JPH01153573A - Sintered aln material - Google Patents

Sintered aln material

Info

Publication number
JPH01153573A
JPH01153573A JP62313427A JP31342787A JPH01153573A JP H01153573 A JPH01153573 A JP H01153573A JP 62313427 A JP62313427 A JP 62313427A JP 31342787 A JP31342787 A JP 31342787A JP H01153573 A JPH01153573 A JP H01153573A
Authority
JP
Japan
Prior art keywords
tin
aln
thermal conductivity
weight
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62313427A
Other languages
Japanese (ja)
Inventor
Masafumi Mizuguchi
水口 雅文
Kyoichi Okamoto
恭一 岡本
Kazuo Watanabe
一雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP62313427A priority Critical patent/JPH01153573A/en
Publication of JPH01153573A publication Critical patent/JPH01153573A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered AlN material having high thermal conductivity and bonding strength to a metallized layer, enabling ready positioning of metallized pattern by the color and useful as a mounting substrate for semiconductor element, by using a composition composed of Y2O3, TiN and AlN at specific ratios. CONSTITUTION:Raw materials are compounded and mixed at ratios to attain a composition composed of 1-10wt.% of Y2O3, 0.1-15wt.% of TiN and the remaining part of AlN. The mixture is crushed, formed and calcined at 1,700-1,900 deg.C in vacuum or in a non-oxidizing gas atmosphere (e.g. N2).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の実装用基板などとして用いられる
AlN質焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AlN sintered body used as a substrate for mounting semiconductor elements.

〔従来の技術とその問題点〕[Conventional technology and its problems]

半導体素子の実装用基板としては、アルミナ基板が多用
されてきた。これに対して、実装基板の放熱特性をより
改善するために、最近では熱伝導率がアルミナの5〜1
0倍高く、かつ高絶縁性で低誘電率という特性を有する
AuN基板が開発されている。ただし、AuN基板を実
用化するにあたっては、メタライズ技術の面で解決すべ
き以下のような問題点がある。
Alumina substrates have been frequently used as substrates for mounting semiconductor devices. On the other hand, in order to further improve the heat dissipation characteristics of the mounting board, alumina has recently been developed with a thermal conductivity of 5 to 1.
An AuN substrate has been developed that has characteristics of 0 times higher dielectric constant, high insulating property, and low dielectric constant. However, in putting the AuN substrate into practical use, there are the following problems that need to be solved in terms of metallization technology.

まず、実装基板にメタライズを行う場合、現在では赤外
線を利用した位置決めセンサを使用している。ところが
、従来の高熱伝導性AuN基板は白色で透光性があるう
え、色ムラがあったり透光性が不均一であるなど外観不
良が多い、このため、/IIN基板のメタライズを行う
場合、赤外線センサによる正確な位置検出が困難であっ
た。−方、赤外線センサによる位置検出が容易な灰色〜
黒灰色を呈するAlNも知られているが、このようなA
RNは熱伝導率がそれほど高くない。
First, when metallizing a mounting board, a positioning sensor that uses infrared light is currently used. However, conventional high thermal conductivity AuN substrates are white and translucent, and often have poor appearance such as uneven color and uneven translucency.For this reason, when metalizing /IIN substrates, Accurate position detection using infrared sensors was difficult. -On the other hand, the color is gray, which makes it easy to detect the position using an infrared sensor.
AlN that exhibits a black-gray color is also known;
RN does not have very high thermal conductivity.

