JPH01169949A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01169949A
JPH01169949A JP62328582A JP32858287A JPH01169949A JP H01169949 A JPH01169949 A JP H01169949A JP 62328582 A JP62328582 A JP 62328582A JP 32858287 A JP32858287 A JP 32858287A JP H01169949 A JPH01169949 A JP H01169949A
Authority
JP
Japan
Prior art keywords
oxide superconductor
semiconductor
substrate
type silicon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62328582A
Other languages
Japanese (ja)
Inventor
Yohei Ichikawa
洋平 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62328582A priority Critical patent/JPH01169949A/en
Publication of JPH01169949A publication Critical patent/JPH01169949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To facilitate manufacturing, and eliminate the problem of anisotropy of electric conduction, by forming an oxide superconductor turning to wiring material on a substrate, and connecting the oxide superconductor and semiconductor on the side surface of the oxide superconductor. CONSTITUTION:Oxide superconductor 2 is formed on a substrate 1, e.g., the surface of P-type silicon. In order to make a current flow easily pallel to the substrate 1 surface, the oxide superconductor 2 is so formed that the C-axis becomes vertical to the substrate 1 surface. Next, a narrow trench is formed, in which P-type silicon 3 is epitaxially grown to fill the trench. On the P-type silicon, a gate insulating film 4 is formed, and thereon a gate electrode 5 is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超伝導材料を配線に用いた半導体装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device using a superconducting material for wiring.

従来の技術 半導体装置として、MO3型電界効果トランジスタは微
細化が容易なため広く使われている。
2. Description of the Related Art MO3 field effect transistors are widely used as semiconductor devices because they can be easily miniaturized.

近年、半導体装置の高集積化に伴い、配線の抵抗成分に
よる信号の遅延あるいは発熱が問題となってきた。
In recent years, as semiconductor devices have become highly integrated, signal delays or heat generation due to resistance components of wiring have become a problem.

最近になって、Y −Ba −Cu −0系等の酸化物
超伝導体で臨界温度が液体窒素温度(77K)を越すも
のが発見され、実用化が進められている。
Recently, oxide superconductors such as Y-Ba-Cu-0-based oxide superconductors whose critical temperature exceeds the liquid nitrogen temperature (77K) have been discovered and are being put into practical use.

半導体装置の配線材料として超伝導体を用いれば、配線
の抵抗成分を無視することができ、発熱もなくなるので
、高速かつ高集積の半導体回路が可能となる。
If a superconductor is used as a wiring material for a semiconductor device, the resistance component of the wiring can be ignored and heat generation is eliminated, making it possible to create high-speed, highly integrated semiconductor circuits.

発明が解決しようとする問題点 しかしながら、Y −B a −Cu −0系等の酸化
物超伝導体は、結晶性の良い基板上でなければ単結晶薄
膜を得ることは困難である。すなわち、ガラスあるいは
多結晶の上には、酸化物超伝導体を形成することは難し
いという問題点を有している。
Problems to be Solved by the Invention However, it is difficult to obtain a single crystal thin film of oxide superconductors such as the Y-Ba-Cu-0 system unless it is on a substrate with good crystallinity. That is, there is a problem in that it is difficult to form an oxide superconductor on glass or polycrystal.

さらに酸化物超伝導体は、電気伝導体特性に著しい異方
性を有している。酸化物超伝導体は一般にペロブスカイ
ト構造をしているが、ab面内に比べC軸方向には電流
が流れにくい。したがって、この酸化物超伝導体を半導
体デバイスの配線材料として用いる時には、ab面の側
面で接続してやらなければならない。
Furthermore, oxide superconductors have significant anisotropy in their electrical conductor properties. Oxide superconductors generally have a perovskite structure, but it is more difficult for current to flow in the C-axis direction than in the AB plane. Therefore, when this oxide superconductor is used as a wiring material for a semiconductor device, it must be connected at the sides of the AB plane.

