JPH01172221A - Synthesis of starting material comprising fine oxide particle - Google Patents

Synthesis of starting material comprising fine oxide particle

Info

Publication number
JPH01172221A
JPH01172221A JP33170787A JP33170787A JPH01172221A JP H01172221 A JPH01172221 A JP H01172221A JP 33170787 A JP33170787 A JP 33170787A JP 33170787 A JP33170787 A JP 33170787A JP H01172221 A JPH01172221 A JP H01172221A
Authority
JP
Japan
Prior art keywords
spray
solvent
org
acid
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33170787A
Other languages
Japanese (ja)
Other versions
JPH0574530B2 (en
Inventor
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Yasuyoshi Torii
鳥居 保良
Akihiro Tsuzuki
都築 明博
Norimitsu Murayama
宣光 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP33170787A priority Critical patent/JPH01172221A/en
Publication of JPH01172221A publication Critical patent/JPH01172221A/en
Publication of JPH0574530B2 publication Critical patent/JPH0574530B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a superconducting material having high critical current density by treating a uniform soln. mixture of nitrates of Ba, Cu, etc., a specified org. acid, and an org. solvent by spray thermal decomposition, etc. CONSTITUTION:An org. acid having an OH group and a COOH group such as citric acid, etc., and an org. solvent having OH groups such as ethylene glycol, ethanol, etc., are added to a mixture of nitrates of Ba, Y, Cu, etc., and the mixture is stirred to obtain a uniform mixed soln. The soln. is then spray- dried and decomposed thermally, or decomposed thermally while spraying. Thus, a starting material comprising fine particles of an oxide high temp. superconductor is obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は酸化物高温超伝導体の原料合成法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for synthesizing raw materials for oxide high temperature superconductors.

「従来技術及びその問題点」 従来、酸化物高温超伝導材料、の化学的手法による合成
法としては、(1)蒸発法、(2)共沈法、(3)金属
アルコキシド法、(4)凍結乾燥法等が知られている。
"Prior art and its problems" Conventionally, chemical synthesis methods for oxide high-temperature superconducting materials include (1) evaporation method, (2) coprecipitation method, (3) metal alkoxide method, (4) Freeze-drying methods and the like are known.

しかして、上述(1)の蒸発法は、バリウム。Therefore, the above-mentioned evaporation method (1) uses barium.

イツトリウム、銅等の金属の混合溶液を加熱して溶媒を
除去することにより乾燥試料を得。
A dry sample is obtained by heating a mixed solution of metals such as yttrium and copper to remove the solvent.

これを粉砕、焼成することにより原料粉末を得る方法で
あるが、溶媒除去に際して各成分の溶解度差9分解・昇
華等の影響で組成の不均一性や組成全体の変動が生じや
すいことや。
This is a method of obtaining a raw material powder by pulverizing and firing it, but when the solvent is removed, the solubility difference of each component 9 Due to the effects of decomposition, sublimation, etc., non-uniformity of the composition and fluctuations in the overall composition tend to occur.

粉砕工程が必要かつ試料汚染の問題が起こる。A grinding step is required and sample contamination problems arise.

(2)の共沈法は、金属酸塩の混合溶液に沈澱剤を加え
て単塩または複塩の沈澱粒子を形成させ、これをろ過、
乾燥、VE成することにより比較的容易に1μm以下〜
数μmの微粒子原料を合成することが可能である。しか
し。
In the coprecipitation method (2), a precipitant is added to a mixed solution of metal salts to form precipitated particles of a single or double salt, which are then filtered,
It is relatively easy to reduce the size to 1 μm or less by drying and VE formation.
It is possible to synthesize fine particle raw materials of several micrometers. but.

多成分系の場合、完全同時沈澱は理論上不可能であり、
希望する組成比の沈澱を得ることは困難である。
In the case of multicomponent systems, complete simultaneous precipitation is theoretically impossible;
It is difficult to obtain a precipitate with a desired composition ratio.

