JPH01163045A - Pultrusion product made of carbon fiber reinforced composite resin and its production - Google Patents

Pultrusion product made of carbon fiber reinforced composite resin and its production

Info

Publication number
JPH01163045A
JPH01163045A JP62323189A JP32318987A JPH01163045A JP H01163045 A JPH01163045 A JP H01163045A JP 62323189 A JP62323189 A JP 62323189A JP 32318987 A JP32318987 A JP 32318987A JP H01163045 A JPH01163045 A JP H01163045A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
resin layer
reinforced resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62323189A
Other languages
Japanese (ja)
Inventor
Shinkichi Murakami
信吉 村上
Keijiro Manabe
真鍋 敬次郎
Makiji Miyao
巻治 宮尾
Mamoru Enomoto
榎本 守
Yuji Ishida
石田 雄司
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP62323189A priority Critical patent/JPH01163045A/en
Priority to KR1019880011922A priority patent/KR890005310A/en
Priority to US07/246,127 priority patent/US5122417A/en
Priority to DE19883851023 priority patent/DE3851023T2/en
Priority to EP19880308572 priority patent/EP0308237B1/en
Publication of JPH01163045A publication Critical patent/JPH01163045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To enhance strength in axial and lateral directions, by forming a carbon fiber reinforced composite resin pultrusion product having an axial direction carbon fiber reinforced resin layer and a spiral direction carbon fiber reinforced resin layer and containing a fiber different from a carbon fiber in either one of or both of said layers in a specific ratio. CONSTITUTION:A carbon fiber reinforced composite resin pultrusion product 1 is equipped with an axial direction carbon fiber reinforced resin layer 2 formed by arranging a carbon fiber used as a reinforcing fiber in an axial direction and a spiral direction carbon fiber reinforced resin layer 4 formed by spirally winding at a predetermined angle with respect to an axial line. The innermost layer of the molded product is composed of the axial direction carbon fiber reinforced resin layer 2. The axial direction carbon fiber reinforced resin layer 2 and the spiral direction carbon fiber reinforced resin layer 4 can be laminated in a staggered state to form several layers. A fiber different from a carbon fiber, for example, a glass fiber or aramid fiber is contained in either one or both of the axial direction carbon fiber reinforced resin layer and the spiral direction carbon fiber reinforced resin layer in an amount of 1-20% on the basis of total fiber contained in either one of or both of said layers.

Description

【発明の詳細な説明】 の1 本発明は、炭素繊維束に樹脂を含浸させ、金型(グイ)
の中に引込んで所定形状に賦形固化することにより製造
される円形断面又は非円形断面を有した炭素繊維強化複
合樹脂引抜成形品及びその製造法に関するものである。
[Detailed Description of the Invention] No. 1 The present invention involves impregnating carbon fiber bundles with resin and molding them into molds.
The present invention relates to a carbon fiber-reinforced composite resin pultrusion molded product having a circular or non-circular cross section that is manufactured by drawing the product into a mold and solidifying it into a predetermined shape, and a method for manufacturing the same.

本発明に係る炭素繊維強化複合樹脂引抜成形品は円形又
は非円形の様々な断面形状を有した細長のパイプ又は形
材として具体化され、軸方向の引張力、圧縮力に耐え得
るのみならず横方向のねじり強度も大とされる軽量且つ
高強度の、更には腐食しない材料として好適に使用し得
るものであり、例えば土木、建築分野における柱、梁等
の骨組構造材或いは流体輸送用配管等として、又は、航
空、宇宙、自動車、船舶、鉄道、その他種々の分野にお
けるフレーム、機械部品として幅広く使用することがで
きる。
The carbon fiber-reinforced composite resin pultruded product according to the present invention can be embodied as an elongated pipe or section having various circular or non-circular cross-sectional shapes, and can not only withstand tensile force and compressive force in the axial direction. It can be suitably used as a lightweight, high-strength, and non-corrosive material that has high torsional strength in the lateral direction.For example, it can be used for frame structures such as columns and beams in the civil engineering and architectural fields, or for fluid transportation piping. It can be widely used as frames and mechanical parts in aviation, space, automobiles, ships, railways, and various other fields.

の      び エ 従来、上述した種々の分野で軽量で且つ高強度の円形又
は非円形断面を有したパイプ又は形材が要求されており
、斯る材料として特に非円形断面形状をしたパイプ又は
形材の炭素繊維強化複合樹脂引抜成形品が注目を浴びて
いる。
In the past, there has been a demand for lightweight, high-strength pipes or shapes with circular or non-circular cross-sections in the various fields mentioned above. Carbon fiber reinforced composite resin pultrusion molded products are attracting attention.

従来、該炭素繊維強化複合樹脂引抜成形品は、樹脂含浸
された炭素繊維を軸方向に整列させて金型にて引抜き、
賦形固化させることにより成形された。このような炭素
繊維強化複合樹脂引抜成形品は軸方向の引張り及び圧縮
強度は得られるが、横方向の強度、例えばねじり及び曲
げ強度等の点で問題があった。この問題を解決するべく
マンドレル上に樹脂含浸炭素繊維を螺旋状に巻付け、そ
の後金型にて所望形状に賦形固化し所望の成形品を得る
。所謂オーバーワインディング法が提案された。該オー
バーワインディング法にて製造された成形品は、横方向
強度は増大するものの軸方向強度の点で問題がある。
Conventionally, the carbon fiber-reinforced composite resin pultrusion molded product is produced by aligning resin-impregnated carbon fibers in the axial direction and drawing them in a mold.
It was molded by shaping and solidifying. Although such a carbon fiber reinforced composite resin pultrusion molded product can obtain tensile and compressive strength in the axial direction, there are problems in terms of strength in the transverse direction, such as torsional and bending strength. To solve this problem, resin-impregnated carbon fibers are spirally wound around a mandrel, and then shaped and solidified into a desired shape using a mold to obtain a desired molded product. A so-called overwinding method was proposed. Although molded products manufactured by the overwinding method have increased strength in the transverse direction, they have problems in terms of strength in the axial direction.

本発明者等は、上記問題点を解決するべく多くの研究、
実験を行なった結果、強化繊維を軸方向に整列して形成
される軸方向m!i層と1強化繊維を軸線に対し螺旋状
に巻付けることにより形成される螺旋方向繊維層とを具
備することにより、従来それぞれ単独で得られていた以
上の軸方向及び横方向の強度が得られることを見出し、
先に、強化繊維を軸方向に整列して形成される軸方向繊
維層と、強化繊維を軸線に対し螺旋状に巻付けることに
より形成される螺旋方向繊維層とを有した繊維強化複合
樹脂引抜成形品を提案した。
In order to solve the above problems, the present inventors have conducted many studies,
As a result of the experiment, the axial direction m which is formed by aligning the reinforcing fibers in the axial direction! By including the i-layer and the helical fiber layer formed by spirally winding the reinforcing fibers around the axis, strength in the axial direction and the transverse direction can be obtained that is higher than that obtained conventionally by each alone. I discovered that
First, a fiber-reinforced composite resin is drawn, which has an axial fiber layer formed by aligning reinforcing fibers in the axial direction and a helical fiber layer formed by winding reinforcing fibers in a spiral around the axis. We proposed a molded product.

斯る繊維強化複合樹脂引抜成形品は所期の目的を達成し
、極めて大きな軸方向及び横方向強度を発揮するもので
あった。
The fiber-reinforced composite resin pultruded product achieved the intended purpose and exhibited extremely high axial and transverse strength.

しかしながら、更に本発明者等の研究実験によると、特
に強化繊維として炭素繊維を使用してこのような繊維強
化複合樹脂引抜成形品をオーバワインダにより製造する
場合に、特に軸方向炭素繊維強化樹脂層及び螺旋方向炭
素繊維強化樹脂層から成る未硬化炭素繊維強化樹脂層積
層体を金型(グイ)へと引込んで所定の寸法形状に賦形
する工程において、軸方向炭素繊維強化樹脂層と螺旋方
向炭素繊維強化樹脂層とが相対的に運動し、螺旋方向炭
素繊維が等間隔で挿入されないので所望の厚さ及び形状
の炭素繊維強化樹脂層積層体を形成するのが困難である
ことが分かった。
However, according to research experiments conducted by the present inventors, especially when carbon fiber is used as the reinforcing fiber to produce such a fiber-reinforced composite resin pultruded product using an overwinder, the axial carbon fiber-reinforced resin layer In the step of drawing an uncured carbon fiber reinforced resin layer laminate consisting of a helical carbon fiber reinforced resin layer into a mold and shaping it into a predetermined size and shape, the axial carbon fiber reinforced resin layer and the helical direction It was found that it was difficult to form a carbon fiber reinforced resin layer laminate with a desired thickness and shape because the carbon fiber reinforced resin layer moved relative to the carbon fiber reinforced resin layer and the spiral carbon fibers were not inserted at equal intervals. .