本発明はかかる点に鑑み、酸化物超伝導体を配線材料と
する半導体装置を提供することを目的とする。
In view of this, an object of the present invention is to provide a semiconductor device using an oxide superconductor as a wiring material.

問題点を解決するだめの手段 本発明の半導体装置は、基板表面に形成した酸化物超伝
導体と、前記酸化物超伝導体に設けた溝内に形成したチ
ャンネル領域となる単一導電型の半導体と、前記半導体
の上に形成したゲート絶縁膜及びゲート電極を有し、前
記酸化物超伝導体と半導体とが接して形成されている。
Means for Solving the Problems The semiconductor device of the present invention comprises an oxide superconductor formed on the surface of a substrate and a single conductivity type channel region formed in a groove provided in the oxide superconductor. The semiconductor device includes a semiconductor, a gate insulating film and a gate electrode formed on the semiconductor, and the oxide superconductor and the semiconductor are formed in contact with each other.

また、本発明の半導体装置は、基板表面に形成した酸化
物超伝導体と、前記酸化物超伝導体に設けた溝内に形成
したチャンネル領域となる半導体と、前記半導体の上に
形成したゲート絶縁膜及びゲート電極を有し、前記半導
体にnpn又はpnpの接合を形成し、その両端のn又
はp領域と前記酸化物超伝導体とが接して形成されてい
る。
Further, the semiconductor device of the present invention includes an oxide superconductor formed on a substrate surface, a semiconductor forming a channel region formed in a groove provided in the oxide superconductor, and a gate formed on the semiconductor. It has an insulating film and a gate electrode, an npn or pnp junction is formed in the semiconductor, and the n or p regions at both ends of the junction are in contact with the oxide superconductor.

作   用 この構成をとることによシ、酸化物超伝導体をソース、
ドレインとし、溝内の半導体をチャンネル領域とするM
O3型電界効果トランジスタを形成することができ、酸
化物超伝導体を容易に配線材料として用いることができ
る。
By adopting this configuration, the oxide superconductor can be used as a source,
M with the drain as the drain and the semiconductor in the trench as the channel region
An O3 field effect transistor can be formed, and the oxide superconductor can be easily used as a wiring material.

この構成をとることにより、酸化物超伝導体の溝部にM
O3型電界効果トランジスタを形成でき、酸化物超伝導
体とトランジスタのソース・ドレイン領域の接続も容易
に行うことができる。
By adopting this configuration, M
An O3 field effect transistor can be formed, and the oxide superconductor can be easily connected to the source/drain regions of the transistor.

実施例 第1図に本発明の実施例における半導体装置の構造を示
す。第2図は本実施例の製造方法を説明するための工程
断面図である。
Embodiment FIG. 1 shows the structure of a semiconductor device in an embodiment of the present invention. FIG. 2 is a process sectional view for explaining the manufacturing method of this embodiment.

まず第2図aに示すように、基板1、例えばp型シリコ
ンの表面に酸化物超伝導体2を形成する。
First, as shown in FIG. 2a, an oxide superconductor 2 is formed on the surface of a substrate 1, for example, p-type silicon.

ここで酸化物超伝導体2は基板1の表面に平行に電流を
流れやすくするためにC軸が基板1の表面に垂直になる
ように形成する。
Here, the oxide superconductor 2 is formed so that its C-axis is perpendicular to the surface of the substrate 1 in order to facilitate the flow of current parallel to the surface of the substrate 1.

次に第2図すに示すように細溝を形成する。そして第2
図Cに示すように溝内Kp型シリコン3をエピタキシャ
ル成長させ、細溝を埋める。そして第1図に示すように
p型シリコン3上にゲート絶縁膜4を形成し、さらにゲ
ート絶縁膜4の上にゲート電極6を形成する。
Next, narrow grooves are formed as shown in Figure 2. and the second
As shown in Figure C, Kp type silicon 3 in the groove is epitaxially grown to fill the narrow groove. Then, as shown in FIG. 1, a gate insulating film 4 is formed on the p-type silicon 3, and a gate electrode 6 is further formed on the gate insulating film 4.