(3)の金属アルコキシド法は、金属アルコキシト溶液
の加水分解により数10nm程度の超微粒子を合成する
ことが可能であるが、出発原料の金属アルコキシドが非
常に高価であり。
In the metal alkoxide method (3), it is possible to synthesize ultrafine particles of several tens of nanometers by hydrolyzing a metal alkoxide solution, but the metal alkoxide as a starting material is very expensive.

また多成分系の場合、複合アルコキシドの合成が困難で
あるため、沈澱粒子の組成の不均一性に関して共沈法と
同様の欠点を持つ。
In addition, in the case of a multi-component system, it is difficult to synthesize a composite alkoxide, so it has the same drawbacks as the coprecipitation method regarding the non-uniformity of the composition of precipitated particles.

(4)凍結乾燥法は、試料溶液の冷媒中への噴霧等によ
り急速に凍結させ、減圧下での乾燥により溶媒の除去を
行うもので、乾燥時の試料への熱的影響が少ない一方で
、生成粒子径が比較的に大きく、成分が偏在しやすい、
処理に時間がかかる等の欠点を有する。
(4) In the freeze-drying method, the sample solution is rapidly frozen by spraying it into a refrigerant, and the solvent is removed by drying under reduced pressure. , the generated particle size is relatively large, and the components tend to be unevenly distributed.
It has drawbacks such as time-consuming processing.

「発明の概要」 本発明はこれらの欠点を解消し、微粒で均質な、低温で
の合成が可能で易焼結性を有する。酸化物高温超伝導体
の合成原料を提供することを目的とする。
"Summary of the Invention" The present invention eliminates these drawbacks, and has fine grains, homogeneity, can be synthesized at low temperatures, and has easy sinterability. The purpose is to provide raw materials for the synthesis of oxide high-temperature superconductors.

本発明者は、酸化物高温超伝導体の原料合成方法の研究
を進める過程で、ゾル−ゲル法の一つとして本物質の主
として厚膜化への応用が検討されてきたクエン酸塩法な
どの有機酸を使用する方法を、均質微粒子の合成に適用
することを検討して′きた。クエン酸等は通常の加熱に
よるゲル化・同化過程を経ると。
In the process of researching methods for synthesizing raw materials for high-temperature oxide superconductors, the present inventor discovered that the citrate method, which is one of the sol-gel methods, has been studied mainly for the application of this material to thick films. We have investigated the application of a method using organic acids to the synthesis of homogeneous fine particles. When citric acid etc. go through the gelation and assimilation process by normal heating.

−次粒子径は比較的微細であるが強固に固結した塊状物
を形成い 熱分解や脱炭素処理を効率よく行うためには
微粉砕処理が必要となる。そこで固化を微粒の液5滴に
して行えば微粒のゲル化乾燥物が得られ、熱分解や脱炭
素処理が容易に行われるものと考え、金属クエン酸塩溶
液な噴霧乾燥−熱分解処理または噴霧熱分解処理するこ
とでこれが達成されることを見いだし本発明に到達した
Although the secondary particle size is relatively small, it forms strongly consolidated lumps, and fine pulverization is required to efficiently perform thermal decomposition and decarbonization. Therefore, we believe that if solidification is carried out in the form of 5 drops of fine liquid, a fine gelled dried product can be obtained, and thermal decomposition and decarbonization treatment can be easily performed. It has been discovered that this can be achieved by spray pyrolysis treatment, and the present invention has been achieved.

すなわち本発明は、■目的の酸化物高温超伝導体組成と
なるように金属硝酸塩混合溶液を調製し、これにクエン
酸等の有機酸を加え。
That is, in the present invention, (1) a metal nitrate mixed solution is prepared so as to have the desired composition of an oxide high-temperature superconductor, and an organic acid such as citric acid is added thereto.