本発明者等は、この問題を解決するべく、特に炭素繊維
強化複合樹脂引抜成形品の構造及び製造法を研究し、実
験した結果、軸方向炭素繊維強化樹脂層或いは螺旋方向
炭素繊維強化樹脂層のいずれか又は両方に炭素繊維とは
異なる異種の繊維、特に該異種の繊維が毛羽立った状態
のもの(単繊維が乱配向した毛糸状の繊維束をいう、)
を所定の割合にて含ませることにより上記問題が解決さ
れ、又、引抜成形品の軸方向及び横方向強度も実質的に
変らないことを見出した。これは、炭素繊維層に異種の
繊維を混入することにより線層における摩擦抵抗が増大
し、線層の上又は下に重ね合せられる層との間の相対運
動が阻止され、未硬化炭素繊維強化樹脂層積層体を金型
へと引込んだ際の積層体の乱れが防止されるからである
と考えられる。
In order to solve this problem, the present inventors particularly studied the structure and manufacturing method of carbon fiber-reinforced composite resin pultrusion products, and as a result of experiments, the inventors found that an axial carbon fiber-reinforced resin layer or a helical carbon fiber-reinforced resin layer Fibers of different types different from carbon fibers in either or both of them, especially those in a fluffy state (referring to yarn-like fiber bundles in which single fibers are randomly oriented)
It has been found that the above-mentioned problem can be solved by including a predetermined proportion of the pultruded product, and the axial and transverse strengths of the pultruded product are not substantially changed. This is due to the fact that by mixing different types of fibers into the carbon fiber layer, the frictional resistance in the wire layer increases, and the relative movement between layers stacked above or below the wire layer is prevented, and the uncured carbon fiber reinforcement This is thought to be because the resin layer laminate is prevented from being disturbed when the resin layer laminate is drawn into the mold.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

光」LΩ」L狼− 本発明の目的は、軸方向及び横方向の強度が従来の成形
品に比較し飛躍的に向上した円形断面又は非円形断面形
状を有した炭素繊維強化複合樹脂引抜成形品を提供する
ことである。
The object of the present invention is to produce a carbon fiber reinforced composite resin pultrusion molded product having a circular or non-circular cross-sectional shape, which has dramatically improved axial and lateral strength compared to conventional molded products. It is to provide products.

本発明の他の目的は、円形断面形状のみならず、特に非
円形断面形状を有した炭素繊維強化複合樹脂引抜成形品
を極めて簡単に且つ連続的にオーバーワインディング法
を利用して製造し得る製造法を提供することである。
Another object of the present invention is to manufacture carbon fiber-reinforced composite resin pultruded products having not only a circular cross-sectional shape but also a non-circular cross-sectional shape extremely easily and continuously using an overwinding method. It is to provide law.

。     る。.     .

上記諸口的は本発明に係る炭素繊維強化複合樹脂引抜成
形品及びその製造法によって達成される。要約すれば本
発明は、炭素繊維を軸方向に整列して形成される軸方向
炭素繊維強化樹脂層と、炭素繊維を軸線に対し螺旋状に
巻付けることにより形成される螺旋方向炭素繊維強化樹
脂層とを有した炭素繊維強化複合樹脂引抜成形品であっ
て、前記軸方向炭素繊維樹脂層或いは螺旋方向炭素繊維
強化樹脂層のいずれか又は両方に炭素繊維とは異種の繊
維を1〜20%含むことを特徴とする炭素m!強化複合
樹脂引抜成形品である。軸方向炭素繊維強化樹脂層と螺
旋方向炭素繊維強化樹脂層とは互い違いに複数層形成さ
れ、又、好ましくは、異種の繊維は毛羽立った繊維とさ
れ、ガラス繊維束又はアラミド繊維束にて形成される。
The above objectives are achieved by the carbon fiber-reinforced composite resin pultrusion molded product and the manufacturing method thereof according to the present invention. In summary, the present invention provides an axial carbon fiber reinforced resin layer formed by aligning carbon fibers in the axial direction, and a spiral carbon fiber reinforced resin layer formed by spirally winding carbon fibers around the axis. A carbon fiber-reinforced composite resin pultrusion molded product having a carbon fiber reinforced composite resin layer, wherein either or both of the axial carbon fiber resin layer or the helical carbon fiber reinforced resin layer contains 1 to 20% of fibers of a different type than carbon fibers. Carbon m! This is a reinforced composite resin pultruded product. The axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer are alternately formed in multiple layers, and preferably the different types of fibers are fluffy fibers and are formed of glass fiber bundles or aramid fiber bundles. Ru.

本発明の円形断面形状を有した炭素繊維強化複合樹脂引
抜成形品は、(a)円形断面を有した細長のマンドレル
を用意する工程: (b)前記マンドレルの上に樹脂含
浸炭素繊維を軸方向に配置するか又は螺旋方向に巻付け
て、所定の肉厚を有した第1の炭素繊維強化樹脂層を形
成する工程;(e)前記第1の炭素繊維強化樹脂層を固
化するに先立って該炭素a#1強化樹脂層の上に樹脂含
浸炭素繊維を前記第1の炭素繊維強化樹脂層とは異なる
方向に配列することにより第2の炭素繊維強化樹脂層を
形成する工程; (d)必要に応じて。
The carbon fiber-reinforced composite resin pultrusion molded product having a circular cross-section of the present invention can be obtained by: (a) preparing an elongated mandrel having a circular cross-section; (b) placing resin-impregnated carbon fibers on the mandrel in the axial direction; (e) prior to solidifying the first carbon fiber reinforced resin layer; (e) prior to solidifying the first carbon fiber reinforced resin layer; forming a second carbon fiber reinforced resin layer on the carbon a#1 reinforced resin layer by arranging resin-impregnated carbon fibers in a direction different from that of the first carbon fiber reinforced resin layer; (d) as needed.

前記(b)、(c)工程を所望回数繰り返し行ない、軸
方向炭素繊維強化樹脂層及び螺旋方向炭素繊維強化樹脂
層から成る未硬化炭素繊維強化樹脂層積層体を形成する
工程; (e)前記軸方向炭素繊維強化樹脂層成いは螺
旋方向炭素繊維強化樹脂層のいずれか又は両方に炭素繊
維とは異種の繊維が1〜20%含まれていること; (
f)前記積層体を金型へと引込んで所定の寸法形状に賦
形する工程; (g)次いで、前記炭素繊維強化樹脂層
積層体を固化する工程;を有することを特徴とする製造
法にて製造され、又、本発明の非円形断面形状を有した
炭素繊維強化樹脂引抜成形品は、(a)所定長さの円形
断面部分と、該円形断面部・分に連接し、所定の断面形
状へと漸次連続的に変化する非円形断面部分とを有した
細長のマンドレルを用意する工程; (b)前記マンド
レルの円形断面部分の上に樹脂含浸炭素繊維を軸方向に
配置するか又は螺旋方向に巻付けて、所定の肉厚を有し
た第1の炭素繊維強化樹脂層を形成する工程;(c)前
記第1の炭素繊維強化樹脂層を固化するに先立って該炭
素繊維強化樹脂層の上に樹脂含浸炭素繊維を前記第1の
炭素繊維強化樹脂層とは異なる方向に配列することによ
り第2の炭素繊維強化樹脂層を形成する工程; (d)
必要に応じて、前記(b)、(c)工程を所望回数繰り
返し行なった後、前記軸方向炭素繊維強化樹脂層及び螺
旋方向炭素繊維強化樹脂層から成る未硬化炭素繊維強化
樹脂層積層体を形成する工程: (e)前記軸方向炭素
繊維強化樹脂層成いは螺旋方向炭素繊維強化樹脂層のい
ずれか又は両方に異種の繊維が1〜20%含まれている
こと; (f)前記積層体を前記マンドレルの非円形断
面部分に導き、次いで金型へと引込んで所定形状に賦形
する工程;(g)次いで、前記炭素繊維強化樹脂層積層
体を固化する工程;を有する製造法にて好適に製造され
る。
(e) repeating the steps (b) and (c) a desired number of times to form an uncured carbon fiber reinforced resin layer laminate consisting of an axial carbon fiber reinforced resin layer and a helical carbon fiber reinforced resin layer; Either or both of the axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer contain 1 to 20% of fibers different from carbon fiber; (
f) a step of drawing the laminate into a mold and shaping it into a predetermined size and shape; (g) a step of then solidifying the carbon fiber reinforced resin layer laminate; The carbon fiber-reinforced resin pultrusion molded product having a non-circular cross-sectional shape of the present invention is manufactured by: (a) having a circular cross-sectional portion of a predetermined length; (b) axially or spirally disposing resin-impregnated carbon fibers on the circular cross-section of the mandrel; (c) prior to solidifying the first carbon fiber reinforced resin layer, (d) forming a second carbon fiber reinforced resin layer by arranging resin-impregnated carbon fibers in a direction different from that of the first carbon fiber reinforced resin layer;
If necessary, after repeating the steps (b) and (c) a desired number of times, an uncured carbon fiber reinforced resin layer laminate consisting of the axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer is formed. Step of forming: (e) Either or both of the axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer contain 1 to 20% of different types of fibers; (f) The lamination (g) solidifying the carbon fiber reinforced resin layer laminate; (g) solidifying the carbon fiber reinforced resin layer laminate; It is suitably manufactured.

