JPH01173589A - Manufacture of lightening protective tube - Google Patents

Manufacture of lightening protective tube

Info

Publication number
JPH01173589A
JPH01173589A JP33105287A JP33105287A JPH01173589A JP H01173589 A JPH01173589 A JP H01173589A JP 33105287 A JP33105287 A JP 33105287A JP 33105287 A JP33105287 A JP 33105287A JP H01173589 A JPH01173589 A JP H01173589A
Authority
JP
Japan
Prior art keywords
component
insulating tube
electrode cap
metallic adhesive
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33105287A
Other languages
Japanese (ja)
Other versions
JPH035033B2 (en
Inventor
Takashi Shoji
孝志 荘司
Kikumi Sekida
関田 喜久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP33105287A priority Critical patent/JPH01173589A/en
Publication of JPH01173589A publication Critical patent/JPH01173589A/en
Publication of JPH035033B2 publication Critical patent/JPH035033B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve leak resisting property and heat resisting cyclic property by joining an electrode cap to an insulating tube using metallic adhesive in specific composition and powder construction. CONSTITUTION:Metallic adhesive 2 comprising complex powder which has composition that contains at least one kind of Cu and Ni by 10-60%, and at least one kind of Ti, Nb and Zr by 10-80% and further at least one kind of rare earth element (including Y) at need by 5ppm-3% and the remainder is substantially Ag, wherein each component is meshed and united mechanically by a mechanical alloy method, is provided at the joining face of an insulating tube 1, thereafter an electrode cap 3 is attached and joined by heating. Hereby, lead resisting property and heat resisting cyclic property are improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は避***(サージ・アブシーバー)の製造に係り
、特に電話、自動車、電気機器等に用いられる避***を
安価に製造する方法に関する。 (従来の技術及び解決しようとする問題点)避***は落
雷の際に流れる強電流を電極間で放電し、機器を保護す
るために用いられるもので。 電話器、自動車、電気機器等の各種分野に利用されてい
る。 従来、この種の避***はアルミナ等からなる絶縁管に電
極キャップが接合されており、接着剤としてMo−Mn
ペーストが使用されていた。 すなわち、第5図に示すように、概ね外径8゜On+m
φ、内径5.5111!lφを有する筒状でアルミナ製
の絶縁管1の両端面にM o −M nペースト10を
印刷し、これをArガス等のフォーミングガス中で14
00〜1600℃で焼成してメタライズ化してメタライ
ズ層11を得る。次いでNiメツキを施してNiメツキ
層12を形成し、脱水素処理(Hx雰囲気、200’C
)した後、更に銀ろう13をセットして真空中、850
℃で溶解し、しかる後にいわゆる42合金、Cu又はコ
バールなどからなる電極キャップ3をセットした後、真
空中。 900℃に加熱することにより、絶縁管1に電極キャッ
プ3を接合し、避***を得るものである。 第6図はこのようにして得られた避***の断面構造を示
している。 この場合、接合時にAr、He、H,などのガスを50
0 Torr程度のガス圧で封じ込めるので、避***と
しては、この封入ガスがリークしないことが必要であり
、更に使用温度変化に耐え得る耐熱サイクル性が良好で
あること等の品質を備えたものであることが要求されて
いる。 しかし乍ら、従来の避***は、上記品質を一応具備して
いるものの、その製造工程が極めて多工数であり、しか
もNiメツキ、銀ろうの溶解等の熱処理を必要とするな
どの理由から、電極キャップ材質が42合金、Cu及び
コバールの3種類に制限されており、コスト高となって
いた。 本発明は、上記従来技術の欠点を解消し、所定の特性を
備えた避***を簡易な工程により安価に製造し得る方法
を提供することを目的とするものである。 (問題点を解決するための手段) 前記目的を達成するため、本発明者は、従来の製造法に
おける多工程が金属ペーストの使用に起因して特にNi
メツキ及び銀ろう付等の付加的処理を必要とすることに
着目し、これらの付加的処理を要しない接着剤を用いる
ならば、製造工程を大幅に簡略可能となることに着目し
、新規な接着材並びに製造法の開発に努めた。 その結果、先に本出願人が特願昭61−150003号
として開発した金属質接着材の適用を試みたところ、前
記付加的処理を必要とせずに高品質の避***を製造でき
ることを見い出し、ここに本発明をなしたものである。 すなわち5本発明に係る避***の製造法は、絶縁管に電
極キャップを接合して避***を製造するに際し、絶縁管
の接合面に、Cu及びNiのうちの少すくトも1種を1
0〜60%、Ti、Nb及びZrのうちの少なくとも1
種を10〜80%含み、更に必要に応じて希土類元素(
Yを含む)のうちの少なくとも1種を5 ppm−3%
含み、残部が実質的にAgである組成を有し、かつ、各
成分がメカニカルアロイ法によって機械的に噛合結合し
た複合粉末からなる金属質接着材を設けた後、電極キャ
ップを取り付けて加熱接合することを特徴とするもので
ある。 以下に本発明を更に詳細に説明する。 第1図は本発明法に用いる金属質接着材の成分系並びに
組成域(wt%)を示す図であり、A成分はCu及びN
iのうちの少なくとも1種からなり、B成分はTi、N
b及びZrのうちの少なくとも1種からなり、残部はC
成分(すなわち、Ag)からなる成分系において、その
組成域がA成分10〜60%、B成分10〜80%、C
成分10〜80%からなる範囲内が接着材として所望の
性質を発揮し使用することができる。なお、特に、A成
分が60%を超えると接着力が出ず、またB成分が80
%を超えると接合層の硬度が高くなり、また耐熱サイク
ル性が悪くなるので、好ましくない。 上記組成域のうちでも接着強度が強く、耐リーク性、耐
熱サイクル性ともに優れている範囲は、A成分20〜5
0%、B成分10%を超え60%以下、C成分20〜5
0%からなる範囲である。 また、上記成分系に対し、必要に応じてD成分として希
土類元素(Yを含む)のうちの少なくとも1種を添加す
ることができる。添加する量は、5PPm〜3wt%の
範囲とし、ミツシュメタルを使用してもよい。D成分を
添加することによりB成分の添加率の下限を7%に下げ
ることができ、特にTiの添加率を小さくしても接着力
を得ることができるほか、特にSiCなとのセラミック
性の絶縁管を接合する場合に添加すると効果が顕著であ
、る。 上記化学成分を有する金属質の接着材は、いわゆるメカ
ニカルアロイ法によって製造することができ、各成分の
金属粉末を摺潰機、ボールミル、アトライター等の撹拌
機を用いて高速、高エネルギー下で所要時間混合撹拌し
て粉砕することにより、各成分粒子が機械的に噛合結合
したいわゆるメカニカルアロイ形態の複合粉末が得られ
る。この複合粉末の粒度は44μm以下、好ましくは1
0μm以下のものが50wt%以上である微粉末が望ま
しい。 この複合粉末は、第2図に示すように、各成分の微粉が
機械的に噛合結合しているため、接合温度において緻密
に隣接する各成分微粉が表面で溶融して粒子間結合が強
固になり、これが一種のノリの役目を果たして接合強度
が増大するものと考えられる。因みに、そのような適切
な接合温度(Ag−Cu系で800〜900℃)を超え
る高温で各成分が合金化した状態で使用した場合には、
その効果が低下する現象がみられた。また単純混合状態
では各成分が分離した混合状態にあるために加熱しても
上記効果は期待できなかった。 次に、このような金属質接着材を使用して避***を製造
する工程について説明する。 第3図はその製造工程の一例を示しており、まず第1工
程(a)、(b)においては、従来と同様の材質、形状
