JPH01160038A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01160038A
JPH01160038A JP31986187A JP31986187A JPH01160038A JP H01160038 A JPH01160038 A JP H01160038A JP 31986187 A JP31986187 A JP 31986187A JP 31986187 A JP31986187 A JP 31986187A JP H01160038 A JPH01160038 A JP H01160038A
Authority
JP
Japan
Prior art keywords
oxide film
polysilicon
etching
film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31986187A
Other languages
Japanese (ja)
Other versions
JPH0581182B2 (en
Inventor
Keisuke Suzui
啓介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31986187A priority Critical patent/JPH01160038A/en
Publication of JPH01160038A publication Critical patent/JPH01160038A/en
Publication of JPH0581182B2 publication Critical patent/JPH0581182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate the need for the usage of a <111> substrate having comparatively high crystalline defect density, and to improve yield by omitting an unstable etching process in the manufacturing process of a semiconductor device. CONSTITUTION:A semiconductor substrate 12 is thermally oxidized, polysilicon 14 is formed, an impurity is introduced, and an opening section is shaped selectively through a PB process. An oxide film 15 is formed through thermal oxidation, and a CVD oxide film 16 is grown. Etchback is conducted through anisotropic etching, and a resist 17 is applied onto the whole surface. The resist 17 is etched through anisotropic etching, the impurity is introduced, and etching is performed from the oxide film 16 to the oxide film 15 through wet etching. The resist 17 is removed, and polysilicon 19 is grown on the whole surface. Etchback is executed through anisotropic etching, and an insulating film 20 is shaped onto the polysilicon 19 through thermal oxidation. The oxide film 15 is gotten rid of to expose the semiconductor substrate, and an electrode metal is applied and a contact is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に目己整合技
術による微細コンタクト形成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to forming fine contacts using a self-alignment technique.

〔従来の技術〕[Conventional technology]

従来、この(事のコンタクト形成方法は、第3図(al
〜teaのようになっ°Cいた。すなわち、半導体基板
21を酸化して酸化膜22を形成する。その上部にボロ
ンドープされたポリシリコン23全形成し、これを選択
的にエツチングした後このポリシリコン23が露出しな
いように窒化膜24で覆い。
Conventionally, this method of forming a contact is shown in FIG.
It was like ~tea °C. That is, the semiconductor substrate 21 is oxidized to form the oxide film 22. A boron-doped polysilicon 23 is entirely formed on top of the polysilicon 23, which is selectively etched, and then covered with a nitride film 24 so that the polysilicon 23 is not exposed.

酸化膜22上にポリシリコン23と窒化膜24の開孔部
を選択的に形成する(第3図(a))。ウェットエツチ
ングにより半導体基板21上の酸化膜22をポリシリコ
ン23の下部の一部までも除去するようにサイドエツチ
ングする(第3図(b))。その後、全面に不純物を含
まないポリシリコン25ケ形成し、ボロンドープされた
ポリシリコン23から不純物?含まないポリシリコン2
5ヘボロンを熱拡散する(第3図(C1)。ヒドラジン
による選択エツチングによって不純物を含まないボリシ
リコン25を除去する。この時、酸化膜22がサイドエ
ッチされた部分にポリシリコン25が残る(第3図(d
J)。しかる後、基板全熱酸化し、絶!#膜26を形成
する(第3図(e))。かかる従来例においては、第3
図(dJと(elの工程においてヒドラジンによるウェ
ットエツチングの際に、半導体基板21のエツチングス
ピードが不純物を含まないポリシリコン25のエツチン
グスピードより十分小さくなるように(111)基板を
使用している。しかる後酸化膜26をエツチングして半
導体基板21を露出し、金属電極を取り付けていた。
Openings in polysilicon 23 and nitride film 24 are selectively formed on oxide film 22 (FIG. 3(a)). The oxide film 22 on the semiconductor substrate 21 is side-etched by wet etching so as to remove even a part of the lower part of the polysilicon 23 (FIG. 3(b)). After that, 25 pieces of polysilicon containing no impurities are formed on the entire surface, and impurities are added from the polysilicon 23 doped with boron. Contains no polysilicon 2
Polysilicon 25 containing no impurities is removed by selective etching with hydrazine. At this time, polysilicon 25 remains in the area where oxide film 22 is side-etched (Fig. 3 (C1)). Figure 3 (d
J). After that, the board is completely oxidized and is completely destroyed! A # film 26 is formed (FIG. 3(e)). In such a conventional example, the third
During the wet etching with hydrazine in the steps of FIGS. Thereafter, the oxide film 26 was etched to expose the semiconductor substrate 21, and metal electrodes were attached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のコンタクト形成方法は、不純物金言まな
いポリシリコン25をヒドラジンによるウェットエツチ
ングにより除去する工程において、ヒドラジンが原液の
ままエツチングを行ったのでは斑点状の残りが生じる。
In the conventional contact forming method described above, in the step of removing the impurity-free polysilicon 25 by wet etching with hydrazine, if the etching is performed with the undiluted hydrazine solution, a spot-like residue will be produced.

