that at the flat part, and the etching rate is extremely high and the coverage is poor. The problem is that there is no. This is because, although ions play an important role in densification of IIQ, sufficient ion irradiation is not performed on the sidewall portions.

問題点を解決するための手段 本発明は、上記問題点を解決するため、プラズマ室から
のプラズマ流中のイオンを走査して基板上に存在する側
壁部にもイオンが十分供給されるようにするため、プラ
ズマ発生室と試料室間に走査電極を設け、イオンを走査
して、基板に対するイオンの侵入角を変化させ側壁部に
もイオンを有効に供給しようとするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention scans the ions in the plasma flow from the plasma chamber so that the ions are sufficiently supplied to the side walls existing on the substrate. In order to do this, a scanning electrode is provided between the plasma generation chamber and the sample chamber, and the ions are scanned to change the angle of entry of the ions into the substrate, thereby effectively supplying the ions to the side walls.

作   用 本発明により、室温付近で水素量が少なく、低イオンエ
ネルギーで段差部に対しても緻密な絶縁膜の形成か可能
になる。
Effects According to the present invention, it is possible to form a dense insulating film even on stepped portions with a small amount of hydrogen near room temperature and low ion energy.

実  施  例 図は、本発明によるプラズマ装置の構成概略図である。Example The figure is a schematic diagram of the configuration of a plasma device according to the present invention.

1は2.45GHzのマグネトロン電源、2はプラズマ
室、3は電子サイクロトロン共鳴を生じさせる外部電磁
石、4は平行平板走査電極、5は電極4の平行平板走査
電極と垂直な平行平板走査電極で、それぞれに例えば三
角波電圧を印加して、発散磁場により引き出されたプラ
ズマ流8中のイオンを走査しつつ基板ホルダーに設置し
た試料6に薄膜形成あるいは不純物ドーピングを行なう
ことができる。9は試料台、10は電源、11゜12は
ガス入口、13は排気部である。
1 is a 2.45 GHz magnetron power supply, 2 is a plasma chamber, 3 is an external electromagnet that generates electron cyclotron resonance, 4 is a parallel plate scanning electrode, 5 is a parallel plate scanning electrode perpendicular to the parallel plate scanning electrode of electrode 4, For example, by applying a triangular wave voltage to each of them, a thin film can be formed or impurity doping can be performed on the sample 6 placed on the substrate holder while scanning the ions in the plasma flow 8 drawn out by the divergent magnetic field. 9 is a sample stage, 10 is a power supply, 11° and 12 are gas inlets, and 13 is an exhaust section.

本装置を用いて、試料6として半導体基板例えば、シリ
コン基板上の凹凸を有する薄膜上にシリコン窒化膜のよ
うなパッシベーション膜を形成する場合の例を説明する
。この場合には、第1図に示すように、試料6の直径e
より大きいプラズマ流の直径りの付近に走査電極4を設
け、更に他の走査電極5を試料台の前に設は走査するこ
とにより、基板上薄膜の側壁部にも十分なイオン照射が
行なわれ、全面的に緻密な膜の形成が行なわれる。例え
ば、シリコン窒化膜では、上部ガス入口よりN2ガスを
、下部ガス入口よりSiH4ガスを導入して、マイクロ
波電力300 W、ガス圧5X10  Torr(Si
H4=6SCCM、N、−15SCCM)の条件下で堆
積することにより、500A/l1inの堆積速度が得
られる。また不純物ドーピングのためには、例えばB2
H6やAsH。
An example of forming a passivation film such as a silicon nitride film on a thin film having irregularities on a semiconductor substrate, such as a silicon substrate, as the sample 6 will be described using this apparatus. In this case, as shown in FIG.
By installing a scanning electrode 4 near the diameter of the larger plasma flow, and placing another scanning electrode 5 in front of the sample stage for scanning, sufficient ion irradiation can be performed on the side walls of the thin film on the substrate. , a dense film is formed over the entire surface. For example, for a silicon nitride film, N2 gas is introduced from the upper gas inlet and SiH4 gas is introduced from the lower gas inlet, and the microwave power is 300 W and the gas pressure is 5 x 10 Torr (Si
A deposition rate of 500 A/1in is obtained by depositing under conditions of H4 = 6 SCCM, N, -15 SCCM). For impurity doping, for example, B2
H6 and AsH.

ガスを用い、基板に高周波バイアスを印加することによ
り半導体メモリーのd−RAMのトレンチキャパシタ等
の底部および側壁ドーピングとしても使うことが可能で
ある。以上はプラズマ流が広がった状態から、イオンを
走査する例を示したがECRプラズマ室に電圧印加した
り、基板ホルダー9に直流あるいは交流電圧を印加した
りしてイオンを加速する場合などで、プラズマ室のすぐ
後に走査電極を設置して、プラズマ処理してもよいこと
はいうまでもない。
By using a gas and applying a high-frequency bias to the substrate, it can also be used for doping the bottom and side walls of trench capacitors in d-RAM semiconductor memories. The above example shows an example in which ions are scanned from a state where the plasma flow is spread out, but in cases where ions are accelerated by applying a voltage to the ECR plasma chamber, or by applying a DC or AC voltage to the substrate holder 9, etc. It goes without saying that plasma processing may be performed by installing a scanning electrode immediately after the plasma chamber.

