JPH01166936A - Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture - Google Patents

Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture

Info

Publication number
JPH01166936A
JPH01166936A JP62325766A JP32576687A JPH01166936A JP H01166936 A JPH01166936 A JP H01166936A JP 62325766 A JP62325766 A JP 62325766A JP 32576687 A JP32576687 A JP 32576687A JP H01166936 A JPH01166936 A JP H01166936A
Authority
JP
Japan
Prior art keywords
fiber
layer
resin
fiber layer
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62325766A
Other languages
Japanese (ja)
Inventor
Shinkichi Murakami
信吉 村上
Keijiro Manabe
真鍋 敬次郎
Makiji Miyao
巻治 宮尾
Mamoru Enomoto
榎本 守
Yuji Ishida
石田 雄司
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP62325766A priority Critical patent/JPH01166936A/en
Publication of JPH01166936A publication Critical patent/JPH01166936A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations

Abstract

PURPOSE:To enable the title molding to be manufactured easily and continuously by improving compression and bending strength of an axial and lateral directions, by a method wherein a long-sized thin and hollow pipe having a carbon-fiber-reinforced resin layer is shaped in a predetermined dimensional form by pulling the same into a mold and solidified. CONSTITUTION:In the case where a carbon-fiber-reinforced resin layer is comprised of an axial direction fiber layer 4a and spiral fiber layer 4b, a first fiber layer having a predetermined thickness is formed by arranging a resin-impregnated carbon fiber (f) in the axial direction or winding in a spiral direction on or round a long-sized and light-weight reinforcing material. A second fiber layer is formed by arranging the resin-impregnated carbon fiber on the said fiber layer in the direction different from that of the first fiber layer. The foregoing process is performed repeatedly by a necessary number of times at need and an uncured fiber layer laminated body 4 comprised of the fiber layer of the axial direction and the fiber layer of the spiral direction is formed. A long-sized thin hollow pipe 2 where a fiber layer laminated body is formed is pulled into a mold 6 and the reinforced fiber resin layer 4 is shaped into a predetermined dimensional form and solidified. The above-mentioned draw molding is performed favorably with an ordinary overwinder.

Description

【発明の詳細な説明】 ニー の1 本発明は、長尺の金属製又はプラスチック製の薄肉パイ
プである長尺薄肉中空管の表面に炭素繊維強化樹脂層が
形成された長尺薄肉中空形状の軒樋炭素繊維強化複合樹
脂引抜成形品及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Part 1 of the present invention is a long thin-walled hollow pipe, which is a long metal or plastic thin-walled pipe, and a long thin-walled hollow pipe in which a carbon fiber-reinforced resin layer is formed on the surface of the long thin-walled hollow pipe. This invention relates to a carbon fiber-reinforced composite resin pultruded product for eaves gutters and a method for manufacturing the same.

本発明に係る軽量の長尺薄肉中空炭素繊維強化複合樹脂
引抜成形品は円形及び非円形の様々な断面形状を有した
細長の形材として具体化され、軸方向の引張力のみなら
ず圧縮力、曲げ力、衝撃力にも十分に1耐えることがで
き、例えば航空、宇宙、自動車、船舶、鉄道の分野にお
ける軽量の中空フレーム、機械部品として、又土木、建
築分野における柱、配管材、内圧容器等の中空構造材等
、その他種々の分野において軽量構造材として使用する
ことができる。
The lightweight, long, thin-walled, hollow carbon fiber reinforced composite resin pultruded product of the present invention is embodied as an elongated shape with various circular and non-circular cross-sectional shapes, and is capable of being applied not only in axial tensile force but also in compressive force. It can sufficiently withstand bending force and impact force, and can be used, for example, as lightweight hollow frames and mechanical parts in the fields of aviation, space, automobiles, ships, and railways, as well as columns, piping materials, and internal pressure in the civil engineering and construction fields. It can be used as a lightweight structural material in various other fields, such as hollow structural materials such as containers.

′−Δの   び。 屯 従来、上記種々の分野で長尺で且つ軽量の構造材が要求
されており、斯る構造材として従来炭素繊維、ガラス!
a維等を強化繊維とした繊維強化複合材料が提案されて
いる。更に軽量化を図るべく複合材料は中空パイプ状に
成形され、更に軽量化を図るために中空パイプの肉厚は
薄くされる傾向にあるが、肉厚が薄くなるに従って曲げ
強度及び圧縮強度、更には耐衝撃強度が低下することと
なり、肉厚を薄くするにも限界があった。又、このよう
な複合材料から成る中空パイプの肉厚を薄くすると、気
密性がなくなり、斯るパイプを配管材として使用した場
合に流体が外部へと漏洩するといった問題があった。更
には特に引抜き成形においては、金型内部及び引取り部
での成形体の損傷等の問題が発生し、成形が困難であっ
た。
′−Δ growth. Traditionally, long and lightweight structural materials have been required in the various fields mentioned above, and carbon fiber, glass, etc. have traditionally been used as such structural materials.
Fiber-reinforced composite materials using a-fibers as reinforcing fibers have been proposed. In order to further reduce weight, composite materials are formed into hollow pipe shapes, and in order to further reduce weight, the wall thickness of hollow pipes tends to be thinner, but as the wall thickness becomes thinner, the bending strength and compressive strength increase. This resulted in a decrease in impact resistance, and there was a limit to how thin the wall could be made. Further, when the wall thickness of such a hollow pipe made of a composite material is reduced, airtightness is lost, and when such a pipe is used as a piping material, there is a problem in that fluid leaks to the outside. Furthermore, especially in pultrusion molding, problems such as damage to the molded product inside the mold and at the pull-out portion occur, making molding difficult.

本発明者等は、プラスチック若しくは金属材料にて形成
された細長形状の長尺薄肉中空管の如き補強材の外表面
に薄肉の繊維強化樹脂層を形成することにより、軸方向
の引張力のみならず圧縮力、曲げ力、衝撃力にも十分に
耐え得る長尺軽量の中空繊維強化複合樹脂成形品を実現
化し得、又斯る成形品は通常の引抜成形法(プルトルー
ジョン)にて極めて好適に製造し得ることを見出した。
By forming a thin fiber-reinforced resin layer on the outer surface of a reinforcing material such as an elongated long thin-walled hollow tube made of plastic or metal material, the present inventors have developed a method that only applies tensile force in the axial direction. It is possible to realize long, lightweight hollow fiber-reinforced composite resin molded products that can sufficiently withstand compressive force, bending force, and impact force. It has been found that it can be suitably manufactured.