さらに水酸基を持つ有機溶媒としてエタノール、エチレ
ングリコール等またはこれらと水との混合溶媒を加え均
一になるよう撹拌い■この溶液を室温または100℃以
下に加温い適当な条件下で噴霧乾燥−熱分解処理または
噴霧熱分解処理することにより、ペロブスカイト型結晶
構造を有し組成の均一な、熱分解後の1次粒子径0.1
μm以下〜0.3μmの凝集粒子を得ることを特徴とす
る。以下に本発明の詳細な説明する。
Furthermore, add ethanol, ethylene glycol, etc., or a mixed solvent of these and water as an organic solvent with a hydroxyl group, and stir until uniform. Heat this solution to room temperature or below 100°C, and spray dry under appropriate conditions. By decomposition treatment or spray pyrolysis treatment, the primary particle size after pyrolysis is 0.1 with a perovskite crystal structure and a uniform composition.
It is characterized by obtaining aggregated particles with a size of 0.3 μm or less. The present invention will be explained in detail below.

まず、金属硝酸塩溶液の濃度は、噴霧乾燥または噴霧熱
分解時における2次粒子径および粒子の捕集効率を左右
するので、  0.01〜0゜5M71程度が望ましい
First, the concentration of the metal nitrate solution is preferably about 0.01 to 0.5M71, since it affects the secondary particle diameter and particle collection efficiency during spray drying or spray pyrolysis.

これにクエン酸等の有機酸を加える。有機酸の種類は酒
石酸、乳酸、グリコール酸等のカルボキシル基と水酸基
を同時に持つもののいずれでもよいが、コストの面や、
炭素の量が多いと後の脱炭素処理を十分に行わないとい
けないことなどを考慮してクエン酸を用いた。
Add an organic acid such as citric acid to this. The type of organic acid may be any one having both a carboxyl group and a hydroxyl group, such as tartaric acid, lactic acid, and glycolic acid, but due to cost considerations,
Citric acid was used in consideration of the fact that if the amount of carbon is large, the subsequent decarbonization treatment must be carried out sufficiently.

さらにエタノール、エチレングリコール等の有機溶媒ま
たは水との混合溶媒を加えて十分に混合撹拌する6 エ
タノール、エチレングリコール等の量は噴゛霧条件に応
じて調節する。
Furthermore, an organic solvent such as ethanol, ethylene glycol, or a mixed solvent with water is added and thoroughly mixed and stirred.6 The amount of ethanol, ethylene glycol, etc. is adjusted depending on the spraying conditions.

この溶液を室温または加温(溶媒が沸騰しない程度、°
 例えばエチレングリコールを加えた場合は約90℃)
しながら混合撹拌することにより、温度によりNOx及
びH2Oの蒸発を伴って、金属有機酸塩が溶媒中に溶質
として分散した状態になる。溶媒の蒸発が十分進ん。
Bring this solution to room temperature or warm it (so that the solvent does not boil, °
For example, if ethylene glycol is added, it will be approximately 90℃)
By mixing and stirring while stirring, NOx and H2O evaporate depending on the temperature, and the metal organic acid salt becomes dispersed as a solute in the solvent. Evaporation of the solvent has progressed sufficiently.

だものは冷却するとゲル化して溶液の粘性が高くなって
噴霧処理しにくくなるので、適当な粘度となるように加
温状態で噴霧処理するか、有機酸と有機溶媒の組合せに
より金属有機酸塩を生成しやすいものを選択するかまた
は反応を溶液調製−噴霧熱処理の両過程を通じて行うよ
うにす、る、これらの結果、有機酸のカルボキシル基が
金属イオンとまた水酸基が有機溶媒と親和力を強くして
、金属有機酸塩が溶媒中に均一に分散した状態となる。
When the fruit is cooled, it gels and the viscosity of the solution becomes high, making it difficult to spray. Therefore, it is necessary to spray the solution while it is heated to obtain an appropriate viscosity, or to mix it with a metal organic acid salt by combining an organic acid and an organic solvent. As a result, the carboxyl group of the organic acid has a strong affinity with the metal ion, and the hydroxyl group has a strong affinity with the organic solvent. As a result, the metal organic acid salt becomes uniformly dispersed in the solvent.