実jE例 次に1本発明に係る炭素繊維強化複合樹脂引抜成形品に
ついて更に詳しく説明する。
Practical Example Next, a carbon fiber reinforced composite resin pultrusion molded product according to the present invention will be explained in more detail.

第1図〜第7図には本発明に従った非円形断面形状及び
円形断面形状を有した炭素繊維強化複合樹脂引抜成形品
が例示される0本発明によれば、例えば第1図及び第2
図に図示されるように矩形断面の、更には他の任意の断
面をした中空のパイプ状炭素繊維強化複合樹脂引抜成形
品が提供されるし、又第3図〜第5図に図示するような
L、H,I型、その他任意の断面形状をした形材である
炭素繊維強化複合樹脂引抜成形品が、更には第6図及び
第7図に図示するような円形断面形状をした中空のパイ
プ状炭素繊維強化複合樹脂引抜成形品が提供される。
1 to 7 illustrate carbon fiber-reinforced composite resin pultruded products having non-circular cross-sectional shapes and circular cross-sectional shapes according to the present invention. According to the present invention, for example, FIG. 2
A hollow pipe-shaped carbon fiber reinforced composite resin pultruded product having a rectangular cross section as shown in the figure, or any other arbitrary cross section is provided, and as shown in FIGS. Carbon fiber-reinforced composite resin pultrusion molded products, which are L, H, I-shaped, and other arbitrary cross-sectional shapes, can also be hollow, circular cross-sectional shapes as shown in FIGS. 6 and 7. A pipe-shaped carbon fiber reinforced composite resin pultruded product is provided.

第1図を参照し、本発明に係る炭素繊維強化複合樹脂引
抜成形品について説明すると1本発明にて製造される炭
素繊維強化複合樹脂引抜成形品lは、強化繊維として使
用される炭素繊維を軸方向に整列して形成される軸方向
炭素繊維強化樹脂層2と1強化繊維を軸線に対し所定角
度にて螺旋状に巻付けることにより形成される螺旋方向
炭素繊維強化樹脂層4とを具備する。成形品の最内層は
螺旋方向炭素繊維強化樹脂層4とすることも可能である
が、好ましくは図示されるように、軸方向炭素繊維強化
樹脂層2とされる。又、軸方向炭素M&雄雄花化樹脂層
と螺旋方向炭素m雄花化樹脂層4とは、第2図に図示さ
れるように、互い違いに複数層形成することも可能であ
り、この場合に最外層は図示されるように軸方向炭素繊
維強化樹脂層2とすることもでき、又螺旋方向炭素繊維
強化樹脂層4とすることもできるが、成形品の最内層は
、好ましくは上述のように、軸方向炭素繊維強化樹脂層
2とされる。この理由は、成形品の最内層を軸方向炭素
繊維強化樹脂層2とすることにより成形品の連続製造に
際し、円滑な運転が可能となるからである。
The carbon fiber-reinforced composite resin pultrusion molded product according to the present invention will be explained with reference to FIG. It is equipped with an axial carbon fiber reinforced resin layer 2 formed in alignment in the axial direction and a spiral carbon fiber reinforced resin layer 4 formed by spirally winding reinforcing fibers 1 at a predetermined angle with respect to the axis. do. Although the innermost layer of the molded product may be a helical carbon fiber reinforced resin layer 4, it is preferably an axial carbon fiber reinforced resin layer 2 as shown. In addition, the axial carbon M & staminate resin layer 4 and the helical carbon M staminate resin layer 4 can be alternately formed in multiple layers as shown in FIG. 2, and in this case, the maximum Although the outer layer can be an axial carbon fiber reinforced resin layer 2 as shown or a helical carbon fiber reinforced resin layer 4, the innermost layer of the molded article is preferably , an axial carbon fiber reinforced resin layer 2. The reason for this is that by forming the axial carbon fiber reinforced resin layer 2 as the innermost layer of the molded product, smooth operation becomes possible during continuous production of the molded product.

螺旋方向炭素繊維強化樹脂7i14における軸線方向に
対する巻付は角度、及び各炭素繊維強化樹脂WJ2.4
における繊維の密度1層厚さ等は任意に選択し得るが、
−例を挙げれば、巻付は角度は、45°〜80’とされ
、炭素繊維強化樹脂層2゜4における繊維含有量は□体
積%で50〜60%とされるのが好適である。
The winding angle with respect to the axial direction in the helical direction carbon fiber reinforced resin 7i14, and each carbon fiber reinforced resin WJ2.4
The fiber density, single layer thickness, etc. can be selected arbitrarily, but
- For example, the winding angle is preferably 45° to 80', and the fiber content in the carbon fiber reinforced resin layer 2°4 is preferably 50 to 60% by volume.

又、炭素繊維に含浸されるマトリクス樹脂はエポキシ、
不飽和ポリエステル、ビニルエステル等の熱硬化性樹脂
、及び手イロン6、ナイロン66、ポリカーボネート、
ポリアセタール、ポリフェニレンスルファイド、ポリプ
ロピレン等の熱可塑性樹脂とされる。
In addition, the matrix resin impregnated into carbon fibers is epoxy,
Thermosetting resins such as unsaturated polyester and vinyl ester, iron 6, nylon 66, polycarbonate,
Thermoplastic resins such as polyacetal, polyphenylene sulfide, and polypropylene.

本発明に従えば、軸方向炭素繊維強化樹脂層或いは螺旋
方向炭素繊維強化樹脂層のいずれか又は両方に、炭素繊
維とは異なる異種の繊維、例えばガラス繊維束、アラミ
ド繊維束等が、核層に含まれる全繊維に対し1〜20%
、好ましくは4〜10%含まれる。異種の繊維の含有量
が1%より小さいと効果が顕著に現われず、20%を越
えると゛強度の点で問題が生じてくる。
According to the present invention, fibers of a different type than carbon fibers, such as glass fiber bundles, aramid fiber bundles, etc., are included in either or both of the axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer as a core layer. 1-20% of the total fiber contained in
, preferably 4 to 10%. If the content of different types of fibers is less than 1%, the effect will not be noticeable, and if it exceeds 20%, problems will arise in terms of strength.

又、本発明者等の研究実験の結果によると、該異種の繊
維束は、毛糸状繊維束、即ち、単繊維が乱配向した毛糸
状の繊維束であるのが好ましいことが分かった0例えば
、英国P I LK I NGTON社製のガラス繊維
束rsPANED  LOVING (スパンロービン
グ)J  (2400TEX)等にて高結果を得ること
ができた。
Further, according to the results of research experiments conducted by the present inventors, it has been found that it is preferable that the different types of fiber bundles are woolen fiber bundles, that is, woolen fiber bundles in which single fibers are randomly oriented. Good results were obtained using glass fiber bundles rsPANED LOVING J (2400TEX) manufactured by PILK INGTON, UK.

このような異種の繊維は、軸方向炭素繊維強化樹脂層2
或いは螺旋方向炭素繊維強化樹脂層4のいずれか又は両
方に含ませることもできるが、例えば第2図のように、
軸方向炭素繊維樹脂層2と螺旋方向炭素繊維樹脂層4と
が互い違いに複数層形成され、螺旋方向炭素繊維樹脂層
4を挟持して軸方向炭素繊維樹脂層2が配置された場合
には。
Such different types of fibers are used in the axial carbon fiber reinforced resin layer 2.
Alternatively, it can be included in either or both of the helical carbon fiber reinforced resin layers 4, for example as shown in FIG.
In the case where a plurality of axial carbon fiber resin layers 2 and helical carbon fiber resin layers 4 are alternately formed, and the axial carbon fiber resin layers 2 are arranged with the helical carbon fiber resin layers 4 sandwiched therebetween.