寸法の絶縁管1を作成して準備する。 勿論、形状寸法は適用機器に応じて設計されるものであ
り、また材質もアルミナ以外の他のセラミック等の絶縁
材料を使用できることは云うまでもない。 次いで、第2工程(c)においては、絶縁管1の接合端
面に上記金属質接着材2を印刷等により設ける。金属質
接着材の厚さは特に制限されず、0゜5mm程度を目安
に設ければよい。 その後、第3工程(d)、(e)においては、絶縁管1
の両端面にそれぞれ電極キャップ3を取付けた状態にし
、Ar、He、H2などのガスを500T orr程度
に封じ込んだ後、非酸化性雰囲気中又は10″″3T 
orr以下の減圧下で1〜l OOkgf/cm”の荷
重のもとに適宜温度(600〜900℃、好ましくは7
00〜900℃)に所要時間加熱し、接合する。なお、
900℃を超える温度で熱処理すると金属質接着材が合
金化し接合効果が低下するので、留意する必要がある。 電極キャップ3としては、従来と同様、鉄ニツケル系の
42合金(Fe−42%Ni)や鉄ニツケルコバルト系
のコバール(Fe−29%Ni−17%Co)、或いは
Cu等の材料を使用できるが、本発明によれば、特に材
質を制限する必要がないので、ステンレス鋼等々の他の
材質のものを使用することが可能であり、電極キャップ
自体を安価なものにできる。 得られた避***は、第4図に示す如く絶縁管1の両端面
に金属質接着材2を介して電極キャップ3が強固に接合
された簡易な構造を有しているため、これを各種機器に
備え付けた場合、接合部からの封入ガスのリーク速度が
10−”cc/see以下の優れた耐リーク性を有する
と共に、−55℃〜+150℃間での熱サイクルテスト
で5回以上耐える優れた耐熱サイクル性を有し、高品質
を確保することができる。 次に本発明の実施例を示す。 (実施例) 外径8.0mm、内径5.5mm、高さ7.5mmの筒
状で純度96%のアルミナ(A Q 203)からなる
絶縁管について、その両端の接合面に金属質接着材を0
.5mm厚に均一に印刷した。 ここで、金属質接着材は次のようにして製造した。 すなわち、第1表に示す粒度44μm以下の各金属粉末
を同表に示す割合(vt%)で配合し、攪拌機を用いて
3.5時間混合粉砕し、複合粉末とし 。 た。得られた微粉末の粒度分布をコールタ−・カウンタ
ーで測定したところ、20μm以下100%で10μm
以下が83%の粒度分布であり、またこの微粉末を顕微
鏡観察したところ、各成分粒子が機械的に噛合結合した
メカニカルアロイの形態を呈している複合粉末であった
。 次に、5US444ステンレス鋼製の電極キャップを絶
縁管の両側にセットした後、内部にArガスを500 
Torrで封じ込めると同時に加熱接合した。加熱接合
では、このようにセットしたものに10−”Torrの
減圧下で10kg/c+a2の荷重を加え、900℃で
1時間加熱した。 得られた避***について耐リーク性及び耐熱サイクル性
を調べた結果を第1表に併記する。 なお、耐リーク性は、製造後速やかにリーク試験した場
合、封入ガスが接合部からリークする速度が10−”c
c/see以下のものを合格(○)、それ以上のものを
不合格(×)とした。また、耐熱サイクル性は、−50
と+150℃に加熱冷却することを1サイクルとし、5
サイクルテスト後に接合部からの封入ガスのリーク速度
を測定し、リーク速度が10−”cc/see以下のも
のを合格(0)、それ以上のものを不合格(×)として
評価した。 第1表より1本発明範囲内の組成及び粉末形態を有する
金属質接着材を使用して製造した避***は、いずれも耐
リーク性、耐熱サイクル性に優れていることがわかる。 一方、比較例のものは、耐リーク性か耐熱サイクル性の
いずれかが劣っている。
(Industrial Field of Application) The present invention relates to the manufacture of surge arresters, and particularly to a method of inexpensively manufacturing surge arresters used in telephones, automobiles, electrical equipment, etc. (Prior art and problems to be solved) A lightning arrester is used to protect equipment by discharging the strong current that flows between its electrodes during a lightning strike. It is used in various fields such as telephones, automobiles, and electrical equipment. Conventionally, this type of lightning arrester has an electrode cap bonded to an insulating tube made of alumina or the like, and Mo-Mn is used as an adhesive.
paste was used. That is, as shown in Fig. 5, the outer diameter is approximately 8°On+m.
φ, inner diameter 5.5111! Mo-Mn paste 10 is printed on both end surfaces of a cylindrical insulating tube 1 made of alumina and has a diameter of lφ, and this is heated for 14 hours in a forming gas such as Ar gas.
The metallized layer 11 is obtained by firing at a temperature of 00 to 1600° C. to form a metallized layer. Next, Ni plating is applied to form the Ni plating layer 12, followed by dehydrogenation treatment (Hx atmosphere, 200'C
), further set silver solder 13 and solder in vacuum at 850
After melting at a temperature of .degree. C., an electrode cap 3 made of so-called 42 alloy, Cu, Kovar, etc. is set, and then placed in a vacuum. By heating to 900° C., the electrode cap 3 is joined to the insulating tube 1 to obtain a detonator. FIG. 6 shows the cross-sectional structure of the arrester thus obtained. In this case, 50% of gas such as Ar, He, H, etc. is used during bonding.
Since it is sealed at a gas pressure of about 0 Torr, it is necessary for the detonator to not leak this sealed gas, and it must also have qualities such as good heat cycle resistance that can withstand changes in operating temperature. something is required. However, although conventional detonator caps have the above-mentioned qualities, the manufacturing process is extremely labor-intensive and requires heat treatment such as Ni plating and melting of silver solder. The electrode cap material is limited to three types: 42 alloy, Cu, and Kovar, resulting in high costs. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a method for manufacturing a detonator having predetermined characteristics at low cost through a simple process. (Means for Solving the Problems) In order to achieve the above object, the present inventors have discovered that the multiple steps in the conventional manufacturing method are particularly difficult to solve due to the use of metal paste.