これを加圧空気による一噴霧、超音波発振による霧化等
の方法で数10μm以下の微小液滴とい 噴霧乾燥の場
合は100〜200℃程度の乾燥空気中、噴霧熱分解の
場合は600〜1000℃程度の炉中ないしはプラズマ
、化学炎中に導入する。温度、噴霧液滴径、滞留時間等
の噴霧に関する諸条件は試料溶液の量、濃度、溶媒・溶
質の種類、処理容器の形状、試料の捕集方法等の条件に
応じて最適条件を選ぶ必要がある。
This is produced by spraying with pressurized air or atomization using ultrasonic oscillation into micro droplets of several tens of micrometers or less.In the case of spray drying, this is done in dry air at a temperature of about 100 to 200°C, and in the case of spray pyrolysis, it is It is introduced into a furnace, plasma, or chemical flame at about 1000°C. Various conditions related to spraying, such as temperature, spray droplet diameter, and residence time, need to be selected optimally according to conditions such as the amount of sample solution, concentration, type of solvent/solute, shape of processing container, and sample collection method. There is.

サイクロン、フィルタリング、゛静電捕集等の方法によ
り捕集された微粒子を、噴霧熱分解により完全に分解−
結晶化が行われた場合を除いて熱処理する必要がある。
Fine particles collected by methods such as cyclones, filtering, and electrostatic collection are completely decomposed by spray pyrolysis.
Heat treatment is required unless crystallization has taken place.

試料組成により熱処理温度・時間は異なるが2例えばB
a2Ycu3(lr−、の場合は780〜800℃で約
1時間熱処理することにより、この系での超伝導相とな
るベロアスカイト型の結晶構造を示すことが粉末X線回
折により確かめられた。熱処理後に得られた微粒子の粒
子径は1次粒子径0.1μm以下〜0.3μm程度の凝
集粒子であり2分析電子顕微鏡によるバルク及び微小領
域の組成分析結果から、ストイキオメトリ−が保たれか
つ均一組成であることが確認された。
The heat treatment temperature and time vary depending on the sample composition, but 2 For example, B
In the case of a2Ycu3 (lr-), it was confirmed by powder X-ray diffraction that by heat treatment at 780 to 800°C for about 1 hour, a velorskite crystal structure, which becomes a superconducting phase in this system, was exhibited. The particle size of the fine particles obtained after heat treatment is agglomerated particles with a primary particle size of 0.1 μm or less to about 0.3 μm.2 From the composition analysis results of the bulk and micro regions using an analytical electron microscope, stoichiometry is maintained. It was also confirmed that the composition was uniform.

この凝集粒子を解砕することで得られる原料粉体は、共
沈法による合成粒子やこの方法と同様のプロセスで共沈
物を含む溶液を処理して得られた粒子に比べて熱処理前
の段階ですでに高い均一性を保っており、微粒子である
ことに加えて熱処理時の固相反応が容易に行われること
から焼結性が向上し、焼結体の緻密化が容易となる。ま
た金属有機酸塩のゲル化−固化法に比べると、粉砕処理
が不要でかつ熱分解時の粒子の反応性に富むので熱処理
過程が容易となる。
The raw material powder obtained by crushing these agglomerated particles has a lower particle size before heat treatment than particles synthesized by the coprecipitation method or particles obtained by treating a solution containing the coprecipitate in a process similar to this method. It already maintains high uniformity at the stage, and in addition to being fine particles, the solid phase reaction during heat treatment is easily carried out, which improves sinterability and facilitates densification of the sintered body. Furthermore, compared to the gelation-solidification method of metal organic acid salts, the heat treatment process is facilitated because pulverization is unnecessary and the particles are highly reactive during thermal decomposition.