軸方向炭素繊維樹脂層2の少なくともいずれか一方に異
種の繊維を含ませることができ、又第1θ図に示される
構成の成形品の場合には、最内層と最外層の繊維樹脂層
2に含ませることができる。
At least one of the axial carbon fiber resin layers 2 may contain different types of fibers, and in the case of a molded product having the configuration shown in Fig. 1θ, the innermost and outermost fiber resin layers 2 may contain different types of fibers. can be included.

上記説明では矩形断面の中空管とされる炭素繊維強化複
合樹脂引抜成形品について説明したが、上述のように、
本発明はこれに限定されるものではなく、例えば第3図
〜第5図に図示するようにり、H,I形、その他任意の
断面形状をした形材、更には第6図及び第7図に図示す
るような円形断面形状をしたパイプ状成形品も同様に製
造することができる。
In the above explanation, a carbon fiber reinforced composite resin pultruded product which is a hollow tube with a rectangular cross section was explained, but as mentioned above,
The present invention is not limited thereto, and may be used, for example, as shown in FIGS. A pipe-shaped molded product having a circular cross-sectional shape as shown in the figure can also be produced in the same manner.

次に、本発明に係る炭素繊維強化複合樹脂引抜成形品の
製造法について説明する。
Next, a method for manufacturing a carbon fiber reinforced composite resin pultrusion molded product according to the present invention will be explained.

第8図には上記非円形断面形状を有した炭素繊維強化複
合樹脂引抜成形品lを製造するための引抜成形filO
の一実施例が示される0本実施例では、特に、第10図
に図示されるように、最内層より軸方向炭素繊維強化樹
脂層2、螺旋方向炭素a雄花化樹脂層4、軸方向炭素繊
維強化樹脂層2、螺旋方向炭素繊維強化樹脂層4及び軸
方向炭素繊維強化樹脂層2から成る5層構成の炭素繊維
強化複合樹脂引抜成形品lが製造されるものとする。
FIG. 8 shows a pultrusion molding process for producing a carbon fiber-reinforced composite resin pultrusion product l having the above-mentioned non-circular cross-sectional shape.
In this embodiment, as illustrated in FIG. A carbon fiber-reinforced composite resin pultrusion molded product 1 having a five-layer structure consisting of a fiber-reinforced resin layer 2, a helical carbon fiber-reinforced resin layer 4, and an axial carbon fiber-reinforced resin layer 2 is manufactured.

本引抜成形機lOによれば、炭素繊維12が巻付けられ
た多数のクリール14がクリールスタンド16 (16
a、16b)に軸架される0本実施例では、クリールス
タンド16は3基設けられ。
According to this pultrusion molding machine IO, a large number of creels 14 around which carbon fibers 12 are wound are arranged on a creel stand 16 (16
In this embodiment, three creel stands 16 are provided.

第1のクリールスタンド16aからの炭素繊維12aは
ガイド板18により樹脂含浸槽20へと導入され、マト
リクス樹脂が含浸される。余分の樹脂が絞られた樹脂含
浸炭素繊$$ 12 aはガイド板22によりオーバー
ワイングー24に供給され、該オーバーワイングー24
に取付けられたマンドレル26に対し軸線方向に整列し
て縦添えされる(最内層となる軸方向炭素繊維強化樹脂
層2の形成)、同時に、該オーバーワイングー24は該
オーバーワイングー24に搭載された複数個のクリール
24aから繰り出される炭素繊維24bが、上記縦添え
された軸方向炭素繊維強化樹脂層2の上に所定の角度、
例えば70度の巻付は角度にて巻付けられ、螺旋方向炭
素繊維強化樹脂層4が形成される。クリール24aから
の炭素繊維にはマトリクス樹脂は含浸されていないが、
マンドレルに巻付けられたとき、下層の軸方向炭素繊維
強化樹脂層及び次の工程にて縦添えされる軸方向炭素繊
維強化樹脂層からの余剰マトリクス樹脂が含浸される。
The carbon fibers 12a from the first creel stand 16a are introduced into the resin impregnation tank 20 by the guide plate 18 and impregnated with matrix resin. The resin-impregnated carbon fiber $$ 12a from which excess resin has been squeezed is supplied to the overwine goo 24 by the guide plate 22, and the overwine goo 24
(Formation of axial carbon fiber reinforced resin layer 2 serving as the innermost layer), and at the same time, the overwine goo 24 is mounted on the overwine goo 24. The carbon fibers 24b fed out from the plurality of creels 24a are placed on top of the vertically attached axial carbon fiber reinforced resin layer 2 at a predetermined angle.
For example, the winding is performed at an angle of 70 degrees, and the helical carbon fiber reinforced resin layer 4 is formed. Although the carbon fiber from Creel 24a is not impregnated with matrix resin,
When wound around the mandrel, it is impregnated with excess matrix resin from the lower axial carbon fiber reinforced resin layer and the axial carbon fiber reinforced resin layer that will be applied longitudinally in the next step.

第2及び第3のクリールスタンド16bはクリールスタ
ンド16aを挟んで対称に配置され、同様に作動するた
めに、第8図では図面上手前側のクリールスタンド16
bのみを詳細に図示し説明し、他方のクリールスタンド
16bの説明は省略する。クリールスタンド16bから
の炭素繊維12bの中の一部の繊維12cはガイド板2
8により樹脂含浸槽30へと導入され、マトリクス樹脂
が含浸される。余分の樹脂が絞られた樹脂含浸炭素繊維
12 cはガイド板32.34によりオーバーワイング
ー36に供給される。該樹脂含浸炭素繊維12cは、オ
ーバーワイングー24.36の中心部を貫通する。今や
軸線方向及び螺旋方向の2層の強化炭素繊維強化樹脂層
が形成されているマンドレル26に対し軸方向へと供給
され、螺旋状の炭素繊維24b上に縦添えされる(2番
目の軸方向炭素繊維強化樹脂層2の形成)、同時に、該
オーバーワイングー36は該オーバーワイングー36に
搭載された複数個のクリール36aから繰り出される炭
素繊維36bが、上記縦添えされた軸方向炭素繊維強化
樹脂層2の上に所定の角度、例えば70度の巻付は角度
にて巻付けられ、螺旋方向炭素繊維強化樹脂層4が形成
される。該オーバーワイングー36は前記オーバーワイ
ングー24とは逆方向に回転され、従ってオーバーワイ
ングー36にて形成される螺旋方向炭素繊維強化樹脂層
4の巻付方向と、オーバーワイングー24にて形成され
た螺旋方向炭素繊維強化樹脂層4の巻付方向とは逆向き
となる。クリール36aからの炭素繊維にはマトリクス
樹脂は含浸されていないが、マンドレルに巻付けられた
とき、下層の軸方向炭素繊維強化樹脂層及び次の工程に
て縦添えされる軸方向炭素繊維強化樹脂層からの余剰マ
トリクス樹脂が含浸される。
The second and third creel stands 16b are arranged symmetrically with the creel stand 16a in between, and in order to operate in the same manner, in FIG.
Only the creel stand 16b will be illustrated and explained in detail, and the explanation of the other creel stand 16b will be omitted. Some of the fibers 12c in the carbon fibers 12b from the creel stand 16b are attached to the guide plate 2.
8 into the resin impregnation tank 30 and impregnated with matrix resin. The resin-impregnated carbon fiber 12c from which excess resin has been squeezed is supplied to the overwinter 36 by guide plates 32, 34. The resin-impregnated carbon fiber 12c passes through the center of the overwinter groove 24.36. It is fed in the axial direction to the mandrel 26 on which two reinforced carbon fiber reinforced resin layers, one in the axial direction and the other in the helical direction, are applied vertically on the helical carbon fiber 24b (the second axial direction Formation of the carbon fiber reinforced resin layer 2) At the same time, the overwine goo 36 has carbon fibers 36b fed out from a plurality of creels 36a mounted on the overwine goo 36, and the carbon fibers 36b fed from the longitudinally attached axial carbon fiber reinforcement. The resin layer 2 is wound at a predetermined angle, for example, 70 degrees, to form a helical carbon fiber reinforced resin layer 4. The overwine goo 36 is rotated in the opposite direction to the overwine goo 24, so that the winding direction of the spiral carbon fiber reinforced resin layer 4 formed on the overwine goo 36 and the overwine goo 24 are different from each other. This direction is opposite to the direction in which the helical carbon fiber reinforced resin layer 4 is wound. The carbon fibers from the creel 36a are not impregnated with matrix resin, but when wound around the mandrel, the lower axial carbon fiber reinforced resin layer and the axial carbon fiber reinforced resin that will be longitudinally applied in the next step Excess matrix resin from the layer is impregnated.

