JPH01164922A - Oriented film - Google Patents

Oriented film

Info

Publication number
JPH01164922A
JPH01164922A JP32316887A JP32316887A JPH01164922A JP H01164922 A JPH01164922 A JP H01164922A JP 32316887 A JP32316887 A JP 32316887A JP 32316887 A JP32316887 A JP 32316887A JP H01164922 A JPH01164922 A JP H01164922A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
thin film
naphthalene
polymer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32316887A
Other languages
Japanese (ja)
Inventor
Kenichi Takeyama
竹山 健一
Koji Nitta
新田 恒治
Shigeru Hayakawa
茂 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32316887A priority Critical patent/JPH01164922A/en
Publication of JPH01164922A publication Critical patent/JPH01164922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable orientation without using a magnetizing device and formation at a low cost by using a thin film of a high-polymer liquid crystal contg. one kind of 2,6-naphthalene and the deriv. thereof. CONSTITUTION:The thin film of the high-polymer liquid crystal contg. at least one kind of the 2,6-naphthalene and the deriv. thereof is used as the oriented film. The oriented film is obtd. without using the magnetizing device by dissolving this high-polymer liquid crystal into a solvent, then spin-coating the soln. on a substrate consisting of glass, etc. In addition, this oriented film is capable of maintaining orientability even at a high temp. The cost is thereby reduced and the film is usable also as a surface treatment film in epitaxal growth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子液晶の薄膜を利用した配向膜に関する
ものである。さらに詳しく述べると、液晶表示素子の液
晶の配向処理層、無機薄膜(ダイヤモンド薄膜、超伝導
薄膜)を蒸着などでエピタキシャル成長させる場合の基
板表面処理層、ポリアセチレンなどの合成金属の配向性
を向上させるための基板表面処理層や有機化合物結晶の
エピタキシャル成長させるための基板表面処理層などに
使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an alignment film using a thin film of polymeric liquid crystal. More specifically, it is used to improve the orientation of liquid crystals in liquid crystal display elements, substrate surface treatment layers when inorganic thin films (diamond thin films, superconducting thin films) are grown epitaxially by vapor deposition, etc., and to improve the orientation of synthetic metals such as polyacetylene. It is used as a substrate surface treatment layer for the epitaxial growth of organic compound crystals, etc.

従来の技術 従来、液晶表示素子の配向処理層は電極を有する基板1
/C81o8やMq F2の斜め蒸着する方法や有機高
分子を塗布しラビングする方法が行われている。しかし
これらの方法は大面積に均一に加工することが困難であ
ると共に、ラビング法においてはダストの混入などで歩
留りの低下につながる。
Conventional technology Conventionally, the alignment treatment layer of a liquid crystal display element is a substrate 1 having electrodes.
A method of obliquely vapor depositing /C81o8 or Mq F2, and a method of coating and rubbing an organic polymer are used. However, with these methods, it is difficult to process uniformly over a large area, and in the rubbing method, dust is mixed in, leading to a decrease in yield.

これら問題点を解決するため、高分子液晶を使う方法が
提案されている(特開昭6l−42618)。
In order to solve these problems, a method using polymeric liquid crystals has been proposed (Japanese Patent Laid-Open No. 61-42618).

これは、高分子液晶が液晶相をしめず温度において、磁
場を印加した場合に、分子の長軸が磁場の方向に向き、
徐冷して得られる膜が分子配向性を持つ性質を利用する
ものである。
This is because when a magnetic field is applied to a polymer liquid crystal at a temperature where it is not in a liquid crystal phase, the long axis of the molecules is oriented in the direction of the magnetic field.
This method takes advantage of the fact that the film obtained by slow cooling has molecular orientation.

また、配向膜の他の用途として、結晶性の無機薄膜や有
機薄膜をエピタキシャル成長させる用途に使用が考えら
れる。従来この用途にはアルカリハライドなどのへき開
面、Sl基板などの半導体基板、 Ni 、Cu、Pd
、Ag、Au  などの金属が使用されている。
Further, another possible use of the alignment film is to epitaxially grow a crystalline inorganic thin film or an organic thin film. Conventionally, for this purpose, cleavage planes such as alkali halides, semiconductor substrates such as Sl substrates, Ni, Cu, Pd, etc.
, Ag, Au, and other metals are used.