又、細長形状の長尺薄肉中空管は、成形品を引抜成形法
にて製造する際にマンドレルとして機能することができ
、従ってマンドレルを特別に用意する必要がなく、更に
又従来のように成形後に成形品をマンドレルより引抜く
必要もなく、従って成形品の損傷もなく極めて効率よく
且つ迅速に製造し得るという利点があることが分かった
In addition, the elongated thin-walled hollow tube can function as a mandrel when manufacturing molded products by pultrusion, so there is no need to prepare a special mandrel, and furthermore, it can be used as a mandrel. It has been found that there is an advantage that there is no need to pull out the molded article from the mandrel after molding, and therefore, the molded article can be produced extremely efficiently and quickly without damage.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

及1Δjコ飢− 本発明の目的は、軸方向の引張強度のみならず圧縮強度
、曲げ強度、衝撃強度が大きく、種々の分野で軽量の薄
肉中空管構造材として使用可能な長尺軽量の中空炭素繊
維強化複合樹脂引抜成形品及びその製造法を提供するこ
とである。
The object of the present invention is to develop a long, lightweight tube that has high not only axial tensile strength but also compressive strength, bending strength, and impact strength, and that can be used as a lightweight thin-walled hollow tube structural material in various fields. An object of the present invention is to provide a hollow carbon fiber reinforced composite resin pultrusion molded product and a method for manufacturing the same.

本発明の他の目的は、軸方向及び横方向の強度及び耐衝
撃強度が従来の成形品に比較し飛躍的に向上した円形断
面及び非円形断面形状を有した長尺薄肉中空のta11
1強化複合樹脂引抜成形品及びその製造法を提供するこ
とである。
Another object of the present invention is to provide a long thin-walled hollow TA11 having a circular cross-section and a non-circular cross-sectional shape, which have dramatically improved axial and lateral strength and impact strength compared to conventional molded products.
1. It is an object of the present invention to provide a reinforced composite resin pultruded product and a method for manufacturing the same.

本発明の他の目的は、特別にマンドレルを必要とするこ
となく、更に成形品の損傷もなく極めて効率よく、連続
的に引抜成形法にて長尺軽量の炭素繊維強化複合樹脂引
抜成形品及びその製造法を提供することである。
Another object of the present invention is to produce long and lightweight carbon fiber-reinforced composite resin pultrusion molded products by continuously pultrusion molding without requiring a special mandrel and without damaging the molded products. The purpose of the present invention is to provide a method for producing the same.

ロ 占    るーめの 上記諸目的は本発明に係る長尺薄肉中空ta維強化複合
樹脂引抜成形品及びその製造法によって達成される。要
約すれば本発明は、長尺の薄肉中空管と、該長尺薄肉中
空管の外周囲を囲包して形成された炭素繊維強化樹脂層
とを具備することを特徴とする長尺薄肉中空炭素#lI
m強化複合樹脂引抜成形品である。好ましくは、長尺薄
肉中空管は。
B. The above-mentioned objects of Ruume are achieved by the long thin-walled hollow Ta fiber-reinforced composite resin pultrusion molded product and the manufacturing method thereof according to the present invention. In summary, the present invention provides a long thin-walled hollow tube comprising a long thin-walled hollow tube and a carbon fiber reinforced resin layer formed to surround the outer periphery of the long thin-walled hollow tube. Thin hollow carbon #lI
This is a reinforced composite resin pultrusion molded product. Preferably, it is a long thin-walled hollow tube.

薄肉のアルミニウム又は鋼等の金属製のパイプ又はプラ
スチック製のパイプであり、炭素繊維強化樹脂層の強化
m維に含浸されるマトリクス樹脂はエポキシ、不飽和ポ
リエステル、ビニルエステル等の熱硬化性樹脂、及びナ
イロン6、ナイロン66、ポリカーボネート、ポリアセ
タール、ポリフェニレンスルファイド、ポリプロピレン
等の熱可塑性樹脂とされる。
It is a thin metal pipe such as aluminum or steel, or a plastic pipe, and the matrix resin impregnated into the reinforcing fibers of the carbon fiber reinforced resin layer is a thermosetting resin such as epoxy, unsaturated polyester, vinyl ester, etc. and thermoplastic resins such as nylon 6, nylon 66, polycarbonate, polyacetal, polyphenylene sulfide, and polypropylene.

斯る長尺薄肉中空炭素繊維強化複合樹脂引抜成形品は、
(a)細長形状の長尺薄肉中空管を用意する工程: (
b)前記長尺薄肉中空管に樹脂含浸炭素繊維を配置して
所定の肉厚を有した炭素繊維強化樹脂層を形成する工程
;次いで(C,)前記炭素繊維強化樹脂層を有した長尺
薄肉中空管を金型へと引込んで所定の寸法形状に賦形し
、固化する工程;を有することを特徴とする製造法にて
好適に製造される。
Such a long thin-walled hollow carbon fiber reinforced composite resin pultrusion product is
(a) Process of preparing an elongated thin-walled hollow tube: (
b) forming a carbon fiber-reinforced resin layer having a predetermined wall thickness by arranging resin-impregnated carbon fibers in the long thin-walled hollow tube; It is preferably manufactured by a manufacturing method characterized by the steps of drawing a thin-walled hollow tube into a mold, shaping it into a predetermined size and shape, and solidifying it.

1崖1 次に、本発明に係る長尺薄肉中空炭素繊維強化複合樹脂
引抜成形品について更に詳しく説明する。
1 Cliff 1 Next, the elongated thin-walled hollow carbon fiber reinforced composite resin pultrusion molded product according to the present invention will be described in more detail.