また他の化学的な合成法に比べて途中での沈澱条件のコ
ントロールの必要や組成変動の心配もなく、対象とする
元素や組成を変えた場合への応用も広い、また処理装置
のスケールアップによる量産化が容易である。
In addition, compared to other chemical synthesis methods, there is no need to control precipitation conditions during the process, and there is no need to worry about composition fluctuations, making it widely applicable when changing target elements or compositions, and scaling up processing equipment. mass production is easy.

「実施例」 次に実施例を挙げて本発明を説明する。"Example" Next, the present invention will be explained with reference to Examples.

(実施例1) 0.05M /lのBa2 VC(130Hの硝酸塩溶
液200m lを調製し、これに有機酸として0.04
molのクエン酸を加え混合撹拌した。さらに有機溶媒
としてエチレングリコールを0.02mol加え十分に
混合撹拌し得られた溶液をよく撹拌しながら90°Cで
1時間加熱した。そして温度を60〜70℃に保ちよく
撹拌しながらスプレードライヤーで噴霧乾燥処理を以下
の条件で行った。2流体ノズル式噴霧、乾燥チャンバ入
口温度200℃。
(Example 1) Prepare 200ml of 0.05M/l Ba2 VC (130H nitrate solution, and add 0.04M/l of nitrate solution as an organic acid.
mol of citric acid was added and mixed and stirred. Furthermore, 0.02 mol of ethylene glycol was added as an organic solvent and thoroughly mixed and stirred, and the resulting solution was heated at 90° C. for 1 hour with thorough stirring. Then, while maintaining the temperature at 60 to 70° C. and stirring well, spray drying was performed using a spray dryer under the following conditions. Two-fluid nozzle spray, drying chamber inlet temperature 200°C.

出口温度200℃、噴霧空気圧2.0kg/cm2. 
 吸引空気ff10.40rn3/min、  試料供
給m8cm3/min。
Outlet temperature 200℃, spray air pressure 2.0kg/cm2.
Suction air ff10.40rn3/min, sample supply m8cm3/min.

サイクロンにより捕集された粉体は0.1μm以下の内
部構造を有する径1μm程度の乾燥粒子よりなる。これ
を100〜150℃で加熱し黒化させた後、800℃1
時間焼成することにより。
The powder collected by the cyclone consists of dry particles with a diameter of about 1 μm and an internal structure of 0.1 μm or less. After heating this at 100 to 150℃ to blacken it, heat it to 800℃1.
By baking for an hour.

ペロブスカイト単一組を示す(第1図)1次粒子径0.
1μm〜0.3μm程度の凝集粒子が得られた。この凝
集体をアトリションミルで解砕処理して得られた原料を
用いて作成した焼結体は理論密度の95%の密度を持ち
、90にで超伝導特性を示した。
A single set of perovskites is shown (Figure 1) with a primary particle size of 0.
Agglomerated particles of about 1 μm to 0.3 μm were obtained. A sintered body produced using a raw material obtained by crushing this aggregate with an attrition mill had a density of 95% of the theoretical density and exhibited superconducting properties at a density of 90%.

(実施例2) 実施例1と同じ量の金属硝酸塩に、有機酸として酒石酸
を同量、有機溶媒としてエタノールを0.1mol加え
、エタノールの蒸発を抑えながら60℃で2時間混合撹
拌した。この溶液を実施例1よりチャンバ入口・出口温
度を各々20℃低い温度で噴霧乾燥処理した。実施例1
と同様の熱処理によりペロブスカイト単一組の1次粒子
径0.1μm以下〜0.3μmの凝集粒子が得られた。
(Example 2) To the same amount of metal nitrate as in Example 1, the same amount of tartaric acid as an organic acid and 0.1 mol of ethanol as an organic solvent were added, and the mixture was mixed and stirred at 60° C. for 2 hours while suppressing evaporation of ethanol. This solution was subjected to spray drying treatment at chamber inlet and outlet temperatures each 20° C. lower than in Example 1. Example 1
By the same heat treatment as above, agglomerated particles of a single set of perovskites having a primary particle diameter of 0.1 μm or less to 0.3 μm were obtained.