前記螺旋状に巻付けられた炭素@@36bの上には、第
2のクリールスタンド16bからの炭素縁1112bの
残余の繊維12dであって、ガイド板40.42により
樹脂含浸槽44へと導入され、マトリクス樹脂が含浸さ
れ、次いで余分の樹脂が絞られ、ガイド板46.48に
より案内供給された樹脂含浸炭素繊維12dが軸線方向
に整列して配置され、最外層の軸方向炭素繊維強化樹脂
層2が形成される。
On top of the helically wound carbon @36b are the remaining fibers 12d of the carbon edge 1112b from the second creel stand 16b, which are introduced into the resin impregnation bath 44 by means of guide plates 40.42. The resin-impregnated carbon fibers 12d guided and supplied by the guide plates 46 and 48 are arranged in alignment in the axial direction, and the outermost layer of axial carbon fiber reinforced resin is Layer 2 is formed.

このようにしてマンドレル26上には軸方向炭素繊維強
化樹脂層2及び螺旋方向炭素繊維強化樹脂層4が所定層
だけ積層された炭素繊維強化樹脂層積層体50が形成さ
れる。
In this way, a carbon fiber reinforced resin layer laminate 50 is formed on the mandrel 26, in which a predetermined number of the axial carbon fiber reinforced resin layer 2 and the helical carbon fiber reinforced resin layer 4 are laminated.

又、樹脂含浸槽20.30.44には樹脂液が収容され
ており、該樹脂液は、エポキシ、不飽和ポリエステル、
ウレタンアクリレート、ビニルエステル、フェノール、
ポリウレタン等の熱硬化性樹脂、及びナイロン6、ナイ
ロン66、ナイロンl2、PBT、PET、ポリカーボ
ネート、ポリアセタール、ポリフェニレンスルファイド
、ポリエーテルエーテルケトン、ポリエーテルスルファ
イド、ポリフェニレンオキシド、ノリル、ポリプロピレ
ン、ポリ塩化ビニール等の熱可塑性樹脂から選択された
任意のマトリクス樹脂と、所望に応じ、CaCO3、?
イカ、A1(OH)3 、 タルク等の充填剤と、更に
は耐熱性、耐候性を改良するための添加剤及び着色剤等
にて調製される。
Further, the resin impregnation tank 20, 30, 44 contains a resin liquid, and the resin liquid contains epoxy, unsaturated polyester,
Urethane acrylate, vinyl ester, phenol,
Thermosetting resins such as polyurethane, nylon 6, nylon 66, nylon 12, PBT, PET, polycarbonate, polyacetal, polyphenylene sulfide, polyether ether ketone, polyether sulfide, polyphenylene oxide, noryl, polypropylene, polyvinyl chloride Any matrix resin selected from thermoplastic resins such as CaCO3, ?
It is prepared with fillers such as squid, A1(OH)3, and talc, as well as additives and colorants to improve heat resistance and weather resistance.

本発明に従えば、軸方向炭素繊維強化樹脂層を形成する
炭素繊!*12a、12b (12c、12d)の全て
、又は任意の繊維に、好ましくは炭素繊維12c、12
dには、上に定義したような形態の異種の繊維、より好
ましくは毛糸状のガラス繊維束(スパンロービング)、
又はアラミド繊維束が混入される。
According to the present invention, carbon fibers forming the axial carbon fiber reinforced resin layer! *For all or any fibers of 12a, 12b (12c, 12d), preferably carbon fibers 12c, 12
d, heterogeneous fibers in the form as defined above, more preferably yarn-like glass fiber bundles (spun roving);
Or aramid fiber bundles are mixed.

上述のようにしてマンドレル26上に内側より樹脂含浸
炭素繊維から成る軸方向炭素繊維強化樹脂層2.螺旋方
向炭素繊維強化樹脂層4.軸方向炭素繊維強化樹脂層2
、螺旋方向炭素繊維強化樹脂層4及び軸方向炭素繊維強
化樹脂N2の5層から構成される炭素繊維強化樹脂層積
層体50が形成される。
As described above, the axial carbon fiber reinforced resin layer 2 made of resin-impregnated carbon fiber is placed on the mandrel 26 from the inside. Helical carbon fiber reinforced resin layer 4. Axial carbon fiber reinforced resin layer 2
A carbon fiber reinforced resin layer laminate 50 is formed, which is composed of five layers: a helical carbon fiber reinforced resin layer 4 and an axial carbon fiber reinforced resin layer N2.

本発明において、本実施例のように、矩形断面形状を有
した中空管状の繊維強化複合樹脂引抜成形品1を製造す
る場合に使用されるマンドレル26は、第9図に図示さ
れるように、断面形状が円形をした部分26aと、断面
が矩形とされる非円形部分28bとを有し1円形部分2
6aから非円形部分26bへとは漸次変形するように形
成される。このとき11円形部分26aの周長と、非円
形部分26bの周長とは同じとされる。マンドレル26
はその大半が、つまりオーバーワインダー24.36.
更には金型52の直前に至るまではその断面形状は円形
とされ、軸方向炭素繊維強化樹脂層2及び螺旋方向炭素
繊維強化樹脂層4から成る繊維強化樹脂層積層体50は
該円形断面形状をしたマンドレルの円形部分26a上に
形成される。
In the present invention, the mandrel 26 used when manufacturing the hollow tubular fiber-reinforced composite resin pultruded product 1 having a rectangular cross-sectional shape as in this embodiment is as shown in FIG. 1 circular portion 2 which has a portion 26a having a circular cross section and a non-circular portion 28b having a rectangular cross section.
The non-circular portion 26b is gradually deformed from the non-circular portion 6a. At this time, the circumferential length of the No. 11 circular portion 26a and the circumferential length of the non-circular portion 26b are the same. mandrel 26
Most of them are overwinders 24.36.
Furthermore, the cross-sectional shape is circular until just before the mold 52, and the fiber-reinforced resin layer laminate 50 consisting of the axial carbon fiber-reinforced resin layer 2 and the helical carbon fiber-reinforced resin layer 4 has this circular cross-sectional shape. is formed on the circular portion 26a of the mandrel.

該円形断面マンドレル26a上に形成された炭素繊維強
化樹脂層50は次いで、マンドレル26の非円形部分、
本実施例では矩形状部分26bへと送給され、引続き、
矩形断面形状を有した金型52内へと引入れられる。
The carbon fiber reinforced resin layer 50 formed on the circular cross-section mandrel 26a is then formed on the non-circular portion of the mandrel 26,
In this embodiment, it is fed to the rectangular portion 26b, and then
It is drawn into a mold 52 having a rectangular cross-sectional shape.

このとき、本実施例によれば、各炭素繊維強化樹脂層5
0は、所定の軸方向炭素繊維強化樹脂層2に異種の繊維
が混入されているために、該繊維が螺旋方向炭素繊維強
化繊維層4に食込み、従来見受けられたように、炭素繊
維強化樹脂W!50を金型52内に引入れる際に螺旋方
向炭素繊維強化樹脂層が乱れ、所望の形状への賦形を困
難とし、更に成形されたとしても繊維の破損、配向の乱
れが生じ、物性が低下するといっ−た事態が回避される
。当然に、異種の繊維は軸方向炭素繊維強化樹脂Mりに
代えて、又は該樹脂層2と共に螺旋方向炭素繊維強化樹
脂層4に混入することも可能である。
At this time, according to this embodiment, each carbon fiber reinforced resin layer 5
No. 0 means that different types of fibers are mixed in the predetermined axial carbon fiber reinforced resin layer 2, so the fibers bite into the helical carbon fiber reinforced fiber layer 4, and as seen in the past, the carbon fiber reinforced resin W! 50 into the mold 52, the helical carbon fiber reinforced resin layer is disturbed, making it difficult to shape it into the desired shape, and even if molded, the fibers are damaged and their orientation is disturbed, resulting in poor physical properties. This avoids a situation where the power level decreases. Naturally, different types of fibers can be mixed into the helical carbon fiber reinforced resin layer 4 instead of the axial carbon fiber reinforced resin M or together with the resin layer 2.

このようにして、極めて好適に金型52にて所定形状寸
法に賦形された繊維強化樹脂層50は加熱装置(図示せ
ず)を利用することにより固化(硬化)され、炭素繊維
強化複合樹脂引抜成形品1が形成される。金型52の下
流側には引抜機54及びカッター56が配置され、マン
ドレル26上から該炭素繊維強化複合樹脂引抜成形品1
を抜取ると共に、該炭素繊維強化複合樹脂引抜成形品l
を所定長さにて切断する。引抜機54及びカッター56
の構造及び作用は当業者には周知であるのでこれ以上の
説明は省略する。
In this way, the fiber-reinforced resin layer 50, which has been shaped into a predetermined shape and size using the mold 52, is solidified (hardened) by using a heating device (not shown), and the carbon fiber-reinforced composite resin layer 50 is A pultruded article 1 is formed. A drawing machine 54 and a cutter 56 are arranged downstream of the mold 52, and the carbon fiber reinforced composite resin pultrusion molded product 1 is disposed on the mandrel 26.
At the same time, the carbon fiber reinforced composite resin pultrusion molded product l
Cut to a predetermined length. Puller 54 and cutter 56
Since the structure and operation of this are well known to those skilled in the art, further explanation will be omitted.

