JPH01160826A - Preparation of oxide superconducting thin film - Google Patents

Preparation of oxide superconducting thin film

Info

Publication number
JPH01160826A
JPH01160826A JP62322169A JP32216987A JPH01160826A JP H01160826 A JPH01160826 A JP H01160826A JP 62322169 A JP62322169 A JP 62322169A JP 32216987 A JP32216987 A JP 32216987A JP H01160826 A JPH01160826 A JP H01160826A
Authority
JP
Japan
Prior art keywords
film
earth element
oxide
thin film
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322169A
Other languages
Japanese (ja)
Inventor
Katsuhiro Imada
勝大 今田
Yoshio Takada
良雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62322169A priority Critical patent/JPH01160826A/en
Publication of JPH01160826A publication Critical patent/JPH01160826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an alkaline earth element-rare earth element-Cu-O based superconducting thin film of good quality, by preparing a ternary simultaneous vapor deposition film of Cu, alkaline earth element and rare earth element on a Cu (oxide) film prepared on a substrate and heat-treating the resultant film. CONSTITUTION:An oxide superconducting thin film containing Cu, an alkaline earth element and a rare earth element as components is prepared. In the process, a Cu or Cu oxide film is initially prepared on a substrate. A ternary simultaneous vapor deposition film of the Cu, alkaline earth element and rare earth element is then prepared on the resultant Cu or Cu oxide film and the formed vapor deposition film is subsequently heat-treated in an oxygen atmosphere. According to this method for preparing the superconductor thin film, the direct reaction of the alkaline earth element with the rare earth element and substrate is prevented by the Cu or Cu oxide film. The Cu or Cu oxide film is a component of a superconducting phase and causes hardly any bad influence even if diffused into the oxide superconducting thin film during heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物超電導薄膜作成法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconducting thin film.

[従来の技術] 従来、常電導から超電導へと転移する温度(以下]゛c
と略記】が最も高いといわれていたNb5G eでもI
−c約23にで、利用に際しては一般に高価な液体ヘリ
ウムを用いて冷却しなければならなかった。
[Conventional technology] Conventionally, the temperature at which normal conductivity transitions to superconductivity (hereinafter referred to as ゛c)
Even in Nb5G e, which was said to have the highest
-c of about 23, and generally had to be cooled using expensive liquid helium.

これに対し、近年ベドノルツ(0cdnorz)やミュ
ーラ−(M’uller)などによってT cが約30
〜40にである金属酸化物(1,a −[3a −S 
r −Ca−Cu−0系)が見出された(雑誌; Z、
Phys、 864、189 (1986) )、、そ
れに続いて%M、に、ウー(M、K、■U)などによっ
て′「cが80〜93に程度であるY −B a −C
u −0系物質が発見され(雑誌:Phys、 Rev
、 Left、、 58.908(+9871) 、其
の後の検討でY F3 a z Cu s Oy  (
[3≦y≦7)組成近傍が最も良好な特性を示すことが
判明した。また、YをLa、Nd、Sm、Eu、Gd、
Ho、Er、Yb、Lu等のランタノイドで置き換えて
も同様の特性が得られる。これらの超電導材料は冷媒と
して安価な液体窒素(沸点77K)を用いることが11
J能で、また、焼結体では77Kにおける臨界電流密度
(以下Jcと略記)がio’A/cm冨以上であること
が確認されており、実用上極めて有用な特性をもつ、一
方、この物質の応用としては、ジョセフソン素子や&j
1気検出素子などへの適用司能性も薄膜形成技術を通し
て検討されてきており、この方面での開発も急速に進め
られている。
On the other hand, in recent years, Bednorz and M'uller have shown that T c is about 30.
~40 metal oxides (1,a-[3a-S
r -Ca-Cu-0 system) was found (magazine; Z,
Phys, 864, 189 (1986)), followed by %M, and Wu (M, K, ■U) et al.
U-0 series substances were discovered (Magazine: Phys, Rev
, Left,, 58.908 (+9871) , In the later study, Y F3 az Cu s Oy (
It was found that the composition near [3≦y≦7) exhibited the best characteristics. In addition, Y is La, Nd, Sm, Eu, Gd,
Similar characteristics can be obtained by replacing it with lanthanoids such as Ho, Er, Yb, and Lu. These superconducting materials use inexpensive liquid nitrogen (boiling point 77K) as a refrigerant11.
It has been confirmed that the critical current density (hereinafter abbreviated as Jc) of the sintered body at 77K is more than io'A/cm, and has extremely useful properties in practice. Applications of materials include Josephson elements and &j
The application of this technology to 1-chip detection elements has also been investigated through thin film formation technology, and development in this direction is progressing rapidly.