(実施例3) 実施例1と同じ金属クエン酸−有機溶媒混合溶液を調製
し水−エタノールで3倍に希釈し、約1.5Mtlzの
超音波発振により霧化な行い数μmの液滴を生成させ、
中心温度約800°Cに保った石英反応管中に導入しく
流速的10cm/m1n)、熱分解させた粒子をフィル
タリングにより回収し、さらに800℃ 0.5時間の
熱処理によりペロブスカイト単一相粒子(1次粒子径0
.1μm以下〜0.3μm)が得られた。
(Example 3) The same metal citric acid-organic solvent mixed solution as in Example 1 was prepared, diluted 3 times with water-ethanol, and atomized by ultrasonic oscillation of about 1.5 Mtlz to form droplets of several μm. generate,
The thermally decomposed particles were introduced into a quartz reaction tube kept at a center temperature of about 800°C (flow rate: 10cm/m1n), collected by filtering, and further heat-treated at 800°C for 0.5 hours to form perovskite single-phase particles ( Primary particle size 0
.. 1 μm or less to 0.3 μm).

「発明の効果」 本発明は以上説明したように、他法に比べてより低温で
合成可能な、易焼結性の、酸化物高温超伝導体の均一組
成の微粒子原料を容易に製造するものであり、臨界電流
密度の向上など超伝導材料の実用化を促進するものとし
て期待される。
"Effects of the Invention" As explained above, the present invention is a method for easily producing a fine particle raw material with a uniform composition for an oxide high temperature superconductor that can be synthesized at a lower temperature than other methods, is easy to sinter, and has a uniform composition. This is expected to promote the practical application of superconducting materials, such as improving critical current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の方法により生成した微粒子の粉末X
線回折パターンで9図中のく000)は各回折ピークに
相当するペロブスカイト相の面指数を表す。 第1図 2θ 0
Figure 1 shows fine particle powder X produced by the method of Example 1.
In the line diffraction pattern, 000) in Figure 9 represents the surface index of the perovskite phase corresponding to each diffraction peak. Figure 1 2θ 0

Claims (1)

【特許請求の範囲】[Claims] バリウム、イットリウム、銅等の硝酸塩混合溶液に、水
酸基とカルボキシル基の両方を持つクエン酸等の有機酸
と、エチレングリコール、エタノール等の水酸基を持つ
有機溶媒を加え、撹拌により均一混合溶液とし、これを
噴霧乾燥−熱分解、または噴霧熱分解処理することによ
る、酸化物高温超伝導体の微粒子原料の合成法。
To a mixed solution of nitrates such as barium, yttrium, and copper, add an organic acid such as citric acid that has both hydroxyl groups and carboxyl groups, and an organic solvent that has hydroxyl groups such as ethylene glycol and ethanol, and stir to make a uniform mixed solution. A method for synthesizing a fine particle raw material of an oxide high temperature superconductor by spray drying-pyrolysis or spray pyrolysis treatment.
JP33170787A 1987-12-25 1987-12-25 Synthesis of starting material comprising fine oxide particle Granted JPH01172221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33170787A JPH01172221A (en) 1987-12-25 1987-12-25 Synthesis of starting material comprising fine oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33170787A JPH01172221A (en) 1987-12-25 1987-12-25 Synthesis of starting material comprising fine oxide particle

Publications (2)

Publication Number Publication Date
JPH01172221A true JPH01172221A (en) 1989-07-07
JPH0574530B2 JPH0574530B2 (en) 1993-10-18