以上のように本実施例によれば、配線材料となる酸化物
超伝導体は基板上に形成するため、容易に作製すること
ができる。また、この構成によシ、酸化物超伝導体と半
導体との接続は、酸化物超伝導体のab面の側面で行わ
れるため、酸化物超伝導体の電気伝導、の異方性の問題
もなくなる。さらに形成されたトランジスタのチャンネ
ル領域は、配線の超伝導体の溝内にあるため平坦なもの
となり、以降のフ゛ロセスを容易にすることができる。
As described above, according to this embodiment, since the oxide superconductor serving as the wiring material is formed on the substrate, it can be easily manufactured. In addition, with this configuration, the connection between the oxide superconductor and the semiconductor is made on the side surface of the a-b plane of the oxide superconductor, so there is a problem with the anisotropy of electrical conduction of the oxide superconductor. It also disappears. Furthermore, since the channel region of the formed transistor is located within the groove of the superconductor of the wiring, it becomes flat, which facilitates subsequent processing.

なお、本実施例では、チャンネル領域にp型シリコンを
用いた場合について述べたが、これに限らず、n型シリ
コンあるいは、他の半導体物質でもかまわない。
In this embodiment, a case has been described in which p-type silicon is used for the channel region, but the present invention is not limited to this, and n-type silicon or other semiconductor materials may be used.

第3図は本発明の第2の実施例における半導体装置でn
 −M OS型電界効果トランジスタを用いた例である
。第4図は本実施例の製造方法を説明するための工程断
面図である。
FIG. 3 shows a semiconductor device according to a second embodiment of the present invention.
- This is an example using a MOS type field effect transistor. FIG. 4 is a process sectional view for explaining the manufacturing method of this example.

まず第4図aに示すように基板11例えばp型シリコン
表面に酸化物超伝導体12を形成する。
First, as shown in FIG. 4a, an oxide superconductor 12 is formed on the surface of a substrate 11, for example, p-type silicon.

ここで酸化物超伝導体12は基板11の表面に平行に電
流を流れやすくするためにC軸が基板11の表面に垂直
になるように形成する。次に第4図すに示すように細溝
を形成し、溝内に高不純物濃度のn型シリコン13をエ
ピタキシャル成長させ細溝を埋める。次に第4図Cに示
すようにn型シリコン13に細溝を設ける。そして第4
図dに示すように溝内にp型シリコン14をエピタキシ
ャル成長させ、細溝を埋める。そして第3図に示すよう
にp型シリコン14の上にゲート絶縁膜15を形成し、
さらにゲート電極16を形成する。
Here, the oxide superconductor 12 is formed so that its C-axis is perpendicular to the surface of the substrate 11 in order to facilitate current flow parallel to the surface of the substrate 11. Next, as shown in FIG. 4, a narrow groove is formed, and n-type silicon 13 with a high impurity concentration is epitaxially grown in the groove to fill the narrow groove. Next, as shown in FIG. 4C, a narrow groove is formed in the n-type silicon 13. and the fourth
As shown in FIG. d, p-type silicon 14 is epitaxially grown in the trench to fill the narrow trench. Then, as shown in FIG. 3, a gate insulating film 15 is formed on the p-type silicon 14,
Furthermore, a gate electrode 16 is formed.

以上のように第2の実施例によれば、配線材料となる酸
化物超伝導体は基板上に形成するため、容易に作製する
ことができる。さらに、この構成によシ、酸化物超伝導
体と半導体との接続は、酸化物超伝導体のab面の側面
で行われるため、酸化物超伝導体の電気伝導の異方性の
問題もなくなる。また、半導体側において高不純物濃度
領域で超伝導体と接するので、特性の良い接続が得られ
る。さらに形成されたトランジスタのチャンネル領域は
、配線の超伝導体の溝内にあるため、平坦なものとなシ
、以降のプロセスを容易にすることができる。
As described above, according to the second embodiment, since the oxide superconductor serving as the wiring material is formed on the substrate, it can be easily manufactured. Furthermore, with this configuration, since the connection between the oxide superconductor and the semiconductor is made on the side surface of the a-b plane of the oxide superconductor, there is also the problem of anisotropy of electrical conduction in the oxide superconductor. It disappears. Furthermore, since the semiconductor side contacts the superconductor in a high impurity concentration region, a connection with good characteristics can be obtained. Furthermore, since the channel region of the formed transistor is located within the groove of the superconductor of the wiring, it must be flat, which facilitates subsequent processes.