Focusing on the fact that additional treatments such as plating and silver soldering are required, we focused on the fact that the manufacturing process could be greatly simplified if we used an adhesive that did not require these additional treatments, and developed a new method. Efforts were made to develop adhesives and manufacturing methods. As a result, when the present applicant attempted to apply the metallic adhesive material previously developed in Japanese Patent Application No. 61-150003, it was discovered that high-quality detonator caps could be manufactured without the need for the above-mentioned additional processing. This is where the present invention is made. In other words, in the method for manufacturing a detonation arrester according to the present invention, when manufacturing a detonation arrester by joining an electrode cap to an insulated tube, at least a small amount of one of Cu and Ni is added to the joint surface of the insulated tube.
0-60%, at least one of Ti, Nb and Zr
Contains 10-80% seeds, and further contains rare earth elements (
5 ppm-3% of at least one of the following:
After providing a metallic adhesive material made of a composite powder having a composition in which the remaining part is substantially Ag, and each component is mechanically interlocked and bonded by a mechanical alloying method, an electrode cap is attached and heat bonding is performed. It is characterized by: The present invention will be explained in more detail below. Figure 1 is a diagram showing the component system and composition range (wt%) of the metallic adhesive used in the method of the present invention, where the A component is Cu and N.
i, and the B component is Ti, N
Consisting of at least one of b and Zr, the remainder being C
In a component system consisting of a component (i.e., Ag), the composition range is 10 to 60% of component A, 10 to 80% of component B, and 10 to 80% of component C.
A component in the range of 10 to 80% exhibits desired properties and can be used as an adhesive. In particular, if the A component exceeds 60%, adhesive strength will not be obtained, and if the B component exceeds 80%.
%, the hardness of the bonding layer increases and the heat cycle resistance deteriorates, which is not preferable. Among the above composition ranges, the range in which the adhesive strength is strong and the leak resistance and heat cycle resistance are excellent is 20 to 5
0%, B component more than 10% and 60% or less, C component 20-5
The range is 0%. Furthermore, at least one rare earth element (including Y) can be added to the above-mentioned component system as the D component, if necessary. The amount added is in the range of 5 PPm to 3 wt%, and Mitshu metal may be used. By adding component D, the lower limit of the addition rate of component B can be lowered to 7%, and in particular, adhesive strength can be obtained even if the addition rate of Ti is small. The effect is remarkable when added when joining insulating tubes. Metallic adhesives having the above chemical components can be manufactured by the so-called mechanical alloying method, in which metal powders of each component are mixed at high speed and with high energy using a stirrer such as a crusher, ball mill, or attritor. By mixing, stirring and pulverizing for a required period of time, a so-called mechanical alloy composite powder in which each component particle is mechanically interlocked can be obtained. The particle size of this composite powder is 44 μm or less, preferably 1
A fine powder containing 50 wt % or more of particles with a diameter of 0 μm or less is desirable. As shown in Figure 2, in this composite powder, the fine powders of each component are mechanically interdigitated, so at the bonding temperature, the closely adjacent fine powders of each component melt on the surface and the bond between the particles becomes strong. It is thought that this serves as a kind of glue and increases the bonding strength. Incidentally, when used in a state where each component is alloyed at a high temperature exceeding such an appropriate bonding temperature (800 to 900°C for Ag-Cu system),