Family

ID=18246689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33170787A Granted JPH01172221A (en) 1987-12-25 1987-12-25 Synthesis of starting material comprising fine oxide particle

Country Status (1)

Country Link
JP (1) JPH01172221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140472A (en) * 1989-10-27 1991-06-14 Agency Of Ind Science & Technol Production of built-up film of oxide fine particle
WO2001040402A1 (en) * 1999-12-01 2001-06-07 Kasei Optonix, Ltd. Method for producing phosphor
KR20030075797A (en) * 2002-03-20 2003-09-26 한국전력공사 Method of simultaneous synthesize for Y123 and Y211 powder
JP2010111519A (en) * 2008-11-04 2010-05-20 Saitama Univ Method for producing ferrite fine particle
CN102175029A (en) * 2011-02-25 2011-09-07 丰城市环球资源再生科技发展有限公司 Heat-energy-recirculation-type pop can depainting waste gas processor
JP2020152587A (en) * 2019-03-18 2020-09-24 一般財団法人ファインセラミックスセンター Method of producing ceramic powder, ceramic powder, and method of producing ceramic dense body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140472A (en) * 1989-10-27 1991-06-14 Agency Of Ind Science & Technol Production of built-up film of oxide fine particle
JPH0774454B2 (en) * 1989-10-27 1995-08-09 工業技術院長 Manufacturing method of oxide fine particle deposition film
WO2001040402A1 (en) * 1999-12-01 2001-06-07 Kasei Optonix, Ltd. Method for producing phosphor
KR20030075797A (en) * 2002-03-20 2003-09-26 한국전력공사 Method of simultaneous synthesize for Y123 and Y211 powder
JP2010111519A (en) * 2008-11-04 2010-05-20 Saitama Univ Method for producing ferrite fine particle
CN102175029A (en) * 2011-02-25 2011-09-07 丰城市环球资源再生科技发展有限公司 Heat-energy-recirculation-type pop can depainting waste gas processor
JP2020152587A (en) * 2019-03-18 2020-09-24 一般財団法人ファインセラミックスセンター Method of producing ceramic powder, ceramic powder, and method of producing ceramic dense body

Also Published As

Publication number Publication date
JPH0574530B2 (en) 1993-10-18

Similar Documents

Publication Publication Date Title
US8546284B2 (en) Process for the production of plasma sprayable yttria stabilized zirconia (YSZ) and plasma sprayable YSZ powder produced thereby
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
Xu et al. Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
Ning et al. Structural inhomogeneity and crystallization behavior of aerosol-reacted MgAl2O4 powders
JPH01172221A (en) Synthesis of starting material comprising fine oxide particle
KR20210039462A (en) Method for producing tritium pyrophosphate and method for producing tritium pyrophosphate carbon composite
US6409983B1 (en) Process for preparing crystalline barium titanate powder
CN107662947B (en) Tri- rare earth ion tantalates of Sm-Eu-Gd and the preparation method and application thereof
JPH01226724A (en) Method for synthesizing fine oxide particles as starting material
US5545360A (en) Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
JPH01122964A (en) Zirconia stabilized by yttrium and its production
JPH03159903A (en) Production of perovskite ceramic powder
JPH0159966B2 (en)
JPH0574529B2 (en)
JPH01226723A (en) Method for synthesizing particulate oxide raw material
JPH0328109A (en) Production of compound oxide powder
JP2002029745A (en) Method for producing crystalline barium titanate powder
Lal et al. Preparation of Ferrite Powders by Chemical Methods—A Review
JPH09278443A (en) Titanium oxide particulates and its production
CN112744867B (en) Method for preparing nano lanthanum strontium manganese oxide powder
JP3412187B2 (en) Preparation of composite perovskite oxide powder
RU2076069C1 (en) Process for preparing finely dispersive zirconium dioxide powder
JP2589179B2 (en) Method for producing lead-based ceramic powder
JPH01164709A (en) Production of composite oxide precursor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term