発明が解決しようとする問題点 しかしながら、従来例の高分子液晶を使う方法では、磁
場を均一に印加するには高価な装置が必要であり製造コ
ストも高くなり、大面積の配向処理も困難である。
Problems to be Solved by the Invention However, the conventional method using polymer liquid crystals requires expensive equipment to uniformly apply a magnetic field, increases manufacturing costs, and makes it difficult to align large areas. be.

さらに、結晶性の無機薄膜や有機薄膜のエピタキシャル
成長させるには、従来の方法では基板の種類が限定され
ており、任意の基板に成長させることは困難であった。
Furthermore, in the epitaxial growth of crystalline inorganic thin films and organic thin films, the types of substrates used are limited in conventional methods, making it difficult to grow on arbitrary substrates.

また、従来の液晶高分子では耐熱性の点において、18
0度以上に温度が上がると配向性を維持することが困難
であるなどの問題を有している。
In addition, conventional liquid crystal polymers have a heat resistance of 18
When the temperature rises above 0 degrees, there are problems such as difficulty in maintaining orientation.

問題点を解決するための手段 本発明は上記問題点を解決するため、2.6−ナフタレ
ンおよびその誘導体のうち少なくとも一種を含有する高
分子液晶の薄膜を配向膜として用いる。
Means for Solving the Problems In order to solve the above problems, the present invention uses a polymeric liquid crystal thin film containing at least one of 2,6-naphthalene and its derivatives as an alignment film.

また、高分子液晶として、2.6−ナフタレン誘導体と
P−ヒドロキシ安息香酸および安息香酸誘導体のうち少
なくとも一種から製造されるポリエステルを配向膜とし
て用いる。さらに、側鎖に2.6−ナフタレン誘導体を
含有する高分子液晶を配向膜として用いる。
Further, as a polymeric liquid crystal, a polyester produced from at least one of a 2,6-naphthalene derivative, P-hydroxybenzoic acid, and a benzoic acid derivative is used as an alignment film. Furthermore, a polymer liquid crystal containing a 2,6-naphthalene derivative in its side chain is used as an alignment film.

作  用 上記の構成の高分子液晶は、溶媒に溶解後、ガラスなど
の基板にスピン塗布することにより配向膜を得ることが
できる。得られる配向膜は、高温においても配向性維持
することが可能であるので、液晶の配向処理層において
は低コスト実現すると共に、エピタキシャル成長におけ
る表面処理膜としても使用することができる。これはナ
フタレン環が相転移温度の高温化に寄与していることと
溶解状態でもある程度の分子秩序を維持していると考え
られる。
Function The polymeric liquid crystal having the above structure can be dissolved in a solvent and then spin-coated onto a substrate such as glass to obtain an alignment film. Since the resulting alignment film can maintain alignment even at high temperatures, it can be used as a liquid crystal alignment layer at a low cost and can also be used as a surface treatment film in epitaxial growth. This is thought to be because the naphthalene ring contributes to increasing the phase transition temperature and because it maintains a certain degree of molecular order even in the dissolved state.

実施例 以下本発明の実施例について説明する。なお、使用する
高分子液晶はポリエステル系だけで無く、側鎖型高分子
液晶で骨格主鎖がポリアクリル酸エステル、ポリメタク
リル酸エステルおよびシロキサン結合の場合においても
同様な効果を得ることができる。
Examples Examples of the present invention will be described below. Note that the same effect can be obtained not only when the polymer liquid crystal to be used is a polyester type but also when a side chain type polymer liquid crystal has a backbone main chain of polyacrylic ester, polymethacrylic ester, or siloxane bond.

(実施例1) ポリエステル系高分子液晶の0.1wt%のジメチルホ
ルムアミド溶液を調整し、スピンコード法(回転数35
00rpm)で透明電極を有するガラス基板に塗布し、
乾燥した。これを二枚準備しスペーサを挟み接着し、液
晶を減圧封入し、液晶表示素子を作成し電圧を印加する
と、配向特性に良好な結果が得られた。
(Example 1) A 0.1 wt% dimethylformamide solution of polyester polymer liquid crystal was prepared, and spin code method (rotation speed 35
00 rpm) on a glass substrate with a transparent electrode,
Dry. When two sheets of this were prepared, glued together with a spacer sandwiched between them, liquid crystal was sealed under reduced pressure, and a liquid crystal display element was created and a voltage was applied, good results were obtained in terms of alignment properties.