A phenomenon was observed in which the effectiveness decreased. In addition, in a simple mixed state, each component is in a separated mixed state, so even if heated, the above effect could not be expected. Next, a process for manufacturing a detonator using such a metallic adhesive will be described. FIG. 3 shows an example of the manufacturing process. First, in the first steps (a) and (b), an insulating tube 1 of the same material and shape as the conventional one is prepared. Of course, the shape and dimensions are designed according to the applicable equipment, and it goes without saying that other insulating materials other than alumina, such as ceramics, can be used. Next, in the second step (c), the metallic adhesive 2 is provided on the joint end surface of the insulating tube 1 by printing or the like. The thickness of the metallic adhesive is not particularly limited, and may be approximately 0.5 mm. After that, in the third steps (d) and (e), the insulating tube 1
After attaching electrode caps 3 to both end faces of the
Under reduced pressure below orr and under a load of 1 to 1 OOkgf/cm" at an appropriate temperature (600 to 900°C, preferably 7
00 to 900°C) for the required time to bond. In addition,
Care must be taken because heat treatment at a temperature exceeding 900° C. will alloy the metallic adhesive and reduce the bonding effect. As the electrode cap 3, materials such as iron-nickel-based 42 alloy (Fe-42%Ni), iron-nickel-cobalt-based Kovar (Fe-29%Ni-17%Co), or Cu can be used as in the past. However, according to the present invention, since there is no need to particularly limit the material, it is possible to use other materials such as stainless steel, and the electrode cap itself can be made inexpensive. The obtained lightning arrester has a simple structure in which the electrode cap 3 is firmly bonded to both end faces of the insulating tube 1 via a metallic adhesive 2, as shown in FIG. When installed in equipment, it has excellent leak resistance with the leak rate of the sealed gas from the joint being 10-"cc/see or less, and can withstand more than 5 thermal cycle tests between -55°C and +150°C. It has excellent heat cycle resistance and can ensure high quality. Next, examples of the present invention are shown. (Example) A cylinder with an outer diameter of 8.0 mm, an inner diameter of 5.5 mm, and a height of 7.5 mm. An insulating tube made of alumina (AQ 203) with a purity of 96% is coated with a metallic adhesive on the joint surfaces at both ends.
.. It was printed uniformly to a thickness of 5 mm. Here, the metallic adhesive material was manufactured as follows. That is, each metal powder with a particle size of 44 μm or less shown in Table 1 was blended in the ratio (vt%) shown in the same table, mixed and ground for 3.5 hours using a stirrer to obtain a composite powder. Ta. When the particle size distribution of the obtained fine powder was measured with a Coulter counter, it was 100% below 20μm.
The following is a particle size distribution of 83%, and when this fine powder was observed under a microscope, it was a composite powder exhibiting the form of a mechanical alloy in which each component particle was mechanically interlocked. Next, after setting electrode caps made of 5US444 stainless steel on both sides of the insulating tube, 500
While sealing with Torr, heat bonding was performed at the same time. In thermal bonding, a load of 10 kg/c+a2 was applied to the set as described above under a reduced pressure of 10-'' Torr, and the product was heated at 900°C for 1 hour. The resulting arrester was examined for leak resistance and heat cycle resistance. The results are also listed in Table 1. Leak resistance is determined by measuring the rate at which the filled gas leaks from the joint when a leak test is performed immediately after manufacturing.
Those below c/see were judged as passed (◯), and those above were judged as failed (x). In addition, the heat cycle resistance is -50
One cycle consists of heating and cooling to +150℃, and 5
After the cycle test, the leak rate of the sealed gas from the joint was measured, and those with a leak rate of 10-''cc/see or less were evaluated as pass (0), and those with a leak rate of 10-''cc/see or less were evaluated as fail (x). From the table, it can be seen that the detonator caps manufactured using the metallic adhesive having the composition and powder form within the range of the present invention are all excellent in leak resistance and heat cycle resistance.On the other hand, in the comparative example These products are inferior in either leak resistance or heat cycle resistance.