この物質の薄膜化に対していくつかの方法が提案されて
おり、代表的な例としては蒸着法が挙げられ、Ma、L
n、Cuそれぞれの金属またはその化合物を蒸着源とし
て、抵抗または電子ビームなどにより加熱し、三元同時
蒸着するなどの方法が採られてきている。基板に付着し
た膜を酸素雰囲気中で約900℃程度に加熱すると、M
a−Ln −Cu −0のペロブスカイト型化合物が得
られ。
Several methods have been proposed for making thin films of this substance, and a typical example is vapor deposition.
Methods have been adopted in which metals such as n and Cu or their compounds are used as vapor deposition sources and heated with a resistor or an electron beam to carry out ternary simultaneous vapor deposition. When the film attached to the substrate is heated to about 900°C in an oxygen atmosphere, M
A perovskite type compound of a-Ln-Cu-0 was obtained.

しかも、最も単純な成膜方法であるため、比較的簡便に
作成できるなどの利点がある。
Moreover, since it is the simplest film forming method, it has the advantage that it can be produced relatively easily.

[発明が解決しようとする問題点] 従来の三元同時蒸着法による酸化物超電導薄膜作成法は
以上のようであるので、Ma、Ln、CUの三元素が混
然一体となって基板に接して生じる。これらの元素のう
ちMa、Lnは化学的な反応性が著しく高い物質である
ことが知られているが、特に成膜後の酸素雰囲気中での
熱処理においては、高温下で基板材料と激しく反応し、
基板成分の酸化物超電導膜内への拡散や、その結果生じ
る所望以外の化合物の生成などが起こるなどの問題点が
あった。
[Problems to be solved by the invention] As described above, the conventional ternary simultaneous vapor deposition method for producing an oxide superconducting thin film is such that the three elements Ma, Ln, and CU come into contact with the substrate in a mixed manner. occurs. Among these elements, Ma and Ln are known to have extremely high chemical reactivity, but they react violently with the substrate material at high temperatures, especially during heat treatment in an oxygen atmosphere after film formation. death,
There have been problems such as diffusion of substrate components into the oxide superconducting film and the resulting formation of undesired compounds.

この発明は上記のような問題点を解消するためになされ
たもので、酸素雰囲気中での熱処理に伴う基板とMaや
Lnとの反応を防止することにより、熱処理後に良質の
Ma−Ln−Cu−0系の酸化物超電導薄膜を得ること
を目的とする。
This invention was made to solve the above problems, and by preventing the reaction between the substrate and Ma and Ln during heat treatment in an oxygen atmosphere, high quality Ma-Ln-Cu can be produced after heat treatment. The purpose is to obtain a -0-based oxide superconducting thin film.

L問題点を解決するための手段] この発明に係る酸化物超電導薄膜作成法は、基板にCu
またはCu酸化物の膜を作成する工程、上記Cuまたは
Cu酸化物の膜に上記Cu、Ma、およびLnの三元同
時蒸着膜を作成する工程、並びに」二記三元同時蒸着膜
を酸素雰囲気中で熱処理する工程を順に施すものである
[Means for solving the L problem] The method for producing an oxide superconducting thin film according to the present invention includes
or a step of creating a film of Cu oxide, a step of creating a ternary co-deposited film of Cu, Ma, and Ln on the Cu or Cu oxide film, and a step of depositing the two ternary co-deposited films in an oxygen atmosphere. In this process, heat treatment steps are performed in order.