第1図には本発明に従った円形断面を有した細長形状の
長尺薄肉中空炭素mar強化複合樹脂引抜成形品が例示
される0本実施例によれば、本発明に係る長尺薄肉中空
炭素繊維強化複合樹脂引抜成形品1は、断面が円形とさ
れる細長形状の長尺薄肉中空管2と、該長尺薄肉中空管
2の外周囲を囲包して形成された炭素繊維強化樹脂層4
とから成−る。本実施例にて、長尺薄肉中空管2は、円
形断面を有した細長形状の中空パイプとされ、例えばア
ルミニウム、鋼等にて製造ネれ、場合によっては例えば
塩化ビニル樹脂等のプラスチックにて構成することも可
能である。
FIG. 1 illustrates an elongated thin-walled hollow carbon mar reinforced composite resin pultruded product having a circular cross section according to the present invention.According to this embodiment, a long thin-walled hollow according to the present invention A carbon fiber-reinforced composite resin pultrusion molded product 1 includes an elongated thin-walled hollow tube 2 having a circular cross section, and carbon fibers surrounding the outer periphery of the elongated thin-walled hollow tube 2. Reinforced resin layer 4
Consists of. In this embodiment, the long thin-walled hollow tube 2 is an elongated hollow pipe with a circular cross section, and may be made of aluminum, steel, etc., or may be made of plastic such as vinyl chloride resin in some cases. It is also possible to configure

本発明にて、長尺薄肉中空管2は、炭素繊維強化樹脂層
4の耐圧縮性、耐曲げ性、耐衝撃性を補強する補強材と
して、又は気密性を増大せしめるための内層材として機
部するものであり、成形品としての主たる耐圧縮性、耐
曲げ性、耐衝撃性は炭素繊維強化樹脂層4にて達成され
る。従って、長尺薄肉中空管2の肉厚は、用途及び使用
される材料に応じて種々に変更されるが、通常外径(D
)に対する肉厚(T)の比T/Dは0.01〜0.1に
て十分とされる。
In the present invention, the long thin-walled hollow tube 2 is used as a reinforcing material for reinforcing the compression resistance, bending resistance, and impact resistance of the carbon fiber reinforced resin layer 4, or as an inner layer material for increasing airtightness. The main compression resistance, bending resistance, and impact resistance of the molded product are achieved by the carbon fiber reinforced resin layer 4. Therefore, the wall thickness of the long thin-walled hollow tube 2 can be varied depending on the application and the material used, but usually the outer diameter (D
The ratio T/D of wall thickness (T) to 0.01 to 0.1 is considered to be sufficient.

上記実施例では、長尺薄肉中空炭素繊維強化複合樹脂引
抜成形品は断面が円形とされるが、円形断面の外に矩形
、又は任意の多角形断面形状とすることもできる。
In the above embodiments, the elongated thin-walled hollow carbon fiber-reinforced composite resin pultruded product has a circular cross section, but it can also have a rectangular or arbitrary polygonal cross-sectional shape.

更に1本発明の他の実施例が第2図及び第3図に図示さ
れる。つまり、本発明に係る長尺薄肉中空管とされる炭
素ta維強化複合樹脂引抜成形品1は、その炭素繊維強
化樹脂層4は1強化繊維、つまり炭素繊維を軸方向に整
列して形成される軸方向繊維層4aと、炭素繊維を軸線
に対し所定角度にて螺旋状に巻付けることにより形成さ
れる螺旋状繊維層4bとを具備するように構成すること
もできる。又、軸方向繊維層4aと螺旋状繊維層4bと
は互い違いに複数層形成することができる成形品の最内
層は軸方向繊維R4aとすることもできるし、又螺旋状
繊維層4bとすることもできる。更に、最外層は図示さ
れるように螺旋状繊維層4bとすることができるが、第
3図に図示されるように、該螺旋状繊維層4bの上に軸
方向繊維層4aを形成するのが好ましい、この理由は、
成形品の最外層を軸方向tm維雑居aとすることにより
成形品の連続製造に際し、円滑な運転が可能となるから
である。
Yet another embodiment of the invention is illustrated in FIGS. 2 and 3. That is, in the carbon ta fiber reinforced composite resin pultruded product 1 which is a long thin-walled hollow tube according to the present invention, the carbon fiber reinforced resin layer 4 is formed by aligning one reinforcing fiber, that is, carbon fiber in the axial direction. It can also be configured to include an axial fiber layer 4a formed by winding carbon fibers in a spiral manner at a predetermined angle with respect to the axis. Further, the axial fiber layer 4a and the spiral fiber layer 4b can be formed in multiple layers alternately.The innermost layer of the molded product can be the axial fiber R4a or the spiral fiber layer 4b. You can also do it. Further, the outermost layer may be a helical fiber layer 4b as shown, but it is preferable to form an axial fiber layer 4a on top of the helical fiber layer 4b as shown in FIG. The reason for this is that
This is because, by forming the outermost layer of the molded product with fibers in the axial direction tm, smooth operation becomes possible during continuous production of the molded product.

螺旋方向繊維層4bにおける軸線方向に対する巻付は角
度、及び各繊維層4a、4bにおける繊維の密度、層厚
さ等は任意に選択し得るが、−例を挙げれば、巻付は角
度は、45°〜80’とされ、繊維層4a、4bにおけ
る繊維含有量は、体積%で50〜60%とされるのが好
適である。
The winding angle with respect to the axial direction in the helical direction fiber layer 4b, and the fiber density, layer thickness, etc. in each fiber layer 4a, 4b can be arbitrarily selected. 45° to 80', and the fiber content in the fiber layers 4a and 4b is preferably 50 to 60% by volume.

又、繊維強化樹脂層4の強化m!iに含浸されるマトリ
クス樹脂はエポキシ、不飽和ポリエステル、ビニルエス
テル等の熱硬化性樹脂、及びナイロン6、ナイロン66
、ポリカーボネート、ポリアセタール、ポリフェニレン
スルファイド、ポリプロピレン等の熱可塑性樹脂とされ
る。マトリクス樹脂には、所望に応じ、CaCO3、マ
イカ、AM (OH)3 、タルク等の充填剤と、更に
は耐熱性、耐候性を改良するための添加剤及び着色剤等
が添加される0m維強化樹脂暦4における繊維含有量は
、上述の如くに体積%で5o〜60%とされるのが好適
である。
Also, the reinforcement of the fiber reinforced resin layer 4 m! The matrix resin impregnated in i is a thermosetting resin such as epoxy, unsaturated polyester, vinyl ester, nylon 6, nylon 66, etc.
, polycarbonate, polyacetal, polyphenylene sulfide, polypropylene, and other thermoplastic resins. The matrix resin is filled with fillers such as CaCO3, mica, AM (OH)3, and talc, as well as additives and colorants to improve heat resistance and weather resistance. As mentioned above, the fiber content in the reinforced resin calendar 4 is preferably 50 to 60% by volume.