また、アルコールにより希釈してエツチングを行えば、
斑点状の残りは生じないが、アルコールの蒸発によりウ
ェットエツチングスピードが変化し、終点が定まらない
Also, if you dilute it with alcohol and perform etching,
Although no spot-like residue is produced, the wet etching speed changes due to the evaporation of the alcohol, and the end point is not determined.

また、半導体基板の<111>表面は他の結晶軸表面を
もつ半導体基板と比べ結晶の欠陥密度が高く、半導体素
子の形成において歩留りの低下を招いている。また、(
111>表面は、界面準位が高いので、バイポーラトラ
ンジスタとMOSトランジスタの混在を考えた場合、M
OSトランジスタの電流制御が困難になるという欠点が
ある。
Furthermore, the <111> surface of a semiconductor substrate has a higher density of crystal defects than semiconductor substrates having other crystal axis surfaces, leading to a decrease in yield in the formation of semiconductor elements. Also,(
111> Since the surface has a high interface state, when considering the coexistence of bipolar transistors and MOS transistors, M
There is a drawback that current control of the OS transistor becomes difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のコンタクト形成方法は、半導体基板上に将来電
極になる導電膜全形成する工程と、前記基板全酸化する
工程と、前記基板上の全面に酸化膜全形成し該酸化膜全
異方性エツチングにより前記導電膜の側壁に残るように
形成する工程と、前記基板上の全面に酸化膜の除去に耐
えられる換金形成し核層を異方性エツチングにより前記
側壁の酸化膜が除去できる厚さとなるように形成する工
程と、前記仰1壁の酸化膜を除去し、かつ前記側壁の酸
化膜の下部酸化膜′に除去する工程と、前記酸化膜の除
去に耐えられる膜を除去する工程を有する。
The contact forming method of the present invention includes a step of completely forming a conductive film that will become an electrode in the future on a semiconductor substrate, a step of completely oxidizing the substrate, and a step of completely forming an oxide film on the entire surface of the substrate and making the oxide film completely anisotropic. A step of forming the conductive film so as to remain on the side wall of the conductive film by etching, and forming a core layer on the entire surface of the substrate to a thickness that can withstand the removal of the oxide film, and anisotropically etching the core layer to a thickness that allows the oxide film on the side wall to be removed. a step of removing the oxide film on the first wall, a step of removing the oxide film below the oxide film of the side wall, and a step of removing a film that can withstand the removal of the oxide film. have

〔実施例〕〔Example〕

次に、不発明について図面全参照して説明する。 Next, the invention will be explained with reference to all the drawings.