以上の構成とされる製造方法及び引抜成形機を使用して
、外形が20X20mm、各炭素繊維強化樹脂層の厚さ
各々0.5mmとされた肉厚2゜5mmの矩形の炭素繊
維強化中空樹脂管を1 m 7分の速度にて製造するこ
とができた。
Using the manufacturing method and pultrusion molding machine configured above, a rectangular carbon fiber reinforced hollow resin with a wall thickness of 2°5 mm and an outer diameter of 20 x 20 mm and a thickness of each carbon fiber reinforced resin layer of 0.5 mm is produced. Tubes could be produced at a speed of 1 m 7 min.

炭素繊維として線径7J1m、強度340kg/mrn
’の炭素繊維を使用し、各樹脂含浸槽にはマトリクス樹
脂としてはエポキシ樹脂100wt%と、充填剤として
炭酸カルシウムを10wt%加えた樹脂液を調製して収
容し、炭素繊維に含浸させた。異種の繊維としては、前
記ガラス繊維束(スパンロービング)が全軸方向炭素繊
維強化層2に5%混入された。
As carbon fiber, wire diameter 7J1m, strength 340kg/mrn
' Carbon fibers were used, and each resin impregnation tank was filled with a resin liquid containing 100 wt% of epoxy resin as a matrix resin and 10 wt% of calcium carbonate as a filler, and impregnated into the carbon fibers. As a different type of fiber, the glass fiber bundle (spun roving) was mixed in the entire axial carbon fiber reinforced layer 2 at 5%.

このようにして製造した引抜成形品1の強度は表1に示
す通りであった。従来の成形品に比較し優れていること
が理解されるであろう。
The strength of the pultrusion molded product 1 thus produced was as shown in Table 1. It will be understood that this product is superior to conventional molded products.

表1 ねじり試験結果 比較例1:本発明と同じ寸法形状の正面角柱状のマンド
レルでオーバーワインディング なし 比較例2:本発明と同じ寸法形状の正面角柱状のマンド
レルでオーバーワインディング あり 第11r!4には1本発明に従って成形される、例えば
第3図に図示されるようなL字形状のロッド状の炭素繊
維強化複合樹脂引抜成形品lを製造する場合に使用され
るマンドレル26と金型52の一実施例が示される。マ
ンドレル26は断面形状が円形をした円形部分26aか
ら、断面がL字形状とされる非円形部分28bへと漸次
変形するように形成される。このとき、円形部分26a
の周長と、非円形部分26bの周長とは同じとされる。
Table 1 Torsion test results Comparative example 1: No overwinding using a front prismatic mandrel with the same dimensions and shape as the present invention Comparative example 2: Overwinding using a front prismatic mandrel with the same dimensions and shape as the present invention 11th r! 4-1 A mandrel 26 and a mold used in manufacturing an L-shaped rod-shaped carbon fiber-reinforced composite resin pultrusion molded product l molded according to the present invention, for example, as shown in FIG. An example of 52 is shown. The mandrel 26 is formed so as to gradually deform from a circular portion 26a having a circular cross section to a non-circular portion 28b having an L-shaped cross section. At this time, the circular portion 26a
The circumference of the non-circular portion 26b is the same as that of the non-circular portion 26b.

マンドレル26はその大半が、つまりオーバーワインダ
ー24.36.更には金型52の直前に至るまでその断
面形状は円形とされ、軸方向炭素繊維強化樹脂層2及び
螺旋方向炭素繊維強化樹脂層4から成る繊維強化樹脂層
50は該円形断面形状をしたマンドレルの円形部分26
a上に形成される。
Most of the mandrels 26 are overwinders 24.36. Furthermore, the cross-sectional shape is circular until just before the mold 52, and the fiber-reinforced resin layer 50 consisting of the axial carbon fiber-reinforced resin layer 2 and the helical carbon fiber-reinforced resin layer 4 is a mandrel having the circular cross-sectional shape. circular part 26 of
formed on a.

勿論、軸方向炭素繊維強化樹脂層2或いは螺旋方向炭素
繊維強化樹脂層のいずれか又は両方に上述したと同様の
異種の繊維が混入される。
Of course, different types of fibers similar to those described above are mixed in either or both of the axial carbon fiber reinforced resin layer 2 and the helical carbon fiber reinforced resin layer.

次いで、このようにして円形断面マンドレル26a上に
形成された炭素繊維強化樹脂層5oは、マンドレル26
の非円形部分1本実施例ではL字形状部分26bへと送
給される。該炭素繊維強化樹脂層50は、第12図に図
示されるように、適当な形状をしたガイド部材60を使
用することによりマンドレル26bの凹部に押付けられ
、従ってマンドレル26bの外形状に倣った形状へと変
形される。金型52は所望のL字形状の案内溝52aが
形成されており、マンドレル26bからの樹脂層50を
引入れ、所望形状に賦形する。
Next, the carbon fiber reinforced resin layer 5o formed on the circular cross-section mandrel 26a in this way is transferred to the mandrel 26.
In this embodiment, the non-circular portion 26b is fed to the L-shaped portion 26b. As shown in FIG. 12, the carbon fiber reinforced resin layer 50 is pressed into the concave portion of the mandrel 26b by using a guide member 60 having an appropriate shape, so that the carbon fiber reinforced resin layer 50 has a shape that follows the outer shape of the mandrel 26b. transformed into. The mold 52 is formed with a desired L-shaped guide groove 52a, into which the resin layer 50 from the mandrel 26b is drawn and shaped into a desired shape.

このように本発明に従えば、マンドレル26及び金型5
2を所望の形状に形成することにより、任意の例えば、
上記り形を始め、H形、■形、矩形等の所望の断面形状
をした非円形の炭素繊維強化複合樹脂引抜成形品lを連
続的に製造することができる。
According to the present invention, the mandrel 26 and the mold 5
2 into a desired shape, any e.g.
Non-circular carbon fiber-reinforced composite resin pultrusion molded products 1 having desired cross-sectional shapes such as the above-mentioned shape, H-shape, ■-shape, rectangle, etc. can be continuously produced.

従来、例えば中空角材のような非円形断面の炭素繊維強
化複合樹脂引抜成形品を得るには、−旦外形が円形とさ
れる成形品を引抜いた後再度外形を矩形状に加工すると
いった工程が必要であり。
Conventionally, in order to obtain a carbon fiber-reinforced composite resin pultruded product with a non-circular cross section, such as a hollow square lumber, a process of first pulling out a molded product with a circular outer shape and then processing the outer shape into a rectangular shape again is necessary. It's necessary.

その製造は極めて困難であり、角部の繊維が少なくなり
、繊維分布が不均一となるといった問題を有し良好な品
質のものを得ることが難しかった。
Its production is extremely difficult, and there are problems such as fewer fibers at the corners and uneven fiber distribution, making it difficult to obtain products of good quality.

又、例えばり、H,I形等の非円形断面の繊維強化複合
樹脂引抜成形品を上述のようなオーバーワインディング
法にて得ることは不可能であった。
Further, it has been impossible to obtain a fiber-reinforced composite resin pultruded product having a non-circular cross section, such as an H or I shape, by the overwinding method as described above.

本発明に従えば非円形成形品であっても角部における各
炭素繊維強化樹脂層は一様の厚さ及び−様の繊維分布を
持ち、円形成形品と同様の高強度を達成し得る。
According to the present invention, even in a non-circular molded product, each carbon fiber reinforced resin layer at the corner has a uniform thickness and a -like fiber distribution, achieving high strength similar to that of a circular molded product. obtain.

本発明に従った円形断面の成形品を製造する場合には、
上記実施例にて使用したマンドレルの代りに所定の直径
を有したマンドレルを使用することにより同様の装置及
び製造方法にて製造し得る。
When manufacturing a molded article with a circular cross section according to the present invention,
By using a mandrel having a predetermined diameter in place of the mandrel used in the above embodiment, it can be manufactured using the same apparatus and manufacturing method.

上記各実施例では異種の繊維は、軸方向炭素繊維強化樹
脂層2に混入されるものとして説明したが1本発明に従
えば、軸方向炭素繊維強化樹脂層のみならず螺旋方向炭
素繊維強化樹脂層に、又はいずれか一方に選択的に混入
することができ、同等の破断応力、剪断剛性を得ること
ができた。
In each of the above embodiments, different types of fibers were explained as being mixed in the axial carbon fiber reinforced resin layer 2, but according to the present invention, not only the axial carbon fiber reinforced resin layer but also the helical carbon fiber reinforced resin layer It was possible to selectively mix it into the layer or either layer, and it was possible to obtain equivalent breaking stress and shear rigidity.