発明の効果 本発明は、ECRプラズマCVD法の段差部でカバレッ
ジが悪いという欠点をな(し、更にトレンチドーピング
等において、ウェーハ内のドーピング均一性を向上させ
ることができる等工業上極めて大きな価値を有するもの
である。
Effects of the Invention The present invention overcomes the drawback of poor coverage at stepped portions of the ECR plasma CVD method (and has extremely great industrial value, such as being able to improve doping uniformity within a wafer in trench doping, etc.). It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に用いるプラズマ処理装置の概略断面図であ
る− 1・・・・・・マイクロ波電源、2・・・・・・プラズ
マ室、3・・・・・・電磁石、4,5・・・・・・走査
電極、6・・・・・・試料、7・・・・・・試料室、8
・・・・・・プラズマ流、9・・・・・・試料台、10
・・・・・・電源(直流あるいは交流)。
The figure is a schematic cross-sectional view of a plasma processing apparatus used in the present invention. ... Scanning electrode, 6 ... Sample, 7 ... Sample chamber, 8
...Plasma flow, 9...Sample stage, 10
...Power source (DC or AC).

Claims (2)

【特許請求の範囲】[Claims] (1)電子サイクロトロン共鳴を用いたプラズマ発生室
と試料室を有するプラズマ装置において、前記プラズマ
発生室と試料室間に前記プラズマ発生室からのプラズマ
流中のイオンを走査する電極を設置した構成を有するこ
とを特徴とするプラズマ装置。
(1) In a plasma apparatus having a plasma generation chamber and a sample chamber using electron cyclotron resonance, an electrode for scanning ions in a plasma flow from the plasma generation chamber is installed between the plasma generation chamber and the sample chamber. A plasma device comprising:
(2)電子サイクロトロン共鳴を用いたプラズマ発生室
と試料室を有するプラズマ装置を用いて、前記プラズマ
発生室と試料室間に前記プラズマ発生室からのプラズマ
中のイオンを走査しつつ、薄膜の堆積、ドーピング等を
行なうことを特徴とするプラズマ処理方法。
(2) Deposition of a thin film while scanning ions in the plasma from the plasma generation chamber between the plasma generation chamber and the sample chamber using a plasma device that uses electron cyclotron resonance and has a plasma generation chamber and a sample chamber. A plasma processing method characterized by performing , doping, etc.
JP33199087A 1987-12-28 1987-12-28 Plasma device and plasma treating method Pending JPH01173726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33199087A JPH01173726A (en) 1987-12-28 1987-12-28 Plasma device and plasma treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33199087A JPH01173726A (en) 1987-12-28 1987-12-28 Plasma device and plasma treating method

Publications (1)

Publication Number Publication Date
JPH01173726A true JPH01173726A (en) 1989-07-10

Family

ID=18249907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33199087A Pending JPH01173726A (en) 1987-12-28 1987-12-28 Plasma device and plasma treating method

Country Status (1)

Country Link
JP (1) JPH01173726A (en)

Similar Documents

Publication Publication Date Title
US4668365A (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US5851600A (en) Plasma process method and apparatus
EP0478174B1 (en) Silicon dioxide deposition method
US7709063B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US6392350B1 (en) Plasma processing method
US6348158B1 (en) Plasma processing with energy supplied
KR20180069705A (en) Film forming method, boron film, and film forming apparatus
KR100727205B1 (en) Plasma deposition method and system
KR100238573B1 (en) Method and apparatus for forming thin film
TW201703074A (en) Method for etching magnetic layer
KR20070098499A (en) Electrode plate for plasma processing and plasma processing apparatus
JPH02281734A (en) Treating method of surface by plasma
JPH06333857A (en) Device and method for forming film
JP3838397B2 (en) Semiconductor manufacturing method
JPH0766186A (en) Anisotropic depositing method of dielectric
JP2000068227A (en) Method for processing surface and device thereof
TW307027B (en) Process for reducing circuit damage during pecvd in single wafer pecvd system
JP4123428B2 (en) Etching method
KR100878467B1 (en) Apparatus for processing of semiconductor wafer
JP2001189308A (en) Device and method for plasma treatment
US20020192984A1 (en) Method for manufacturing semiconductor device, method for processing substrate, and substrate processing apparatus
US20220351969A1 (en) Methods and apparatus for curing dielectric material
JP3362093B2 (en) How to remove etching damage
JP2000082698A (en) Plasma processing apparatus
JPH01173726A (en) Plasma device and plasma treating method