【以下余白】[Left below]

(発明の効果) 以上詳述したように1本発明によれば、特定の組成及び
粉末構造の金属質接着材を使用して絶縁管に電極キャッ
プを接合するので、耐リーク性及び耐熱サイクル性に優
れた避***を得ることができる。しかも、製造工程を大
幅に簡略化することができ、且つ電極キャップを安価な
材質にすることもできるので、低コストで高品質の避雷
管を提供することが可能となる。
(Effects of the Invention) As detailed above, according to the present invention, since the electrode cap is bonded to the insulating tube using a metallic adhesive having a specific composition and powder structure, leak resistance and heat cycle resistance are improved. It is possible to obtain an excellent detonator. Furthermore, the manufacturing process can be greatly simplified and the electrode cap can be made of an inexpensive material, making it possible to provide a high-quality detonator at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に用いる金属質接着材の組成域を示す
図、 第2図は金属質接着材の粉末形態を示す説明図、第3図
(a)〜(e)は本発明法による避***の製造工程の一
例を示す回、 第4図は本発明の実施例で得られた避***の構造を示す
断面図、 第5図は(a)〜(i)は従来法における避***の製造
工程を示す図、 第6図は従来法で得られた避***の構造を示す断面図で
ある。 1・・・絶縁管、2・・・金属質接着材、3・・・電極
キャップ、10−Mo−Mnペースト、11−Mo−M
nメタライズ層、12・・・Niメツキ層、13・・・
銀ろ特許出願人  昭和電工株式会社
Fig. 1 is a diagram showing the composition range of the metallic adhesive used in the method of the present invention, Fig. 2 is an explanatory diagram showing the powder form of the metallic adhesive, and Fig. 3 (a) to (e) are diagrams showing the composition range of the metallic adhesive used in the method of the present invention. Fig. 4 is a sectional view showing the structure of a detonation arrester obtained in an embodiment of the present invention, and Fig. 5 (a) to (i) are illustrations of a conventional method. Fig. 6 is a cross-sectional view showing the structure of a surge arrester obtained by a conventional method. DESCRIPTION OF SYMBOLS 1... Insulating tube, 2... Metallic adhesive, 3... Electrode cap, 10-Mo-Mn paste, 11-Mo-M
n metallized layer, 12...Ni plating layer, 13...
Ginro patent applicant Showa Denko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 絶縁管に電極キャップを接合して避***を製造するに際
し、絶縁管の接合面に、重量%で(以下、同じ)、Cu
及びNiのうちの少なくとも1種を10〜60%、Ti
、Nb及びZrのうちの少なくとも1種を10〜80%
含み、更に必要に応じて希土類元素(Yを含む)のうち
の少なくとも1種を5ppm〜3%含み、残部が実質的
にAgである組成を有し、各成分がメカニカルアロイ法
によって機械的に噛合結合した複合粉末からなる金属質
接着材層を設けた後、電極キャップを取り付けて加熱接
合することを特徴とする避***の製造法。
When manufacturing a lightning arrester by bonding an electrode cap to an insulating tube, Cu is added to the joint surface of the insulating tube in weight% (the same applies hereinafter).
and 10 to 60% of at least one of Ni, Ti
, 10 to 80% of at least one of Nb and Zr
5 ppm to 3% of at least one rare earth element (including Y) as necessary, and the remainder is substantially Ag, and each component is mechanically processed by a mechanical alloying method. A method for manufacturing a detonator cap, which comprises providing a metallic adhesive layer made of interlocking composite powder, then attaching an electrode cap and bonding by heating.
JP33105287A 1987-12-25 1987-12-25 Manufacture of lightening protective tube Granted JPH01173589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33105287A JPH01173589A (en) 1987-12-25 1987-12-25 Manufacture of lightening protective tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33105287A JPH01173589A (en) 1987-12-25 1987-12-25 Manufacture of lightening protective tube