なお、本実施例では、n −M OS型電界効果トラン
ジスタについて述べだが、p−MO8型電界効果トラン
ジスタについても同様に作製できる。
Although this embodiment describes an n-MOS type field effect transistor, a p-MO8 type field effect transistor can also be manufactured in the same manner.

また半導体もシリコンに限らず、他の半導体物質でもか
まわない。
Further, the semiconductor is not limited to silicon, and other semiconductor materials may be used.

発明の詳細 な説明したように、本発明によれば、半導体装置の配線
材料となる酸化物超伝導体は基板上に形成するため、容
易に作製することができる。また、この構成をとること
により、酸化物超伝導体の電気伝導の異方性に対して問
題なく、酸化物超伝導体と半導体との接続を行うことが
できる。本発明の半導体装置を用いれば、超伝導配線が
容易となシ、配線の抵抗成分を無視することができ、ま
た発熱もなくなるので、高速かつ高集積の半導体回路を
作製することができ、その効果は大きい。
As described in detail, according to the present invention, the oxide superconductor used as the wiring material of the semiconductor device is formed on the substrate, so it can be easily manufactured. Further, by adopting this configuration, the oxide superconductor and the semiconductor can be connected without any problem with the anisotropy of electrical conduction of the oxide superconductor. By using the semiconductor device of the present invention, superconducting wiring can be easily formed, the resistance component of the wiring can be ignored, and there is no heat generation, so it is possible to fabricate high-speed and highly integrated semiconductor circuits. The effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の半導体装置の断面図、第2図
は第1図の実施例の製造工程断面図である。 1.11・・・・・・基板、2,12・・・−・・酸化
物超伝導体、3,14・・・・・・p型シリコン、4.
15・・・・・・ゲート絶縁膜、5,16・・・・・・
ゲート電極、13・・・・・・n型シリコン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 Sゲート覗七反 l基板 第2図 第3図 1乙ゲート電極 l1坂 乙!シリコン 手続補正書は式) %式% 1事件の表示 昭和62年特許願第328582 号 2発明の名称 半導体装置 3補正をする者 事件との関係      特   許   出   願
  大佐 所  大阪府門真市大字門真1006番地名
 称 (582)松下電器産業株式会社代表者    
谷  井  昭  雄 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 7、補正の内容 明細書第8ページ第13行の「工程断面図である。」を
「工程断面図、第3図は本発明の他の実施例の半導体装
置の断面図、第4図は第3図の実施例の製造工程断面図
である。dに補正します。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view of the manufacturing process of the embodiment of FIG. 1.11...substrate, 2,12...--oxide superconductor, 3,14...p-type silicon, 4.
15... Gate insulating film, 5, 16...
Gate electrode, 13...n-type silicon. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure S Gate Peek Seven Panels Figure 2 Figure 3 Figure 1 B Gate Electrode l1 Saka Otsu! Silicon procedure amendment form) % Formula % 1 Display of the case 1986 Patent Application No. 328582 2 Name of the invention Semiconductor device 3 Person making the amendment Relationship with the case Patent application Office 1006 Kadoma, Kadoma City, Osaka Prefecture Address Name (582) Representative of Matsushita Electric Industrial Co., Ltd.
Akio Tanii 4 Agent 571 Address 7, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture, Changed ``Process cross-sectional diagram'' to ``Process sectional view'' on page 8, line 13 of the amended statement of contents. 3 is a sectional view of a semiconductor device according to another embodiment of the present invention, and FIG. 4 is a sectional view of the manufacturing process of the embodiment of FIG. 3. Corrected to d.