第1図(al〜+k)は本発明の一実施例の製造工程を
示す図である。半導体基板1上に2500A程度の熱酸
化膜2全形成し、その上に3500A程度のポリシリコ
ン3を形成し、ポリシリコン3へ不純物(例えばボロン
)を導入(例えばイオン注入少し、さらに4000A程
度のCVD&化膜4全形成し例えば1000℃20分で
スチーム処理をして焼きしめ、PR工工程へて選択的に
開孔部を形成する(同図(a))。次に基板1全酸化し
て酸化膜5全形成する(同図(b))。CVD酸化膜6
′k例えハフoo。
FIG. 1 (al to +k) is a diagram showing the manufacturing process of an embodiment of the present invention. A thermal oxide film 2 of approximately 2,500 A is formed on the semiconductor substrate 1, a polysilicon 3 of approximately 3,500 A is formed on it, and an impurity (for example, boron) is introduced into the polysilicon 3 (for example, a small amount of ion implantation is performed, and then a thermal oxide film of approximately 4,000 A is formed on the semiconductor substrate 1. After the entire CVD & chemical film 4 is formed, it is baked by steam treatment at 1000° C. for 20 minutes, and openings are selectively formed in the PR process (see figure (a)).Next, the substrate 1 is completely oxidized. The entire oxide film 5 is formed (FIG. (b)).CVD oxide film 6
'k analogy huffoo.

へ程度成長(同図(C1)L、異方性エツチングにてエ
ツチングバックして側壁に酸化i7’に残す(同図(d
))。全面に例えばレジスト8を塗布する(同図(eJ
)。異方性エツチングにてレジスト8をエツチングする
(同図(f))。ウェットエツチングにより酸化膜7か
ら酸化膜5ヘエッチング金行う(同図(g))。レジス
ト8を除去する(同図(h))。ポリシリコン1(l全
面に成長する(同図(i])。異方性エッチングにてエ
ツチングバックする(同図(jυ。
(Figure (C1) L) etched back by anisotropic etching to leave oxidized i7' on the side wall (Figure (d)
)). For example, resist 8 is applied to the entire surface (see figure (eJ
). The resist 8 is etched by anisotropic etching (FIG. 8(f)). Etching is carried out from the oxide film 7 to the oxide film 5 by wet etching (FIG. 3(g)). The resist 8 is removed ((h) in the same figure). Polysilicon 1 (l grows on the entire surface (I) in the same figure). It is etched back by anisotropic etching (Jυ in the same figure).

熱酸化して絶縁膜11をポリシリコン10上に作る(同
図(k))。その後、酸化膜5を除去して半導体基板を
露出し、電極金属全被着してコンタクト全形成する。
An insulating film 11 is formed on the polysilicon 10 by thermal oxidation (FIG. 4(k)). Thereafter, the oxide film 5 is removed to expose the semiconductor substrate, and all electrode metals are deposited to form all contacts.

第2図fat〜(k+は本発明の他の実施例の製造工程
を示す図である。半導体基板12 k 2500A程度
に熱酸化し、3500A程度のポリシリコン14を形成
し、不純物の導入を行い、PR工程をへて選択的に開孔
部を形成する(同図(a))。熱酸化して酸化膜15を
形成する(同図(b))。CVD酸化膜16を例えば7
000A程度成長する(同図(C))。
FIG. 2 fat~(k+ is a diagram showing the manufacturing process of another embodiment of the present invention. Semiconductor substrate 12 k is thermally oxidized to about 2500A, polysilicon 14 of about 3500A is formed, and impurities are introduced. , selectively form openings through a PR process ((a) in the same figure). Form an oxide film 15 by thermal oxidation ((b) in the same figure). For example, the CVD oxide film 16 is
It grows to about 000A ((C) in the same figure).

異方性エツチングにてエッチバックする(同図(d))
Etch back using anisotropic etching ((d) in the same figure)
.

全面に例えばレジスト17を塗布する(同図(e))。For example, a resist 17 is applied to the entire surface (FIG. 2(e)).