次に、AuN基板のメタライズ技術としては、従来、■
Ag、Ag−Pd、Cuなどのペーストを使用する厚膜
法、■AfLN基板の表面にCu−0系の共晶を利用し
て銅板を直接接合するDBC(Direct Bond
 Copper)法、が知られている。しかし、従来の
AuN基板に厚膜法を適用した場合、接合強度が2kg
/mm2程度と弱いという問題があった。また、従来の
AuN基板にDBC法を適用した場合、熱サイクルに弱
いという問題があった。更に、従来のAuN基板にこれ
らの技術を適用した場合、いずれもメタライズ層にろう
付けや高温はんだ付けをすることができなかった。
Next, the conventional metallization technology for AuN substrates is
Thick film method using pastes such as Ag, Ag-Pd, Cu, etc.; DBC (Direct Bond), which uses Cu-0 based eutectic to directly bond a copper plate to the surface of an AfLN substrate;
Copper) method is known. However, when applying the thick film method to a conventional AuN substrate, the bonding strength is 2 kg.
There was a problem that it was weak at about /mm2. Further, when the DBC method was applied to a conventional AuN substrate, there was a problem that it was susceptible to thermal cycles. Furthermore, when these techniques are applied to conventional AuN substrates, it is not possible to braze or high-temperature solder the metallized layer.

なお、AlN基板については、従来より更に熱伝導性を
向上させることが望ましいことは勿論である。
It goes without saying that it is desirable to further improve the thermal conductivity of the AlN substrate compared to the conventional one.

本発明は上記問題点を解決するためになされたものであ
り、メタライズの位置決めが容易で、しかもメタライズ
層の接合強度を向上することができ、更には熱伝導率も
従来より高いAlN質焼結体を提供することを目的とす
る。
The present invention was made in order to solve the above problems, and it is possible to easily position the metallized layer, improve the bonding strength of the metallized layer, and furthermore, the AlN sintered material has higher thermal conductivity than before. The purpose is to provide the body.

〔問題点を解決するための手段と作用〕本発明(1)A
lN質焼結体は、Y2O31〜10重量%、TiN0.
1〜15重量%、残部A文Nからなることを特徴とする
ものである。− 本発明のAlN焼結体は各原料を上記の割合で配合し、
混合・粉砕した後、成形し、真空中又は非酸化性ガス雰
囲気中、1700〜1900℃で焼成することにより製
造することができる。非酸化性ガスとしては、アルゴン
ガス、−酸化炭素ガス、ヘリウムガスなどを挙げること
ができる。
[Means and effects for solving the problems] Present invention (1) A
The 1N sintered body contains 1 to 10% by weight of Y2O3 and 0.0% by weight of TiN.
It is characterized in that it consists of 1 to 15% by weight and the remainder A and N. - The AlN sintered body of the present invention is prepared by blending each raw material in the above ratio,
It can be produced by mixing and pulverizing, shaping, and firing at 1700 to 1900°C in vacuum or in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include argon gas, -carbon oxide gas, and helium gas.

また、本発明のAlN質焼結体に適用するメタライズ技
術としては、Moなどを用いた高融点金属法が望ましい
が、厚膜法やDBC法を適用することもできる。
Further, as the metallization technique applied to the AlN sintered body of the present invention, a high melting point metal method using Mo or the like is preferable, but a thick film method or a DBC method can also be applied.

本発明において、Y2O3は焼結助剤として作用する。In the present invention, Y2O3 acts as a sintering aid.

Y2O3の組成を1〜lO重量%としたのは、1重量%
未満では緻密な焼結体を得ることができず、一方10重
量%を超えると熱伝導率が低下し、色ムラが発生すると
ともに、コスト高にもなるなどの理由による。
The composition of Y2O3 is 1 to 10% by weight, which is 1% by weight.
If it is less than 10% by weight, a dense sintered body cannot be obtained, while if it exceeds 10% by weight, the thermal conductivity will decrease, color unevenness will occur, and the cost will increase.

本発明において、TiNはAfLN質焼結体を着色させ
、メタライズ層との接合強度を向上させるとともに、熱
伝導率をより一層高める作用を有する。なお、X線回折
やEPMAによれば、TiNはA!;LNと固溶せず、
焼結助剤であるY2O3とも反応せず、A9.Hの粒界
に単層で存在することが確認されている。また、メタラ
イズを行うと、焼結体中のTiNが焼結体とメタライズ
層との境界に移動し、A見N−TiN−金属層が形成さ
れ、TiN層を介して接合がなされる。
In the present invention, TiN has the effect of coloring the AfLN sintered body, improving the bonding strength with the metallized layer, and further increasing the thermal conductivity. Furthermore, according to X-ray diffraction and EPMA, TiN is A! ; Does not form solid solution with LN;
It does not react with Y2O3, which is a sintering aid, and A9. It has been confirmed that it exists in a single layer at the grain boundaries of H. Furthermore, when metallization is performed, TiN in the sintered body moves to the boundary between the sintered body and the metallized layer, forming an A-N-TiN-metal layer and bonding via the TiN layer.