完」Lの」1釆 以上説明したように、本発明に従った炭素繊維強化複合
樹脂引抜成形品は軸方向及び横方向の強度が従来の成形
品に比較し飛躍的に向上したものとなり、又本発明によ
る製造方法によると斯る炭素繊維強化複合樹脂引抜成形
品が極めて簡単に且つ連続的に製造し得るという利点が
ある。
As explained above, the carbon fiber reinforced composite resin pultrusion molded product according to the present invention has dramatically improved strength in the axial and lateral directions compared to conventional molded products, Further, the manufacturing method according to the present invention has the advantage that such a carbon fiber reinforced composite resin pultrusion molded product can be manufactured extremely easily and continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は、本発明に係る炭素繊維強化複合樹脂
引抜成形品の実施例の断面図である。 第8図は、本発明に従って炭素繊維強化複合樹脂引抜成
形品を製造する際に使用する引抜成形機の一実施例の概
略説明図である。 第9図は、第1図及び第2図の炭素繊維強化複合樹脂引
抜成形品を製造する際に使用するマンドレル及び金型を
示す斜視図である。 第10図は、第8図の装置にて製造される本発明に係る
炭素繊維強化複合樹脂引抜成形品の断面図である。 第11図は、第3図の炭素繊維強化複合樹脂引抜成形品
を製造する際に使用するマンドレル及び金型を示す斜視
図である。 第12図は、第3図の炭素繊維強化複合樹脂引抜成形品
を製造する際に使用するマンドレルに適合されるガイド
部材の斜視図である。 1:炭素繊維強化複合樹脂引抜成形品 2:軸方向炭素繊維強化樹脂層 4:螺旋方向炭素繊維強化樹脂層 26:マンドレル 52:金型 第1図   第2図 第4図    第5図
1 to 7 are cross-sectional views of examples of the carbon fiber reinforced composite resin pultrusion molded product according to the present invention. FIG. 8 is a schematic explanatory diagram of an embodiment of a pultrusion molding machine used in manufacturing a carbon fiber reinforced composite resin pultrusion molded product according to the present invention. FIG. 9 is a perspective view showing a mandrel and a mold used in manufacturing the carbon fiber reinforced composite resin pultrusion molded product of FIGS. 1 and 2. FIG. FIG. 10 is a cross-sectional view of a carbon fiber-reinforced composite resin pultrusion molded product according to the present invention manufactured by the apparatus shown in FIG. 8. FIG. 11 is a perspective view showing a mandrel and a mold used in manufacturing the carbon fiber reinforced composite resin pultrusion molded product of FIG. 3. FIG. 12 is a perspective view of a guide member adapted to a mandrel used in manufacturing the carbon fiber reinforced composite resin pultrusion molded product of FIG. 3. 1: Carbon fiber reinforced composite resin pultrusion molded product 2: Axial carbon fiber reinforced resin layer 4: Spiral carbon fiber reinforced resin layer 26: Mandrel 52: Mold Fig. 1 Fig. 2 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 1)炭素繊維を軸方向に整列して形成される軸方向炭素
繊維強化樹脂層と、炭素繊維を軸線に対し螺旋状に巻付
けることにより形成される螺旋方向炭素繊維強化樹脂層
とを有した炭素繊維強化複合樹脂引抜成形品であって、
前記軸方向炭素繊維樹脂層或いは螺旋方向炭素繊維強化
樹脂層のいずれか又は両方に炭素繊維とは異種の繊維を
1〜20%含むことを特徴とする炭素繊維強化複合樹脂
引抜成形品。 2)軸方向炭素繊維樹脂層と螺旋方向炭素繊維樹脂層と
は互い違いに複数層形成されて成る特許請求の範囲第1
項記載の炭素繊維強化複合樹脂引抜成形品。 3)成形品の最内層は軸方向炭素繊維樹脂層である特許
請求の範囲第1項又は第2項記載の炭素繊維強化複合樹
脂引抜成形品。 4)異種の繊維はガラス繊維束又はアラミド繊維束とさ
れる特許請求の範囲第1項〜第3項のいずれかの項に記
載の炭素繊維強化複合樹脂引抜成形品。 5)異種の繊維は、単繊維が乱配向した毛糸状の繊維束
である特許請求の範囲第1項〜第4項のいずれかの項に
記載の炭素繊維強化複合樹脂引抜成形品。 6)軸線方向に対し垂直方向にとつた横断面形状は、円
形断面とされる特許請求の範囲第1項〜第5項のいずれ
かの項に記載の炭素繊維強化複合樹脂引抜成形品。 7)軸線方向に対し垂直方向にとつた横断面形状は、矩
形、L形、H形、I形等の非円形断面とされる特許請求
の範囲第1項〜第5項のいずれかの項に記載の炭素繊維
強化複合樹脂引抜成形品。 8)(a)円形断面を有した細長のマンドレルを用意す
る工程; (b)前記マンドレルの上に樹脂含浸炭素繊維を軸方向
に配置するか又は螺旋方向に巻付けて、所定の肉厚を有
した第1の炭素繊維強化樹脂層を形成する工程; (c)前記第1の炭素繊維強化樹脂層を固化するに先立
つて該炭素繊維強化樹脂層の上に樹脂含浸炭素繊維を前
記第1の炭素繊維強化樹脂層とは異なる方向に配列する
ことにより第2の炭素繊維強化樹脂層を形成する工程; (d)必要に応じて、前記(b)、(c)工程を所望回
数繰り返し行ない、軸方向炭素繊維強化樹脂層及び螺旋
方向炭素繊維強化樹脂層から成る未硬化炭素繊維強化樹
脂層積層体を形成する工程(e)前記軸方向炭素繊維強
化樹脂層或いは螺旋方向炭素繊維強化樹脂層のいずれか
又は両方に炭素繊維とは異種の繊維が1〜20%含まれ
ていること; (f)前記積層体を金型へと引込んで所定の寸法形状に
賦形する工程; (g)次いで、前記炭素繊維強化樹脂層積層体を固化す
る工程; を有することを特徴とする円形断面を有した炭素繊維強
化複合樹脂引抜成形品の製造法。 9)第1の炭素繊維強化樹脂層は軸方向炭素繊維強化樹
脂層である特許請求の範囲第8項記載の製造法。 10)異種の繊維は、ガラス繊維束又はアラミド繊維束
とされる特許請求の範囲第8項又は第9項記載の製造法
。 11)異種の繊維は、単繊維が乱配向した毛糸状の繊維
束である特許請求の範囲第8項〜第10項のいずれかの
項に記載の製造法。 12)(a)所定長さの円形断面部分と、該円形断面部
分に連接し、所定の断面形状へと漸次連続的に変化する
非円形断面部分とを有した細長のマンドレルを用意する
工程; (b)前記マンドレルの円形断面部分の上に樹脂含浸炭
素繊維を軸方向に配置するか又は螺旋方向に巻付けて、
所定の肉厚を有した第1の炭素繊維強化樹脂層を形成す
る工程; (c)前記第1の炭素繊維強化樹脂層を固化するに先立
つて該炭素繊維強化樹脂層の上に樹脂含浸炭素繊維を前
記第1の炭素繊維強化樹脂層とは異なる方向に配列する
ことにより第2の炭素繊維強化樹脂層を形成する工程; (d)必要に応じて、前記(b)、(c)工程を所望回
数繰り返し行なつた後、前記軸方向炭素繊維強化樹脂層
及び螺旋方向炭素繊維強化樹脂層から成る未硬化炭素繊
維強化樹脂層積層体を形成する工程; (e)前記軸方向炭素繊維強化樹脂層或いは螺旋方向炭
素繊維強化樹脂層のいずれか又は両方に炭素繊維とは異
種の繊維が1〜20%含まれていること; (f)前記積層体を前記マンドレルの非円形断面部分に
導き、次いで金型へと引込んで所定形状に賦形する工程
; (g)次いで、前記炭素繊維強化樹脂層積層体を固化す
る工程; を有することを特徴とする非円形断面を有した炭素繊維
強化複合樹脂引抜成形品の製造法。 13)第1の炭素繊維強化樹脂層は軸方向炭素繊維強化
樹脂層である特許請求の範囲第12項記載の製造法。 14)異種の繊維は、ガラス繊維束又はアラミド繊維束
とされる特許請求の範囲第12項又は第13項記載の製
造法。 15)異種の繊維は、単繊維が乱配向した毛糸状の繊維
束である特許請求の範囲第12項〜第14項のいずれか
の項に記載の製造法。
[Claims] 1) An axial carbon fiber-reinforced resin layer formed by aligning carbon fibers in the axial direction, and a helical carbon fiber reinforcement formed by winding the carbon fibers in a spiral around the axis. A carbon fiber reinforced composite resin pultrusion molded product having a resin layer,
A carbon fiber-reinforced composite resin pultruded product characterized in that either or both of the axial carbon fiber resin layer and the helical carbon fiber reinforced resin layer contain 1 to 20% of fibers of a different type than carbon fibers. 2) Claim 1 in which the axial carbon fiber resin layer and the helical carbon fiber resin layer are formed in plural layers alternately.
The carbon fiber reinforced composite resin pultrusion molded product described in . 3) The carbon fiber reinforced composite resin pultrusion molded product according to claim 1 or 2, wherein the innermost layer of the molded product is an axial carbon fiber resin layer. 4) The carbon fiber reinforced composite resin pultruded product according to any one of claims 1 to 3, wherein the different types of fibers are glass fiber bundles or aramid fiber bundles. 5) The carbon fiber reinforced composite resin pultrusion molded product according to any one of claims 1 to 4, wherein the different types of fibers are yarn-like fiber bundles in which single fibers are randomly oriented. 6) The carbon fiber-reinforced composite resin pultruded product according to any one of claims 1 to 5, wherein the cross-sectional shape taken in the direction perpendicular to the axial direction is a circular cross-section. 7) Any one of claims 1 to 5, wherein the cross-sectional shape taken in a direction perpendicular to the axial direction is a non-circular cross-section such as a rectangle, L-shape, H-shape, I-shape, etc. The carbon fiber reinforced composite resin pultrusion molded product described in . 8) (a) Providing an elongated mandrel with a circular cross section; (b) Arranging resin-impregnated carbon fibers on the mandrel in the axial direction or winding them in a helical direction to obtain a predetermined wall thickness; (c) prior to solidifying the first carbon fiber reinforced resin layer, forming a resin-impregnated carbon fiber on the carbon fiber reinforced resin layer; forming a second carbon fiber reinforced resin layer by arranging the carbon fiber reinforced resin layer in a direction different from that of the carbon fiber reinforced resin layer; (d) repeating the steps (b) and (c) a desired number of times as necessary; , Step (e) of forming an uncured carbon fiber reinforced resin layer laminate comprising an axial carbon fiber reinforced resin layer and a helical carbon fiber reinforced resin layer; (e) the axial carbon fiber reinforced resin layer or the helical carbon fiber reinforced resin layer; (f) A step of drawing the laminate into a mold and shaping it into a predetermined size and shape; (g) Next, a step of solidifying the carbon fiber reinforced resin layer laminate; A method for manufacturing a carbon fiber reinforced composite resin pultrusion molded product having a circular cross section. 9) The manufacturing method according to claim 8, wherein the first carbon fiber reinforced resin layer is an axial carbon fiber reinforced resin layer. 10) The manufacturing method according to claim 8 or 9, wherein the different types of fibers are glass fiber bundles or aramid fiber bundles. 11) The manufacturing method according to any one of claims 8 to 10, wherein the different types of fibers are yarn-like fiber bundles in which single fibers are randomly oriented. 12) (a) providing an elongated mandrel having a circular cross-sectional portion of a predetermined length and a non-circular cross-sectional portion connected to the circular cross-sectional portion and gradually and continuously changing to the predetermined cross-sectional shape; (b) axially disposing or helically winding resin-impregnated carbon fibers on the circular cross-section portion of the mandrel;
Step of forming a first carbon fiber reinforced resin layer having a predetermined thickness; (c) Before solidifying the first carbon fiber reinforced resin layer, resin-impregnated carbon is formed on the carbon fiber reinforced resin layer. forming a second carbon fiber reinforced resin layer by arranging fibers in a direction different from that of the first carbon fiber reinforced resin layer; (d) as necessary, the steps (b) and (c); After repeating the above a desired number of times, forming an uncured carbon fiber reinforced resin layer laminate consisting of the axial carbon fiber reinforced resin layer and the helical carbon fiber reinforced resin layer; (e) the axial carbon fiber reinforced Either or both of the resin layer and the helical carbon fiber reinforced resin layer contain 1 to 20% of fibers of a different type than carbon fibers; (f) guiding the laminate to a non-circular cross-sectional portion of the mandrel; , then drawing it into a mold and shaping it into a predetermined shape; (g) then solidifying the carbon fiber reinforced resin layer laminate; carbon fiber reinforced with a non-circular cross section. A method for manufacturing composite resin pultruded products. 13) The manufacturing method according to claim 12, wherein the first carbon fiber reinforced resin layer is an axial carbon fiber reinforced resin layer. 14) The manufacturing method according to claim 12 or 13, wherein the different types of fibers are glass fiber bundles or aramid fiber bundles. 15) The manufacturing method according to any one of claims 12 to 14, wherein the different types of fibers are yarn-like fiber bundles in which single fibers are randomly oriented.
JP62323189A 1987-09-17 1987-12-21 Pultrusion product made of carbon fiber reinforced composite resin and its production Pending JPH01163045A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62323189A JPH01163045A (en) 1987-12-21 1987-12-21 Pultrusion product made of carbon fiber reinforced composite resin and its production
KR1019880011922A KR890005310A (en) 1987-09-17 1988-09-15 Fiber-reinforced composite resin molded product and its manufacturing method
US07/246,127 US5122417A (en) 1987-09-17 1988-09-16 Fiber-reinforced composite resin pultrusion products and method of manufacturing the same
DE19883851023 DE3851023T2 (en) 1987-09-17 1988-09-16 Carbon fiber reinforced resin pultrusion articles and process for their manufacture.
EP19880308572 EP0308237B1 (en) 1987-09-17 1988-09-16 Carbon fibre-reinforced composite resin pultrusion products and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323189A JPH01163045A (en) 1987-12-21 1987-12-21 Pultrusion product made of carbon fiber reinforced composite resin and its production