[作用] この発明におけるCuまたはC11酸化物膜は、Ma、
Lnと基板との直接反応を防止する。また、Cuまたは
Cu酸化物の膜は超電導相の成分であるから、熱処理中
に酸化物超電導薄膜中に拡散しても悪影響は小さい6 [実施例] 以下、この発明の一実施例を図について説明する。
[Function] The Cu or C11 oxide film in this invention has Ma,
Prevents direct reaction between Ln and the substrate. In addition, since the Cu or Cu oxide film is a component of the superconducting phase, even if it diffuses into the oxide superconducting thin film during heat treatment, there will be little adverse effect6. explain.

実施例1 第1図はこの発明の一実施例に係る三元同時蒸着装置を
示す断面図である。ルツボ(1)〜(3)にそれぞれY
、Ba、およびCu金属を充填し、真空外容器(4)を
高真空(〜l O−”torr)とした後、ヒータ(5
)〜(7)でルツボ(1)〜(3)を加熱して各金属を
蒸発せしめる。この時ヒータ(5)〜(7)に流れる電
流を電流制御器(8)〜(10)で制御卸し、各金属の
蒸発速度をそれぞれ独立に変化させる。
Embodiment 1 FIG. 1 is a sectional view showing a ternary simultaneous vapor deposition apparatus according to an embodiment of the present invention. Y for each crucible (1) to (3)
After filling the outer vacuum container (4) with metals such as , Ba, and Cu and making the outer vacuum container (4) a high vacuum (~l O-”torr), the heater (5
) to (7), the crucibles (1) to (3) are heated to evaporate each metal. At this time, the current flowing through the heaters (5) to (7) is controlled by current controllers (8) to (10), and the evaporation rate of each metal is changed independently.

各元素の蒸発速度は、水晶振動子式膜厚計(11)〜(
13)により計測され、電流制御器(8)〜(1o)に
フィードバックされてR幣される。 (141〜(!6
)はシャッタである。
The evaporation rate of each element is calculated from the quartz crystal film thickness meter (11) to (
13), and is fed back to the current controllers (8) to (1o). (141~(!6
) is the shutter.

次に、作成法について説明する。シャッタ(14)を開
はヒータ(5)でルツボ(1)を加熱し、例えばサファ
イアよりなる基板(17)に先ずCuを約0.5μm蒸
着した上にY、Ba、Cuを電流側!、1112i!+
8)〜(10)と膜厚計(It) 〜(+3)を使用し
てY:Ba:Cu与1:2:3(モル比)になるように
さらに約1tLm三元同時に堆積させ、この三元同時蒸
着膜を酸素雰囲気中で約900℃、1時間加熱後100
℃/時間で徐冷し、この抵抗温度特性を計測したところ
、約80にのT cをもつ超電導特性を示す膜となった
。第2図はこの膜のオージェ分析の結果であるが、Cu
1liiiの効果で基板(17)成分(AI)の酸化物
超電導膜内への拡散は殆ど見られない。
Next, the creation method will be explained. To open the shutter (14), the crucible (1) is heated with a heater (5), and on the substrate (17) made of, for example, sapphire, Cu is first deposited to a thickness of about 0.5 μm, and then Y, Ba, and Cu are deposited on the current side! , 1112i! +
Using 8) to (10) and a film thickness meter (It) to (+3), approximately 1 tLm of Y:Ba:Cu is deposited simultaneously at the same time so that the Y:Ba:Cu ratio is 1:2:3 (molar ratio). After heating the ternary co-deposited film at approximately 900°C for 1 hour in an oxygen atmosphere,
When the film was slowly cooled at a rate of 0.degree. C./hour and its resistance-temperature characteristics were measured, it was found to be a film exhibiting superconducting characteristics with a Tc of about 80. Figure 2 shows the results of Auger analysis of this film.
Due to the effect of 1liii, hardly any diffusion of the substrate (17) component (AI) into the oxide superconducting film is observed.

なお、あらかじめ蒸着する物質なCuの酸化物としたも
のも、基本的には同様な超電導特性と膜内組成をもっこ
とを確認した。
It was also confirmed that the superconducting property and the composition in the film were basically the same when using Cu oxide, which is a material to be vapor-deposited in advance.