Publications (2)

Publication Number Publication Date
JPH01173589A true JPH01173589A (en) 1989-07-10
JPH035033B2 JPH035033B2 (en) 1991-01-24

Family

ID=18239308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33105287A Granted JPH01173589A (en) 1987-12-25 1987-12-25 Manufacture of lightening protective tube

Country Status (1)

Country Link
JP (1) JPH01173589A (en)

Also Published As

Publication number Publication date
JPH035033B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US4567059A (en) Electronconductive paste to be baked on ceramic bodies to provide capacitors, varistors or the like
US3395993A (en) Titanium activated nickel seal and method of forming it
IE904277A1 (en) Pressure Sensor and Method Manufacturing same
CN105051889B (en) Ceramic packaging body and electronic device
JP3095490B2 (en) Ceramic-metal joint
JPH01173589A (en) Manufacture of lightening protective tube
US3265473A (en) Metalized ceramic members
JPH04259205A (en) Chip type ceramic capacitor
US4765528A (en) Plating process for an electronic part
US5006953A (en) Lead type chip capacitor and process for producing the same
JP2003535482A (en) MATERIAL COMPOSITE AND PROCESS FOR PRODUCING COMPOSITE
US3032869A (en) Metal-ceramic seal
JP4220869B2 (en) Manufacturing method of ceramic package
JP2000068396A (en) Cover for hermetic seal
JPS6328447A (en) Accelerating tube
KR20020079537A (en) Ceramic electronic component
JPS60180026A (en) Electrode material of vacuum interrupter and method of producing same
JPH08245275A (en) Production of laminated brazing filler metal and joining method
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
DE3641679C2 (en)
JPH02155595A (en) Production of brazing material
JP2637983B2 (en) Surge absorbing element with insulating thin plate
JPH0132322Y2 (en)
JPS635895A (en) Adhesive paste
CN111180204A (en) Stress buffering metal electrode structure chip capacitor