Claims (2)

【特許請求の範囲】[Claims] (1)基板表面に形成した酸化物超伝導体と、前記酸化
物超伝導体に設けた溝内に形成したチャンネル領域とな
る単一導電型の半導体と、前記半導体の上に形成したゲ
ート絶縁膜と、前記ゲート絶縁膜の上に形成したゲート
電極を有し、前記酸化物超伝導体と前記半導体とが接し
て形成されていることを特徴とする半導体装置。
(1) An oxide superconductor formed on the surface of the substrate, a single conductivity type semiconductor forming a channel region formed in a groove provided in the oxide superconductor, and a gate insulator formed on the semiconductor. A semiconductor device comprising a film and a gate electrode formed on the gate insulating film, the oxide superconductor and the semiconductor being in contact with each other.
(2)基板表面に形成した酸化物超伝導体と、前記酸化
物超伝導体に設けた溝内に形成したチャンネル領域とな
る半導体と、前記半導体の上に形成したゲート絶縁膜と
、前記ゲート絶縁膜の上に形成したゲート電極を有し、
前記半導体にnpn又はpnpの接合を形成し、その、
両端のn又はp領域と前記酸化物超伝導体とが接して形
成されていることを特徴とする特許請求の範囲第1項記
載の半導体装置。
(2) An oxide superconductor formed on the surface of the substrate, a semiconductor forming a channel region formed in a groove provided in the oxide superconductor, a gate insulating film formed on the semiconductor, and the gate It has a gate electrode formed on an insulating film,
forming an npn or pnp junction in the semiconductor;
2. The semiconductor device according to claim 1, wherein the n- or p-region at both ends and the oxide superconductor are formed in contact with each other.
JP62328582A 1987-12-24 1987-12-24 Semiconductor device Pending JPH01169949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328582A JPH01169949A (en) 1987-12-24 1987-12-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328582A JPH01169949A (en) 1987-12-24 1987-12-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01169949A true JPH01169949A (en) 1989-07-05

Family

ID=18211888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328582A Pending JPH01169949A (en) 1987-12-24 1987-12-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01169949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326746A (en) * 1991-03-27 1994-07-05 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of superconductive thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326746A (en) * 1991-03-27 1994-07-05 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of superconductive thin film transistor

Similar Documents

Publication Publication Date Title
US4819037A (en) Semiconductor device
US3518509A (en) Complementary field-effect transistors on common substrate by multiple epitaxy techniques
US3460006A (en) Semiconductor integrated circuits with improved isolation
JPH03285351A (en) Cmis semiconductor device and manufacture thereof
KR930001460A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS63102264A (en) Thin film semiconductor device
KR940001505B1 (en) Semiconductor device
JP2653092B2 (en) Complementary thin film transistor and method of manufacturing the same
JPH01169949A (en) Semiconductor device
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
SE9001403D0 (en) DEVICE ON A SCREEN OF AN INTEGRATED CIRCUIT AND PROCEDURE FOR THE PREPARATION OF THE DEVICE
JPS63124467A (en) Semiconductor device
JPS604591B2 (en) Semiconductor integrated circuit device
JPS60167375A (en) Semiconductor device
JPS6185863A (en) Semiconductor integrated circuit device
JPH0432264A (en) Semiconductor device and manufacture thereof
JPS61222171A (en) Power mos transistor
KR100194675B1 (en) Vertical inverter and its making method
JPH01146364A (en) Mis type semiconductor device and its manufacture
JPS63216370A (en) Semiconductor device
JPS59182563A (en) Semiconductor device
JPS6220366A (en) Semiconductor device
JPH03116969A (en) Semiconductor integrated circuit device
JPH01143253A (en) Semiconductor device and manufacture thereof
JPS63200559A (en) Semiconductor integrated circuit device