実施例2 第3図はこの発明の他の実施例に係るクラスタ・イオン
ビーム(以下■CBと略す)法による三元同時蒸着装置
を示す断面図である。ルツボ(11〜(3)にそれぞれ
Cu、Y、13a金属を充填し、これを高具空とした後
ヒータ(5)を加熱して先ず(:11を蒸発させ、また
同時に電子シャワーをイオン化フィラメント(18)〜
(20)から照射してクラスタイオンとし、直流電源(
21)によりこれに数KVの電圧を印加して加速し、シ
ャッタ(14)を開けた状態でサファイア基板(!7)
に付着させる。この膜が約0.3μmとなったところで
他のルツボ(2)。
Embodiment 2 FIG. 3 is a sectional view showing a ternary simultaneous vapor deposition apparatus using a cluster ion beam (hereinafter abbreviated as CB) method according to another embodiment of the present invention. The crucibles (11 to (3)) are filled with Cu, Y, and 13a metals, and after emptying the crucibles, the heater (5) is heated to evaporate (:11), and at the same time, the electron shower is transferred to the ionized filament. (18)~
(20) to form cluster ions, which are then irradiated from a DC power source (
21), the sapphire substrate (!7) is accelerated by applying a voltage of several KV to it, and the shutter (14) is opened.
attach it to. When this film reaches approximately 0.3 μm, move to another crucible (2).

(3)をヒータ(61、+7)で加熱し、電子シャワー
(19+、  (201により同様にクラスタイオンを
形成させ、シャッタ(14)を全開してこれを三元同時
蒸着する。この時、膜厚計(1■)〜(I3)と電流制
御器(8)〜(lO)で蒸着速度を制御し、Y:Ba:
Cu’=1:2:3 (モル比)となるようにヒータ温
度および加速電圧を調整した。 (22)は加速電極で
ある。
(3) is heated with heaters (61, +7), cluster ions are similarly formed by electron showers (19+, (201), and the shutter (14) is fully opened to perform ternary simultaneous vapor deposition. At this time, the film is The deposition rate was controlled using the thickness gauges (1■) to (I3) and the current controllers (8) to (lO), and Y:Ba:
The heater temperature and accelerating voltage were adjusted so that Cu'=1:2:3 (molar ratio). (22) is an accelerating electrode.

この膜を実施例1と同様に熱処理し、Tcを計測したと
ころ、約85Kが得られた。また、オージェによる厚さ
方向の元素分布も、傾向は基本的には第2図と一致して
おり、Δlの校内拡散は殆ど見られなかった。
When this film was heat treated in the same manner as in Example 1 and the Tc was measured, approximately 85K was obtained. Furthermore, the tendency of the element distribution in the thickness direction according to Auger is basically the same as that shown in FIG. 2, and almost no intra-dimensional diffusion of Δl was observed.

比較例 サファイア基板(17)に第1図に示す装置によりY、
Ba、CuをY:Ba:Cu’:l :2:3 (モル
比)で約16mの厚さで三元同時蒸着を行ない、酸素雰
囲気中で約900℃、1時間加熱後、■00℃/時間で
徐冷した。このようにして得られた膜にAu電極をつけ
四探針法で低温特性を計測したところ、全く超電導現象
を示さなかった。
Comparative Example: Y was applied to the sapphire substrate (17) using the apparatus shown in FIG.
Ba and Cu were ternary co-evaporated to a thickness of about 16 m at Y:Ba:Cu':l :2:3 (molar ratio), and after heating at about 900°C for 1 hour in an oxygen atmosphere, ■ 00°C /hour. When the film thus obtained was attached with an Au electrode and its low-temperature properties were measured using the four-probe method, no superconductivity was observed.

また、この膜をオージェ分光法により分析したところ第
4図に示すように、サファイア基板の!成分であるAI
が原着膜中に広く拡散していることが判明した。
Furthermore, when this film was analyzed by Auger spectroscopy, as shown in Figure 4, it was found that the ! AI as a component
was found to be widely diffused in the deposited film.

なお、上記実施例では蒸着源としてY、Ba。Note that in the above embodiments, Y and Ba are used as vapor deposition sources.