次に、本発明に係る長尺薄肉中空炭素繊維強化複合樹脂
引抜成形品の製造法について説明する。
Next, a method for manufacturing a long thin hollow carbon fiber reinforced composite resin pultrusion molded product according to the present invention will be described.

第4図を参照すると、細長形状の長尺薄肉中空管2が連
続的に金型(ダイス)6へと供給される。一方、マトリ
クス樹脂が含浸された炭素繊維fが長尺薄肉中空管2の
周囲へと供給され、長尺薄肉中空管2と共に金型6へと
引込まれ、該金型にて炭素繊維強化樹脂R4は所定の寸
法形状に賦形し、固化される。
Referring to FIG. 4, an elongated thin-walled hollow tube 2 is continuously supplied to a mold (die) 6. As shown in FIG. On the other hand, carbon fibers f impregnated with matrix resin are supplied around the long thin-walled hollow tube 2 and drawn into the mold 6 together with the long thin-walled hollow tube 2, and reinforced with carbon fibers in the mold. The resin R4 is shaped into a predetermined size and shape and solidified.

炭素繊維強化樹脂層が複数の層、つまり軸方向繊維層4
a及び螺旋状#a繊維層bから成っている場合には、長
尺軽量補強材の上に樹脂含浸炭素繊維を、軸方向に配置
”するか又は螺旋方向に巻付けて、所定の肉厚を有した
第1の#111m層を形成し、該第1の繊維層を固化す
るに先立って該繊維層の上に樹脂含浸炭素繊維を前記第
1の繊維層とは異なる方向に配列することにより第2の
繊維層を形成し、必要に応じて、前記工程を所望回数繰
り返し行ない、軸方向繊維層及び螺旋方向繊維層から成
る未硬化繊M層積層体4が形成される。該繊維層積層体
が形成された長尺薄肉中空管2は、第4図に図示するよ
うに、金型6へと引込まれ、該金型にて強化ta!i樹
脂層4は所定の寸法形状に賦形されそして固化される。
A plurality of carbon fiber reinforced resin layers, that is, an axial fiber layer 4
a and a spiral #a fiber layer b, the resin-impregnated carbon fibers are arranged axially or spirally wound on the long lightweight reinforcing material to a predetermined thickness. forming a first #111m layer having a #111m layer, and prior to solidifying the first fiber layer, resin-impregnated carbon fibers are arranged on the fiber layer in a direction different from that of the first fiber layer. to form a second fiber layer, and if necessary, repeat the above steps a desired number of times to form an uncured fiber M-layer laminate 4 consisting of an axial fiber layer and a helical fiber layer.The fiber layer The long thin-walled hollow tube 2 in which the laminate has been formed is drawn into a mold 6, as shown in FIG. Shaped and solidified.

上記引抜成形は、通常のオーバーワイングーにて好適に
実施される。
The above-mentioned pultrusion molding is suitably carried out in a normal overwinter.

次に、オーバーワイングーを使用して第5図に図示され
る本発明に係る炭素繊維強化複合樹脂引抜成形品を製造
する場合について第6図を参照して説明する。
Next, a case in which a carbon fiber reinforced composite resin pultrusion molded product according to the present invention shown in FIG. 5 is manufactured using an overwinter will be described with reference to FIG. 6.

第6図には上記円形断面形状を有した炭素繊維強化複合
樹脂引抜成形品1を製造するための引抜成形機10の一
実施例が示される。本実施例では、特に、第5図に図示
されるように、最内層より軸方向炭素繊維強化樹脂層4
a、螺旋状炭素織雄強化樹脂層4b、軸方向炭素繊維強
化樹脂層4a、+I旋状炭素繊維強化樹脂層4b及び軸
方向炭素1m雄強化樹脂層4aから成る5層構成の炭素
繊維強化複合樹脂引抜成形品1が製造されるものとする
FIG. 6 shows an embodiment of a pultrusion molding machine 10 for manufacturing the carbon fiber reinforced composite resin pultrusion molded product 1 having the circular cross-sectional shape. In this embodiment, in particular, as shown in FIG. 5, the axial carbon fiber reinforced resin layer 4 is
a, a five-layer carbon fiber reinforced composite consisting of a spiral carbon woven male reinforced resin layer 4b, an axial carbon fiber reinforced resin layer 4a, a +I spiral carbon fiber reinforced resin layer 4b, and an axial carbon 1m male reinforced resin layer 4a. It is assumed that a resin pultrusion molded product 1 is manufactured.

本引抜成形機10によれば、炭素ta維12が巻付けら
れた多数のクリール14がクリールスタンドL6 (1
6a、16b)に軸架される。本実施例では、クリール
スタンド16は3基設けられ、第1のクリールスタンド
16aからの炭素繊維l2aはガイド板18により樹脂
含浸槽20へと導入され、マトリクス樹脂が含浸される
。余分の樹脂が絞られた樹脂含浸炭素繊維12aはガイ
ド板22によりオーバーワインダー24に供給され、該
オーバーワインダー24に取付けられたマンドレル、つ
まり本発明では円形断面を有した細長形状の長尺薄肉中
空管2に対し軸線方向に整列して縦添えされる(最内層
となる軸方向炭素繊維強化樹脂層4aの形成)、同時に
、該オーバーワインダー24は該オーバーワインダー2
4に搭載された複数個のクリール24aから繰り出され
る炭素繊維24bが、上記縦添えされた軸方向炭素繊維
強化樹脂層4aの上に所定の角度、例えば70度の巻付
は角度にて巻付けられ、螺旋状炭素繊維強化樹脂層4b
が形成される。クリール24aからの炭素繊維にはマト
リクス樹脂は含浸されていないが、軽量補強材2に巻付
けられたとき、下層の軸方向炭素繊維強化樹脂層及び次
の工程にて縦添えされる軸方向炭素繊維強化樹脂層から
の余剰マトリクス樹脂が含浸される。
According to the present pultrusion molding machine 10, a large number of creels 14 around which carbon ta fibers 12 are wound are mounted on a creel stand L6 (1
6a, 16b). In this embodiment, three creel stands 16 are provided, and the carbon fibers 12a from the first creel stand 16a are introduced into the resin impregnation tank 20 by the guide plate 18 and impregnated with matrix resin. The resin-impregnated carbon fibers 12a from which the excess resin has been squeezed are supplied to an overwinder 24 by a guide plate 22, and are fed to a mandrel attached to the overwinder 24, that is, in the present invention, a thin long thin medium having an elongated shape with a circular cross section. At the same time, the overwinder 24 is aligned vertically with respect to the empty tube 2 in the axial direction (formation of the axial carbon fiber reinforced resin layer 4a as the innermost layer).
The carbon fibers 24b fed out from a plurality of creels 24a mounted on the carbon fibers 24b are wound at a predetermined angle, for example, at a 70 degree angle, on the longitudinally attached axial carbon fiber reinforced resin layer 4a. spiral carbon fiber reinforced resin layer 4b
is formed. The carbon fibers from the creel 24a are not impregnated with matrix resin, but when wrapped around the lightweight reinforcing material 2, the carbon fibers are absorbed by the lower axial carbon fiber reinforced resin layer and the axial carbon fibers which are attached longitudinally in the next step. Excess matrix resin from the fiber reinforced resin layer is impregnated.