(実施例2) 実施例1と同様の溶液をガラス基板に塗布し乾燥した。(Example 2) A solution similar to that in Example 1 was applied to a glass substrate and dried.

この基板上にダイヤモンド薄膜の合成を試ミた。Arイ
オン源のイオンビームスパッタ装置に前述の基板を入れ
、グラファイトをターゲットトシて2000 e vの
Arイオンビームでスパッタした。基板上にダイヤモン
ドの結晶が合成されているのが確認された。
We attempted to synthesize a diamond thin film on this substrate. The above-described substrate was placed in an ion beam sputtering device using an Ar ion source, and graphite was placed as a target and sputtered with an Ar ion beam of 2000 eV. It was confirmed that diamond crystals were synthesized on the substrate.

(実施例3) 実施例2と同様の前処理をしたガラス基板上に超伝導薄
膜を形成することを試みた。この基板上にSa、Ba、
Cuの各々の酸化物をターゲットとする三源スパッタ装
置でArガスによるスパッタリング蒸着を行い、薄膜を
付着させた。得られた薄膜を4端子法で冷却しながら抵
抗を測定し、臨界温度を測定すると54Kを示し超伝導
薄膜が形成されることを確認した。
(Example 3) An attempt was made to form a superconducting thin film on a glass substrate that had been pretreated in the same manner as in Example 2. On this substrate, Sa, Ba,
A thin film was deposited by sputtering deposition using Ar gas using a three-source sputtering device using each oxide of Cu as a target. The resistance of the resulting thin film was measured while cooling it using a four-terminal method, and the critical temperature was 54 K, confirming that a superconducting thin film was formed.

(実施例4) 実施例2と同様の前処理をしたガラス基板上にシリコン
単結晶薄膜を形成することを試みた。この基板を減圧C
VD装置で基板加熱し、四塩化シリコンを導入し結晶性
薄膜を形成した。この薄膜をもちいて電界効果トランジ
スターを作成し、電子の移動度を測定するとシリコン単
結晶と同様であった。
(Example 4) An attempt was made to form a silicon single crystal thin film on a glass substrate that had been pretreated in the same manner as in Example 2. This board is reduced to C
The substrate was heated with a VD device, and silicon tetrachloride was introduced to form a crystalline thin film. When a field effect transistor was created using this thin film and the electron mobility was measured, it was found to be similar to that of a silicon single crystal.

(実施例6) 実施例2と同様の前処理をしたガラス基板上に有機化合
物の結晶作成することを試みた。フタロシアニンを蒸着
源に用いて、真空昇華を行った。
(Example 6) An attempt was made to create crystals of an organic compound on a glass substrate that had been pretreated in the same manner as in Example 2. Vacuum sublimation was performed using phthalocyanine as a deposition source.

得られた模は高分解能電子顕微鏡により分子像が観察さ
れた。
The molecular image of the obtained model was observed using a high-resolution electron microscope.

発明の効果 本発明の配向膜は、液晶表示素子の配向処理層に使えば
磁化装置を用いる事なく配向させることができ、低コス
トで製造することが可能となる。
Effects of the Invention When the alignment film of the present invention is used as an alignment treatment layer of a liquid crystal display element, alignment can be achieved without using a magnetization device, and it can be manufactured at low cost.

またエピタキシャル成長の処理層に用いると、基板を限
定する事なくエピタキシャル成長することが可能となり
、電子素子製造が容易に行える。
Furthermore, when used as a treatment layer for epitaxial growth, epitaxial growth can be performed without limiting the substrate, and electronic devices can be manufactured easily.