Cuの金屑をそれぞれ用いた場合について説明したが、
これらの化合物をそれぞれ用いてもよく、上記実施例と
同様の効果を奏する。
The case where Cu gold scraps were used was explained, but
These compounds may be used individually, and the same effects as in the above embodiments can be obtained.

また、上記実施例では成分系としてY−Ba−Cu−0
系の場合を示したが%Yを例えばLa。
In addition, in the above example, the component system is Y-Ba-Cu-0
Although the case of the system is shown, %Y is, for example, La.

Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、L
u等の他の希土類元素、Baを例えばSr等の他のアル
カリ土類元素で置き換えたLn−Ma−Cu−0系の場
合でも同様の効果を奏する。
Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, L
Similar effects can be obtained even in the case of Ln-Ma-Cu-0 series in which other rare earth elements such as u or Ba are replaced with other alkaline earth elements such as Sr.

また、上記実施例では基板(17)としてサファイアを
用いた場合を示したが、SiやSiOやガラスなどであ
ってもよく、上記実施例と同様の効果が得られる。
Further, in the above embodiment, a case was shown in which sapphire was used as the substrate (17), but it may also be made of Si, SiO, glass, etc., and the same effects as in the above embodiment can be obtained.

また、上記実施例では先ず基板(17)にC11を蒸着
後、連続的にCu、Y、Baを三元同時蒸着したが、C
uを蒸着後、酸素雰囲気中で熱処理し、Cu酸化物膜と
した上にCu、Y、Baを三元同時蒸着する方法を用い
ても上記実施例と同様の効果がirJられる。
In addition, in the above example, first, C11 was deposited on the substrate (17), and then Cu, Y, and Ba were ternary simultaneously deposited, but C
The same effect as in the above embodiment can be obtained by using a method of ternary simultaneous vapor deposition of Cu, Y, and Ba on a Cu oxide film formed by heat treatment in an oxygen atmosphere after vapor deposition of u.