第2及び第3のクリールスタンド16bはクリールスタ
ンド16aを挟んで対称に配置され、同様に作動するた
めに、第4図では図面上、手前側のクリールスタンド1
6bのみを詳細に図示し説明し、他方のクリールスタン
ド18bの説明は省略する。クリールスタンド16bか
らの炭素Fa維12bの中の一部の繊維12 cはガイ
ド板28により樹脂含浸槽30へと導入され、マトリク
ス樹脂が含浸される。余分の樹脂が絞られた樹脂含浸炭
素繊維12cはガイド板32.34によりオーバーワイ
ンダー36に供給される。該樹脂含浸炭素繊維12cは
、オーバーワインダー24.36の中心部を貫通する。
The second and third creel stands 16b are arranged symmetrically with the creel stand 16a in between, and in order to operate in the same manner, in FIG.
6b will be illustrated and explained in detail, and the explanation of the other creel stand 18b will be omitted. Some of the fibers 12c among the carbon Fa fibers 12b from the creel stand 16b are introduced into the resin impregnation tank 30 by the guide plate 28 and impregnated with matrix resin. The resin-impregnated carbon fiber 12c from which excess resin has been squeezed is supplied to the overwinder 36 by guide plates 32, 34. The resin-impregnated carbon fiber 12c passes through the center of the overwinder 24.36.

今や軸線方向及び螺旋方向の2層の強化炭素繊維強化樹
脂層が形成されている長尺薄肉中空管2に対し軸方向へ
と供給され、螺旋状の炭素繊@24b上に縦添えされる
(2番目の軸方向炭素繊維強化樹脂層4aの形成)、同
時に、該オーバーワインダー36は該オーバーワインダ
ー36に搭載された複数個のクリール36aから繰り出
される炭素繊維36bが、上記縦添えされた軸方向炭素
繊維強化樹脂層4aの上に所定の角度、例えば70度の
巻付は角度にて巻付けられ、fi旋状炭素M!1f11
強化樹脂層4bが形成される。該オーバーワインダー3
6は前記オーバーワインダー24とは逆方向に回転され
、従ってオーバーワインダー36にて形成される螺旋状
炭素繊維強化樹脂層4bの巻付方向と、オーバーワイン
ダー24にて形成された螺旋状炭素am強化樹脂層4b
の巻付方向とは逆向きとなる。クリール36aからの炭
素繊維にはマトリクス樹脂は含浸されていないが、マン
ドレルに巻付けられたとき、下層の軸方向炭素1a維強
化樹脂層及び次の工程にて縦添えされる軸方向炭素繊維
強化樹脂層からの余剰マトリクス樹脂が含浸される。
It is supplied in the axial direction to the long thin-walled hollow tube 2 in which two reinforced carbon fiber reinforced resin layers, one in the axial direction and the other in the helical direction, are formed, and it is vertically attached on the spiral carbon fiber @24b. (Formation of the second axial carbon fiber reinforced resin layer 4a) At the same time, the overwinder 36 is arranged so that the carbon fibers 36b paid out from the plurality of creels 36a mounted on the overwinder 36 are The direction carbon fiber reinforced resin layer 4a is wound at a predetermined angle, for example, 70 degrees, and the fi-shaped carbon M! 1f11
A reinforced resin layer 4b is formed. The overwinder 3
6 is rotated in the opposite direction to the overwinder 24, so that the winding direction of the spiral carbon fiber reinforced resin layer 4b formed by the overwinder 36 and the spiral carbon fiber reinforced resin layer 4b formed by the overwinder 24 are rotated in the opposite direction. Resin layer 4b
The winding direction is opposite to the direction of winding. The carbon fibers from the creel 36a are not impregnated with matrix resin, but when wound around the mandrel, the lower axial carbon 1a fiber reinforced resin layer and the axial carbon fiber reinforced longitudinally applied in the next step are formed. Excess matrix resin from the resin layer is impregnated.

前記螺旋状に巻付けられた炭素繊維36bの上には、第
2のクリールスタンド16bからの炭素繊維12bの残
余の繊維12dであって、ガイド板40.42により樹
脂含浸槽44へと導入され、マトリクス樹脂が含浸され
、次いで余分の樹脂が絞られ、ガイド板46.48によ
り案内供給された樹脂含浸炭素縁!112dが軸線方向
に整列して配置され、最外層の軸方向炭素繊維強化樹脂
層4aが形成される。
On the helically wound carbon fibers 36b are the remaining fibers 12d of the carbon fibers 12b from the second creel stand 16b, which are introduced into the resin impregnation tank 44 by guide plates 40.42. , the resin-impregnated carbon edge is impregnated with matrix resin, then the excess resin is squeezed out and guided by guide plates 46, 48! 112d are arranged in alignment in the axial direction to form the outermost axial carbon fiber reinforced resin layer 4a.

このようにして軽量補強材2上には軸方向炭素繊維強化
樹脂層4a及び螺旋状炭素繊維強化樹脂層4bが所定層
だけ積層された炭素繊維強化樹脂層積層体50が形成さ
れる。
In this way, a carbon fiber reinforced resin layer laminate 50 is formed on the lightweight reinforcing material 2, in which a predetermined number of the axial carbon fiber reinforced resin layer 4a and the spiral carbon fiber reinforced resin layer 4b are laminated.