異方性エツチングにてレジスト17をエツチングする(
同図(f))。不純物の導入全行い、ウェットエツチン
グにより酸化膜16から酸化膜15ヘエッチングを行う
(同図(gJ )。レジスト17を除去する(同図(h
))。ポリシリコン19を全面に成長する(同図(i)
)。異方性エツチングにてエッチパツクする(同図(j
))。熱酸化して絶縁膜20をポリシリコン19上に作
る(同図(k))。この実施例ではポリシリコン14の
上に第1図の実施例のように絶縁膜4がないのでポリシ
リコン14への不純物の導入が第2図(alや(glの
工程において可能であるという自由度がある。
Etch the resist 17 by anisotropic etching (
Figure (f)). After all impurities are introduced, the oxide film 16 is etched from the oxide film 15 by wet etching ((gJ) in the same figure).The resist 17 is removed ((h) in the same figure).
)). Polysilicon 19 is grown over the entire surface ((i) in the same figure).
). Etch-pack using anisotropic etching (see figure (j)
)). An insulating film 20 is formed on the polysilicon 19 by thermal oxidation (FIG. 4(k)). In this embodiment, there is no insulating film 4 on the polysilicon 14 as in the embodiment shown in FIG. There is a degree.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ヒドラジンによる選択エ
ツチング全行なう必要がないので、半導体装置全製造す
る過程において不安定なエツチング工程全省略でき、比
較的結晶欠陥密度の高い〈111〉基板を使用する必要
がなく歩留り全同上させる効果がある。
As explained above, in the present invention, since it is not necessary to perform selective etching with hydrazine, the unstable etching process can be omitted in the entire process of manufacturing semiconductor devices, and a <111> substrate with a relatively high density of crystal defects can be used. This is not necessary and has the effect of increasing the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(klは本発明の一実施例による製造工
程を示す断面図、第2図(aJ〜(klは本発明の他の
実施例による製造工程を示す断面図、第3図(al〜(
elは従来の製造工程を示す断面図である。 1・・・半導体基板、2・・・酸化膜、3・・・ポリシ
リコン、4・・・酸化膜、5・・・酸化膜、6・・・C
VD酸化膜、7・・・側壁CVD酸化膜、8・・・レジ
スト、9・・・コンタクト開孔部、10・・・ポリシリ
コン、11・・・酸化膜、12・・・半導体基板、13
・・・酸化膜、14・・・ポリシリコン、15・・・酸
化膜、16・・・CVD酸化膜、17・・・レジスト、
18・−・コンタクト開孔部、19・・−ポリシリコン
、20・・・酸化膜、21・・・基板、22・・・酸化
膜、23・・・ポリシリコン、24・・・窒化膜、25
・・・ポリシリコン、26・・・酸化展代理人 弁理士
  内 原   晋 −へ(イ)寸の3− \j−(Y’) (’J 寸 M(N            寸 η N= N
’ cV−J寸端ト ■) 牛 C (b             へく        
    −一〇ヘ       ハ      へ 烟       惨      0
Figures 1(a) to (kl are cross-sectional views showing the manufacturing process according to one embodiment of the present invention, Figures 2 (aJ to (kl) are cross-sectional views showing the manufacturing process according to another embodiment of the present invention, Figure (al~(
el is a cross-sectional view showing a conventional manufacturing process. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Oxide film, 3... Polysilicon, 4... Oxide film, 5... Oxide film, 6... C
VD oxide film, 7... Sidewall CVD oxide film, 8... Resist, 9... Contact opening portion, 10... Polysilicon, 11... Oxide film, 12... Semiconductor substrate, 13
... Oxide film, 14... Polysilicon, 15... Oxide film, 16... CVD oxide film, 17... Resist,
18... Contact opening portion, 19... - Polysilicon, 20... Oxide film, 21... Substrate, 22... Oxide film, 23... Polysilicon, 24... Nitride film, 25
...Polysilicon, 26... Oxidation agent Susumu Uchihara, patent attorney
' cV-J dimension ■) Cow C (b heku
-10 He ha He smoke misery 0