[発明の効果] 以上のように、この発明によれば、基板にCuまたはC
u酸化物の膜を作成する工程、上記CuまたはCu酸化
物の膜に上記Cu%Ma、およびLnの三元同時蒸着膜
を作成する工程、並びに上記三元同時蒸着膜を酸素雰囲
気中で熱処理する工程を順に施すので、熱処理に伴う基
板とMaやLnとの反応を防ぐことができ、良好な超電
導特性を示す酸化物超電導薄膜が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the substrate is coated with Cu or C.
A step of creating a film of u oxide, a step of creating a ternary co-deposited film of Cu%Ma and Ln on the Cu or Cu oxide film, and heat treatment of the ternary co-deposited film in an oxygen atmosphere. Since the steps are performed in sequence, it is possible to prevent the reaction between the substrate and Ma or Ln during heat treatment, and there is an effect that an oxide superconducting thin film exhibiting good superconducting properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る三元同時蒸着装置を
示す断面図、第2図はこの発明の一実施例による方法で
作成された酸化物超電導薄膜の厚み方向の元素分布を示
す特性図、第3図はこの発明の他の実施例に係るICB
法による三元同時蒸着装置を示す断面図、第4図は比較
例による膜の厚み方向の元素分布を示す特性図である。 図において、(+)〜(3)はルツボ、(5)〜(7)
はヒータ、(8)〜(lO)は電流制御器、(11)〜
(13)は膜厚計、(14)〜(■6)はシャッタ、(
17)は基板、(18)〜(20)はイオン化フィラメ
ント、(22)は加速電極である。 なお、各図中同一符号は同一または相当部分を示す。 第1図 1〜3 ニルツボ゛ j27:ヒー7 I4−16:シマ゛ツタ 17:基板 第2図 第3図 1F〜2θ、1tノ化フイラメシF 、72 : /7U遣電極 第4図
FIG. 1 is a cross-sectional view showing a ternary simultaneous vapor deposition apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the element distribution in the thickness direction of an oxide superconducting thin film produced by the method according to an embodiment of the present invention. The characteristic diagram, FIG. 3, is an ICB according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a ternary simultaneous vapor deposition apparatus using the method, and FIG. 4 is a characteristic diagram showing the element distribution in the thickness direction of a film according to a comparative example. In the figure, (+) to (3) are crucibles, (5) to (7)
is a heater, (8) to (lO) are current controllers, (11) to
(13) is a film thickness meter, (14) to (■6) are shutters, (
17) is a substrate, (18) to (20) are ionization filaments, and (22) is an accelerating electrode. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figures 1 to 3 Nirutsubo j27: Heater 7 I4-16: Shima Ivy 17: Board Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)Cu、アルカリ土類元素(以下Maと略す)およ
び希土類元素(以下Lnと略す)を成分として有する酸
化物超電導薄膜を作成するものにおいて、基板にCuま
たはCu酸化物の膜を作成する工程、上記CuまたはC
u酸化物の膜に上記Cu、Ma、およびLnの三元同時
蒸着膜を作成する工程、並びに上記三元同時蒸着膜を酸
素雰囲気中で熱処理する工程を順に施す酸化物超電導薄
膜作成法。
(1) For creating an oxide superconducting thin film containing Cu, an alkaline earth element (hereinafter abbreviated as Ma), and a rare earth element (hereinafter abbreviated as Ln) as components, a Cu or Cu oxide film is created on a substrate. Step, the above Cu or C
A method for producing an oxide superconducting thin film, which comprises sequentially performing a step of forming a ternary co-deposited film of Cu, Ma, and Ln on a u oxide film, and a step of heat-treating the ternary co-deposited film in an oxygen atmosphere.
(2)CuまたはCu酸化物の膜、並びにCu、Ma、
およびLnの三元同時蒸着膜は、クラスタ・イオンビー
ム蒸着法により作成される特許請求の範囲第1項記載の
酸化物超電導薄膜作成法。
(2) Cu or Cu oxide film, as well as Cu, Ma,
2. The method for producing an oxide superconducting thin film according to claim 1, wherein the ternary co-deposited film of Ln and Ln is produced by a cluster ion beam evaporation method.
JP62322169A 1987-12-17 1987-12-17 Preparation of oxide superconducting thin film Pending JPH01160826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322169A JPH01160826A (en) 1987-12-17 1987-12-17 Preparation of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322169A JPH01160826A (en) 1987-12-17 1987-12-17 Preparation of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01160826A true JPH01160826A (en) 1989-06-23

Family

ID=18140707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322169A Pending JPH01160826A (en) 1987-12-17 1987-12-17 Preparation of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01160826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834879A (en) * 2010-04-26 2012-12-19 株式会社藤仓 Oxide superconducting conductor and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834879A (en) * 2010-04-26 2012-12-19 株式会社藤仓 Oxide superconducting conductor and production method therefor
US8772201B2 (en) 2010-04-26 2014-07-08 Fujikura Ltd. Oxide superconducting conductor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
DE3889989T2 (en) Superconducting thin film and process for its production.
JP2567460B2 (en) Superconducting thin film and its manufacturing method
EP0285030B1 (en) Process for producing superconducting thin films
DE68918489T2 (en) Production of superconducting oxide films by pre-oxygen nitrogen annealing treatment.
EP0292958B1 (en) Method for preparing thin film of compound oxide superconductor
JP2711253B2 (en) Superconducting film and method for forming the same
US5196398A (en) Process for producing thallium type superconducting thin film
JPH01160826A (en) Preparation of oxide superconducting thin film
JPS63261770A (en) Manufacture of superconducting device
JPS63310515A (en) Manufacture of superconductor membrane
JPH0825742B2 (en) How to make superconducting material
US5264413A (en) Bi-Sr-Ca-Cu-O compounds and methods
JP2583552B2 (en) Method for producing oxide superconducting thin film
JPH01203203A (en) Formation of superconducting material layer
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH01261204A (en) Production of oxide based superconductor
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH01160827A (en) Preparation of oxide superconducting thin film
EP0333513B1 (en) Oxide superconductor
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2835235B2 (en) Method of forming oxide superconductor thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP2668532B2 (en) Preparation method of superconducting thin film