本実施例にて、長尺薄肉中空管2としては外径(I))
が25.4mm、肉厚(T)が0.3(T/D=0゜0
12)の円形断面を有したアルミニウム製薄肉中空管を
使用した。
In this embodiment, the long thin-walled hollow tube 2 has an outer diameter (I)
is 25.4mm, wall thickness (T) is 0.3 (T/D=0゜0
12) A thin-walled aluminum hollow tube with a circular cross section was used.

強化m維としては、線径7pm、強度340kg/cI
T+′の炭素繊維を使用し、各樹脂含浸槽20.30.
44にはマトリクス樹脂としてはエポキシ樹脂100v
rt%と、充填剤として炭酸カルシウムを10wt%加
えた樹脂液を調製して収容し、炭素繊維に含浸させた。
The reinforced m-fiber has a wire diameter of 7 pm and a strength of 340 kg/cI.
Using T+' carbon fiber, each resin impregnation tank 20.30.
44 uses epoxy resin 100v as matrix resin.
rt% and 10 wt% of calcium carbonate as a filler was prepared and stored, and impregnated into carbon fibers.

上述のようにして軽量補強材2上に内側より樹脂含浸炭
素繊維から成る軸方向炭素繊維強化樹脂層4a、!ll
I旋状炭素繊維強化樹脂Ji54b、軸方向炭素繊維強
化樹脂層4a、螺旋状炭素繊維強化樹脂層4b及び軸方
向炭素繊維強化樹脂層4aの5層から構成される炭素繊
維強化樹脂層積層体50が形成される。
As described above, the axial carbon fiber reinforced resin layer 4a made of resin-impregnated carbon fiber is placed on the lightweight reinforcing material 2 from the inside! ll
Carbon fiber reinforced resin layer laminate 50 composed of five layers: I spiral carbon fiber reinforced resin Ji54b, axial carbon fiber reinforced resin layer 4a, spiral carbon fiber reinforced resin layer 4b, and axial carbon fiber reinforced resin layer 4a is formed.

該軽量補強材、即ち長尺薄肉中空管z上に形成された炭
素繊維強化樹脂層50は次いで、円形断面形状を有した
金型52内へと引入れられる。
The lightweight reinforcement material, ie, the carbon fiber reinforced resin layer 50 formed on the elongated thin-walled hollow tube z, is then drawn into a mold 52 having a circular cross-sectional shape.

このようにして、極めて好適に金型52にて所定形状寸
法に賦形された繊維強化樹脂層50は加熱装置(図示せ
ず)を利用することにより固化(硬化)され、炭素繊維
強化複合樹脂引抜成形品1が形成される。金型52の下
流側には引抜機54及びカッター56が配置され、該炭
素繊維強化複合樹脂引抜成形品1を抜取ると共に、該炭
素繊維強化複合樹脂引抜成形品lを所定長さにて切断す
る。引抜機54及びカッター56の構造及び作用は当業
者には周知であるのでこれ以上の説明は省略する。
In this way, the fiber-reinforced resin layer 50, which has been shaped into a predetermined shape and size using the mold 52, is solidified (hardened) by using a heating device (not shown), and the carbon fiber-reinforced composite resin layer 50 is A pultruded article 1 is formed. A drawing machine 54 and a cutter 56 are arranged downstream of the mold 52 to extract the carbon fiber reinforced composite resin pultrusion molded product 1 and cut the carbon fiber reinforced composite resin pultrusion molded product 1 into a predetermined length. do. The structure and operation of the puller 54 and cutter 56 are well known to those skilled in the art and will not be further described.

以上の構成とされる製造方法及び引抜成形機を使用して
、外径が32.4mm、各炭素繊維強化樹脂層の厚さが
内層より順に0.5.1.0.0.5.1.Olo、5
mmの肉厚3.5mmの円形の炭素H&雄強化樹脂引抜
成形品を1m/分の速度にて製造することができた。
Using the manufacturing method and pultrusion molding machine configured as above, the outer diameter was 32.4 mm, and the thickness of each carbon fiber reinforced resin layer was 0.5.1.0.0.5.1 in order from the inner layer. .. Olo, 5
A circular carbon H&male reinforced resin pultrusion molded product with a wall thickness of 3.5 mm could be manufactured at a speed of 1 m/min.

このようにして製造した引抜成形品lの強度は従来の成
形品に比較して優れていた。
The strength of the pultrusion molded product 1 produced in this manner was superior to that of conventional molded products.