Publications (1)

Publication Number Publication Date
JPH01163045A true JPH01163045A (en) 1989-06-27

Family

ID=18152060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323189A Pending JPH01163045A (en) 1987-09-17 1987-12-21 Pultrusion product made of carbon fiber reinforced composite resin and its production

Country Status (1)

Country Link
JP (1) JPH01163045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214427A (en) * 1988-02-22 1989-08-28 Kurabe:Kk Preparation of fiber-reinforced resin continuum
JP2008506551A (en) * 2004-07-15 2008-03-06 エプシロン コンポジット Composite tube obtained by pultrusion and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214427A (en) * 1988-02-22 1989-08-28 Kurabe:Kk Preparation of fiber-reinforced resin continuum
JP2008506551A (en) * 2004-07-15 2008-03-06 エプシロン コンポジット Composite tube obtained by pultrusion and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5122417A (en) Fiber-reinforced composite resin pultrusion products and method of manufacturing the same
CN101284422B (en) Glass fibre reinforced vertical protruded tubular product device and method
US5108810A (en) Composite element
US4623290A (en) Externally threaded fiber-reinforced plastic member and a method of producing the same
EP3062994B1 (en) Continuous production of profiles in a sandwich structure with foam cores and profile with hard-foam core
EP3212388B1 (en) Production of a plurality of different fiber composite components for high volumes in a continuous process
US4211818A (en) Composite strands of resin, carbon and glass and product formed from said strands
CA2003746A1 (en) Elongated lightweight fiber reinforced composite resin pultrusion-formed piece and method of manufacturing the same
RU2417889C1 (en) Composite reinforcement production line
EP0612607B1 (en) Tensile body with a formed profile as well as method for fabricating the same
RU112664U1 (en) TECHNOLOGICAL COMPLEX FOR PRODUCTION OF COMPLEXLY REINFORCED ARTICLES FROM POLYMERIC COMPOSITE MATERIALS
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JPH01163045A (en) Pultrusion product made of carbon fiber reinforced composite resin and its production
EP2470339A1 (en) Polymer material reinforced by long fibers and method and system for the production of said polymer material
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JPH01166936A (en) Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture
CN115464905A (en) Weaving method for improving shear strength of FRP (fiber reinforced plastic) bar
JP2007216554A (en) Fiber-reinforced synthetic resin pipe
JP2007216558A (en) Fiber-reinforced synthetic resin bobbin
WO2016066512A1 (en) Production of locally reinforced fibre composite components for high-volume series in a continuous process
JPS6359862B2 (en)
JPH01237130A (en) Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
KR102344943B1 (en) Continuous fiber composite manufacturing equipment
AT384777B (en) METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF FIBER REINFORCED PLASTIC PIPES
JPH0834065A (en) Pultrusion of hollow object made of frp