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に将来電極になる導電膜を形成する工程
と、前記半導体基板を酸化する工程と、前記半導体基板
上の全面に酸化膜を形成し該酸化膜を異方性エッチング
により前記導電膜の側壁に残るように形成する工程と、
前記半導体基板上の全面に酸化膜の除去に耐えられる膜
を形成し該膜を異方性エッチングにより前記側壁の酸化
膜が除去できる厚さとなるように形成する工程と、前記
側壁の酸化膜を除去し、かつ前記側壁の酸化膜の下部酸
化膜を除去する工程と、前記酸化膜の除去に耐えられる
前記膜を除去する工程とを有することを特徴とする半導
体装置の製造方法。
A process of forming a conductive film that will become an electrode in the future on a semiconductor substrate, a process of oxidizing the semiconductor substrate, and forming an oxide film on the entire surface of the semiconductor substrate and anisotropically etching the oxide film to remove the conductive film. a step of forming it so that it remains on the side wall;
forming a film that can withstand the removal of the oxide film on the entire surface of the semiconductor substrate and forming the film to a thickness that allows the oxide film on the side walls to be removed by anisotropic etching; and removing the oxide film on the side walls. and removing a lower oxide film of the oxide film on the sidewall; and removing a portion of the film that can withstand removal of the oxide film.
JP31986187A 1987-12-16 1987-12-16 Manufacture of semiconductor device Granted JPH01160038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31986187A JPH01160038A (en) 1987-12-16 1987-12-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31986187A JPH01160038A (en) 1987-12-16 1987-12-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH01160038A true JPH01160038A (en) 1989-06-22
JPH0581182B2 JPH0581182B2 (en) 1993-11-11

Family

ID=18115051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31986187A Granted JPH01160038A (en) 1987-12-16 1987-12-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01160038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596632B2 (en) 1995-02-17 2003-07-22 Micron Technology, Inc. Method for forming an integrated circuit interconnect using a dual poly process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596632B2 (en) 1995-02-17 2003-07-22 Micron Technology, Inc. Method for forming an integrated circuit interconnect using a dual poly process
US6740573B2 (en) 1995-02-17 2004-05-25 Micron Technology, Inc. Method for forming an integrated circuit interconnect using a dual poly process
US7160801B2 (en) 1995-02-17 2007-01-09 Micron Technology, Inc. Integrated circuit using a dual poly process
US7332811B2 (en) 1995-02-17 2008-02-19 Micron Technology, Inc. Integrated circuit interconnect

Also Published As

Publication number Publication date
JPH0581182B2 (en) 1993-11-11

Similar Documents

Publication Publication Date Title
JPH02239630A (en) Manufacture of semiconductor device
JP3346348B2 (en) Method for manufacturing semiconductor device
JPS60194570A (en) Manufacture of semiconductor device
US5254495A (en) Salicide recessed local oxidation of silicon
JPH01160038A (en) Manufacture of semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
JPH0629554A (en) Manufacture of semiconductor device
JPH05326497A (en) Manufacture of semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device
JP2583243B2 (en) Method for manufacturing MOS transistor
JP2705933B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100296125B1 (en) Gate electrode formation method of semiconductor device
KR100226483B1 (en) Method of forming a device isolation film of semiconductor device
JPH09129876A (en) Manufacture of semiconductor device
JP2812298B2 (en) Manufacturing method of bipolar transistor
JPS61220372A (en) Manufacture of semiconductor device
JP2551028B2 (en) Method for manufacturing semiconductor device
JPH08236475A (en) Formation of contact window
JPS6279625A (en) Manufacture of semiconductor device
KR19990062507A (en) Method of forming isolation film for semiconductor device
JPS62291941A (en) Method for isolating elements in semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPH11289082A (en) Semiconductor device and its manufacture
JPH02304931A (en) Semiconductor device and manufacture thereof
JPS6159870A (en) Manufacture of semiconductor device