Claims (3)

【特許請求の範囲】[Claims] (1)2,6−ナフタレンおよびその誘導体のうち少な
くとも一種を含有する高分子液晶の薄膜からなることを
特徴とする配向膜。
(1) An alignment film comprising a thin film of polymeric liquid crystal containing at least one of 2,6-naphthalene and its derivatives.
(2)高分子液晶が2,6−ナフタレン誘導体とP−ヒ
ドロキシ安息香酸および安息香酸誘導体のうち少なくと
も一種から製造されるポリエステルであること特徴とす
る特許請求の範囲第1項記載の配向膜。
(2) The alignment film according to claim 1, wherein the polymeric liquid crystal is a polyester produced from at least one of a 2,6-naphthalene derivative, P-hydroxybenzoic acid, and a benzoic acid derivative.
(3)高分子液晶が側鎖に2,6−ナフタレン誘導体を
含有することを特徴とする特許請求の範囲第1項記載の
配向膜。
(3) The alignment film according to claim 1, wherein the polymer liquid crystal contains a 2,6-naphthalene derivative in a side chain.
JP32316887A 1987-12-21 1987-12-21 Oriented film Pending JPH01164922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32316887A JPH01164922A (en) 1987-12-21 1987-12-21 Oriented film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32316887A JPH01164922A (en) 1987-12-21 1987-12-21 Oriented film

Publications (1)

Publication Number Publication Date
JPH01164922A true JPH01164922A (en) 1989-06-29

Family

ID=18151838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32316887A Pending JPH01164922A (en) 1987-12-21 1987-12-21 Oriented film

Country Status (1)

Country Link
JP (1) JPH01164922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476522A (en) * 1990-07-18 1992-03-11 Hoechst Japan Ltd Liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270339A (en) * 1985-09-20 1987-03-31 Kureha Chem Ind Co Ltd Production of high-purity 2,6-diacetoxynaphthalene
JPS62227122A (en) * 1986-03-28 1987-10-06 Nec Corp Method for orientating high polymer liquid crystal
JPS62227124A (en) * 1986-03-28 1987-10-06 Nec Corp Method for forming film of high polymer liquid crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270339A (en) * 1985-09-20 1987-03-31 Kureha Chem Ind Co Ltd Production of high-purity 2,6-diacetoxynaphthalene
JPS62227122A (en) * 1986-03-28 1987-10-06 Nec Corp Method for orientating high polymer liquid crystal
JPS62227124A (en) * 1986-03-28 1987-10-06 Nec Corp Method for forming film of high polymer liquid crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476522A (en) * 1990-07-18 1992-03-11 Hoechst Japan Ltd Liquid crystal display element
US5408347A (en) * 1990-07-18 1995-04-18 Hoechst Aktiengesellschaft Polyester based liquid-crystal display device

Similar Documents

Publication Publication Date Title
JP2678055B2 (en) Manufacturing method of organic compound thin film
EP2190007B1 (en) Single crystal thin film of organic semiconductor compound and method for producing the same
JPH09232589A (en) Organic thin film transistor
Lovinger et al. Morphology of α-hexathienyl thin-film-transistor films
JP3943147B2 (en) Amorphous molecular material
JPH01164922A (en) Oriented film
JP4272778B2 (en) Method for producing crystalline thin film
JP3061845B2 (en) Method for producing inorganic compound thin film
JP2004235277A (en) Organic semiconductor element, organic semiconductor device, organic electroluminescent element, and organic electroluminescent equipment
JP2004260121A (en) Organic semiconductor element and method for manufacturing the same, and display unit using the same
JPH08181364A (en) Semiconductor device and its manufacture
JP3992203B2 (en) Oriented molecular thin film
JP2666541B2 (en) Crystalline organic thin film
JPS6338920A (en) Mim active matrix liquid crystal display element
JPH05265004A (en) Liquid crystal oriented film and liquid crystal element formed by using this film
JPH0685237A (en) Organic thin-film electronic component and formation method of organic thin film
JPS633031A (en) Electrically conductive metal phthalocyanine film and method for forming same
JPH01251015A (en) Liquid crystal element
JP5540290B2 (en) Method for producing condensed polycyclic aromatic compound thin film and condensed polycyclic aromatic compound thin film produced thereby
JPH111593A (en) Thin film of oriented molecule
JPH05261333A (en) Production of organic oriented membrane
JPH04204827A (en) Liquid crystal display device
JP2963951B2 (en) Liquid crystal display device
JPH0618889A (en) Liquid crystal element
JPH02197561A (en) Thin organic film and its production