λ監立皇」 以上説明したように、本発明に従った長尺軽量炭素繊維
強化複合樹脂引抜成形品は軸方向のみならず横方向圧縮
及び曲げに対する強度(#座屈性)が従来の成形品に比
較し飛躍的に向上したものとなり、又本発明による製造
方法によると斯る繊維強化複合樹脂引抜成形品が極めて
簡単に且つ連続的に短時間にて製造し得るという利点が
ある。
As explained above, the long lightweight carbon fiber-reinforced composite resin pultrusion molded product according to the present invention has higher strength against compression and bending (#buckling resistance) not only in the axial direction but also in the lateral direction (#buckling resistance) than conventional molding. The manufacturing method of the present invention has the advantage that such a fiber-reinforced composite resin pultrusion molded product can be manufactured extremely simply and continuously in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は1本発明に係る長尺軽量炭
素繊維強化複合樹脂引抜成形品の実施例の断面図である
。 第4図は、本発明に従って長尺軽量炭素繊維強化複合樹
脂引抜成形品を製造する際の工程を説明する概略説明図
である。 第5図は、本発明に係る長尺軽量炭素繊維強化複合樹脂
引抜成形品の他の実施例の断面図である。 第6図は、本発明に従って長尺軽量炭素繊維強化複合樹
脂引抜成形品を製造する際に使用するオーバーワイング
ーの概略説明図である。 ■=炭素繊維強化複合樹脂引抜成形品 2:長尺軽量補強材 4:繊維強化樹脂層 6.52:金型 第1図  第2図 第3図 第4図
FIGS. 1, 2, and 3 are cross-sectional views of an embodiment of a long lightweight carbon fiber-reinforced composite resin pultrusion molded product according to the present invention. FIG. 4 is a schematic explanatory diagram illustrating the steps of manufacturing a long lightweight carbon fiber reinforced composite resin pultrusion molded product according to the present invention. FIG. 5 is a sectional view of another embodiment of the long lightweight carbon fiber reinforced composite resin pultrusion molded product according to the present invention. FIG. 6 is a schematic explanatory diagram of an overwinter goo used in manufacturing a long lightweight carbon fiber reinforced composite resin pultrusion molded article according to the present invention. ■ = Carbon fiber reinforced composite resin pultruded product 2: Long lightweight reinforcement material 4: Fiber reinforced resin layer 6.52: Mold Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)長尺の薄肉中空管と、該長尺薄肉中空管の外周囲を
囲包して形成された炭素繊維強化樹脂層とを具備するこ
とを特徴とする長尺薄肉中空炭素繊維強化複合樹脂引抜
成形品。 2)長尺薄肉中空管は、薄肉のアルミニウム若しくは鋼
等の金属製のパイプ又はプラスチック製のパイプである
特許請求の範囲第1項記載の長尺薄肉中空炭素繊維強化
複合樹脂引抜成形品。 3)炭素繊維強化樹脂層は、強化炭素繊維を軸方向に整
列して形成される軸方向繊維層と、強化炭素繊維を軸線
に対し螺旋状に巻付けることにより形成される螺旋状繊
維層とを具備して成る特許請求の範囲第1項又は第2項
記載の長尺薄肉中空管炭素繊維強化複合樹脂引抜成形品
。 4)軸方向繊維層と螺旋状繊維層とは互い違いに複数層
形成されて成る特許請求の範囲第3項記載の長尺薄肉中
空管炭素繊維強化複合樹脂引抜成形品。 5)成形品の最内層及び最外層は軸方向繊維層である特
許請求の範囲第3項又は第4項記載の長尺薄肉中空管炭
素繊維強化複合樹脂引抜成形品。 6)繊維強化樹脂層の強化炭素繊維に含浸されるマトリ
クス樹脂はエポキシ、不飽和ポリエステル、ビニルエス
テル等の熱硬化性樹脂、及びナイロン6、ナイロン66
、ポリカーボネート、ポリアセタール、ポリフエニレン
スルフアイド、ポリプロピレン等の熱可塑性樹脂である
特許請求の範囲第1項〜第5項のいずれかの項に記載の
長尺薄肉中空炭素繊維強化複合樹脂引抜成形品。 7)(a)細長形状の長尺薄肉中空管を用意する工程; (b)前記長尺薄肉中空管に樹脂含浸炭素繊維を配置し
て所定の肉厚を有した炭素繊維強化樹脂層を形成する工
程;次いで (c)前記炭素繊維強化樹脂層を有した長尺薄肉中空管
を金型へと引込んで所定の寸法形状に賦形し、固化する
工程; を有することを特徴とする長尺薄肉中空炭素繊維強化複
合樹脂引抜成形品の製造法。 8)長尺薄肉中空管に所定の肉厚にて炭素繊維強化樹脂
層を形成する工程(b)は、長尺薄肉中空管の上に樹脂
含浸炭素繊維を軸方向に配置するか又は螺旋方向に巻付
けて、所定の肉厚を有した第1の繊維層を形成する工程
(イ)と、該第1の繊維層を固化するに先立つて該繊維
層の上に樹脂含浸炭素繊維を前記第1の繊維層とは異な
る方向に配列することにより第2の繊維層を形成する工
程(ロ)と、必要に応じて、前記(イ)、(ロ)工程を
所望回数繰り返し行ない、軸方向繊維層及び螺旋方向繊
維層から成る未硬化繊維層積層体を形成する工程から成
る特許請求の範囲第7項記載の製造法。 9)第1の繊維層及び最外層の繊維層は軸方向繊維層で
ある特許請求の範囲第8項記載の製造法。 10)長尺薄肉中空管は、薄肉のアルミニウム若しくは
鋼等の金属製のパイプ又はプラスチック製のパイプであ
る特許請求の範囲第7項、第8項又は第9項記載の製造
法。 11)繊維強化樹脂層の強化炭素繊維に含浸されるマト
リクス樹脂はエポキシ、不飽和ポリエステル、ビニルエ
ステル等の熱硬化性樹脂、及びナイロン6、ナイロン6
6、ポリカーボネート、ポリアセタール、ポリフエニレ
ンスルフアイド、ポリプロピレン等の熱可塑性樹脂であ
る特許請求の範囲第7項〜第10項のいずれかの項に記
載の製造法。
[Scope of Claims] 1) A long thin-walled hollow tube comprising a long thin-walled hollow tube and a carbon fiber-reinforced resin layer formed to surround the outer periphery of the long thin-walled hollow tube. Thin wall hollow carbon fiber reinforced composite resin pultrusion molded product. 2) The long thin-walled hollow carbon fiber-reinforced composite resin pultruded product according to claim 1, wherein the long thin-walled hollow tube is a thin-walled metal pipe such as aluminum or steel, or a plastic pipe. 3) The carbon fiber reinforced resin layer includes an axial fiber layer formed by aligning reinforced carbon fibers in the axial direction, and a spiral fiber layer formed by spirally winding the reinforced carbon fibers around the axis. A long thin-walled hollow tube carbon fiber-reinforced composite resin pultrusion molded product according to claim 1 or 2, comprising: 4) The elongated thin-walled hollow tube carbon fiber reinforced composite resin pultruded product according to claim 3, wherein the axial fiber layer and the spiral fiber layer are alternately formed in plural layers. 5) A long thin-walled hollow tube carbon fiber reinforced composite resin pultrusion molded product according to claim 3 or 4, wherein the innermost layer and the outermost layer of the molded product are axial fiber layers. 6) The matrix resin impregnated into the reinforced carbon fibers of the fiber reinforced resin layer is a thermosetting resin such as epoxy, unsaturated polyester, vinyl ester, nylon 6, nylon 66, etc.
, polycarbonate, polyacetal, polyphenylene sulfide, polypropylene, or other thermoplastic resin, as set forth in any one of claims 1 to 5. . 7) (a) Step of preparing an elongated thin-walled hollow tube; (b) A carbon fiber-reinforced resin layer having a predetermined wall thickness by arranging resin-impregnated carbon fibers on the elongated thin-walled hollow tube. and (c) drawing the long thin-walled hollow tube having the carbon fiber reinforced resin layer into a mold, shaping it into a predetermined size and shape, and solidifying it. A method for manufacturing long thin-walled hollow carbon fiber reinforced composite resin pultrusion molded products. 8) Step (b) of forming a carbon fiber-reinforced resin layer with a predetermined wall thickness on the long thin-walled hollow tube includes axially arranging resin-impregnated carbon fibers on the long thin-walled hollow tube, or Step (a) of winding the fibers in a helical direction to form a first fiber layer having a predetermined thickness; and prior to solidifying the first fiber layer, resin-impregnated carbon fibers are placed on the fiber layer. a step (b) of forming a second fiber layer by arranging the fibers in a direction different from that of the first fiber layer; and, if necessary, repeating the steps (a) and (b) a desired number of times, 8. The method of claim 7, comprising the step of forming an uncured fiber layer laminate comprising an axial fiber layer and a helical fiber layer. 9) The manufacturing method according to claim 8, wherein the first fiber layer and the outermost fiber layer are axial fiber layers. 10) The manufacturing method according to claim 7, 8 or 9, wherein the long thin-walled hollow tube is a thin-walled metal pipe such as aluminum or steel, or a plastic pipe. 11) The matrix resin impregnated into the reinforced carbon fibers of the fiber reinforced resin layer is a thermosetting resin such as epoxy, unsaturated polyester, vinyl ester, nylon 6, nylon 6, etc.
6. The manufacturing method according to any one of claims 7 to 10, which is a thermoplastic resin such as polycarbonate, polyacetal, polyphenylene sulfide, or polypropylene.
JP62325766A 1987-12-23 1987-12-23 Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture Pending JPH01166936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325766A JPH01166936A (en) 1987-12-23 1987-12-23 Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325766A JPH01166936A (en) 1987-12-23 1987-12-23 Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture

Publications (1)

Publication Number Publication Date
JPH01166936A true JPH01166936A (en) 1989-06-30

Family

ID=18180384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325766A Pending JPH01166936A (en) 1987-12-23 1987-12-23 Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture

Country Status (1)

Country Link
JP (1) JPH01166936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993713A (en) * 1992-12-01 1999-11-30 De La Puerta; Enrique Reinforced composite shapes and method and apparatus for their manufacture
JP2008062327A (en) * 2006-09-06 2008-03-21 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic, and its manufacturing method
JP2009154476A (en) * 2007-12-27 2009-07-16 Nippon Kansen Kogyo Kk Fiber assembled rod and its manufacturing method
CN103085289A (en) * 2013-02-19 2013-05-08 安徽省中阳管业有限公司 Device and method for processing polyethylene glass fiber reinforced plastic composite molded spiral corrugated tube
CN105625951A (en) * 2016-02-29 2016-06-01 胜利油田新大管业科技发展有限责任公司 Eccentric-wear-resistant carbon fiber reinforced composite material continuous sucker rod and manufacturing device and method thereof
CN108589307A (en) * 2018-01-27 2018-09-28 福星东联(北京)科技有限公司 A kind of carbon fibre composite for buffer arm
JP2021054105A (en) * 2019-09-26 2021-04-08 株式会社Subaru Fiber-reinforced resin composite material and method for manufacturing fiber-reinforced resin composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993713A (en) * 1992-12-01 1999-11-30 De La Puerta; Enrique Reinforced composite shapes and method and apparatus for their manufacture
JP2008062327A (en) * 2006-09-06 2008-03-21 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic, and its manufacturing method
JP2009154476A (en) * 2007-12-27 2009-07-16 Nippon Kansen Kogyo Kk Fiber assembled rod and its manufacturing method
CN103085289A (en) * 2013-02-19 2013-05-08 安徽省中阳管业有限公司 Device and method for processing polyethylene glass fiber reinforced plastic composite molded spiral corrugated tube
CN103085289B (en) * 2013-02-19 2015-12-09 安徽省中阳管业有限公司 Polyethylene fiberglass composite molding helical corrugation pipe processing device and processing method thereof
CN105625951A (en) * 2016-02-29 2016-06-01 胜利油田新大管业科技发展有限责任公司 Eccentric-wear-resistant carbon fiber reinforced composite material continuous sucker rod and manufacturing device and method thereof
CN108589307A (en) * 2018-01-27 2018-09-28 福星东联(北京)科技有限公司 A kind of carbon fibre composite for buffer arm
CN108589307B (en) * 2018-01-27 2020-09-22 福星东联(北京)科技有限公司 Carbon fiber composite material for bumper
JP2021054105A (en) * 2019-09-26 2021-04-08 株式会社Subaru Fiber-reinforced resin composite material and method for manufacturing fiber-reinforced resin composite material

Similar Documents

Publication Publication Date Title
US5122417A (en) Fiber-reinforced composite resin pultrusion products and method of manufacturing the same
EP3069848B1 (en) Method for forming a fiber-reinforced composite structure
US5437899A (en) Structural element formed of a fiber reinforced thermoplastic material and method of manufacture
CN101284422B (en) Glass fibre reinforced vertical protruded tubular product device and method
EP3062994B1 (en) Continuous production of profiles in a sandwich structure with foam cores and profile with hard-foam core
KR20110002009A (en) Multidirectionally reinforced shape woven preforms for composite structures
US5139843A (en) Elongated lightweight fiber reinforced composite resin pultrusion-formed piece
JPH01166936A (en) Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
HU213662B (en) Method for producing of combined plastic tube
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JP3901299B2 (en) U bolt manufacturing method
CN115464905A (en) Weaving method for improving shear strength of FRP (fiber reinforced plastic) bar
JPH07115093B2 (en) Resin mold for sheet metal press and manufacturing method thereof
JPH0669733B2 (en) Shaft-shaped member combining heat-foamable resin and carbon fiber and method for manufacturing the same
GB2222653A (en) Hollow tubular structures of fibre reinforced plastics material and method for their production
JPH01163045A (en) Pultrusion product made of carbon fiber reinforced composite resin and its production
JPH01237130A (en) Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
JP3142394B2 (en) Reinforced plastic pipe and method of manufacturing the same
WO2017151603A1 (en) Methods for fabricating preforms for high performance ultra-long fiber reinforced thermoplastic tubing
KR102121119B1 (en) Continuous manufacturing method for high-rigidity and high-strength complex resin materials
JPS6161966B2 (en)
JP2002031277A (en) Composite transport pipe with continuous length
KR102200964B1 (en) Fiber reinforced composite material and methode for manufacturing the same