本発明において、TiNの組成を0.1〜15重量%と
したのは以下のような理由による。すなわち、0.1重
量%未満では焼結体が着色せず、メタライズ層の接合強
度も低下する。一方、15重量%を超えると熱伝導率が
著しく低下し、メタライズ層の接合強度も低下する。な
お、焼結体の着色の観点からは、TiNの組成は0.5
〜15重量%であることが望ましい、また、メタライズ
層の接合強度の観点からは、TiNの組成は3〜15重
量%であることが望ましい、また、熱伝導率の観点から
は、TiNの組成は0.1〜5重量%であることが望ま
しい。
In the present invention, the reason why the composition of TiN is set to 0.1 to 15% by weight is as follows. That is, if it is less than 0.1% by weight, the sintered body will not be colored and the bonding strength of the metallized layer will also decrease. On the other hand, if it exceeds 15% by weight, the thermal conductivity will drop significantly and the bonding strength of the metallized layer will also drop. In addition, from the viewpoint of coloring the sintered body, the composition of TiN is 0.5
From the viewpoint of bonding strength of the metallized layer, the composition of TiN is preferably from 3 to 15% by weight.Also, from the viewpoint of thermal conductivity, the composition of TiN is preferably 0.1 to 5% by weight.

なお、上述したTiNの作用と同様の作用はTiO2,
Tic、TiSi、TiB2などでも発揮し得る可能性
については充分予想される。ただし、TiO2を用いた
場合には、焼成時にTiO2の酸素がAMNの窒素と入
れ換わってTiNとなり、AlN中に酸素が固溶して熱
伝導率が著しく低下するため不利である。
Note that the same effect as that of TiN mentioned above is obtained by TiO2,
It is fully anticipated that Tic, TiSi, TiB2, etc. may also be used. However, when TiO2 is used, oxygen in TiO2 is replaced with nitrogen in AMN during firing to form TiN, which is disadvantageous because oxygen is dissolved in AlN and the thermal conductivity is significantly reduced.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1表に示すように、An N、 Y 203及びT 
i Nを所定の割合で配合し、混合・粉砕した。
As shown in Table 1, An N, Y 203 and T
iN was blended in a predetermined ratio, mixed and pulverized.

これらをそれぞれ直径16■層、厚さ81■の円柱状に
成形した後、窒素雰囲気中、1750℃で1時間焼成し
てAfLN質焼結体を製造した。
Each of these was formed into a cylindrical shape with a diameter of 16 layers and a thickness of 81 mm, and then fired at 1750° C. for 1 hour in a nitrogen atmosphere to produce an AfLN sintered body.

得られた各焼結体の色調及び熱伝導率を第1表に示す。Table 1 shows the color tone and thermal conductivity of each of the obtained sintered bodies.

マタ、Y2O35重量%、T i N O,1〜15i
量%、残部AlNの焼結体について、200メツシユの
スクリーンを用いてMOペーストをスクリーン印刷し、
乾燥した後、水素炉内に装入し、N2−H2雰囲気中、
1400℃で焼き付けた0次いで、Niめっきを施した
後、ピンをはんだ付けし、引張り強さを調べた。この結
果を第1表に示す。
Mata, Y2O35% by weight, T i N O, 1-15i
MO paste was screen printed using a 200 mesh screen for the sintered body with the remaining amount of AlN,
After drying, it was charged into a hydrogen furnace and heated in an N2-H2 atmosphere.
After baking at 1400° C. and Ni plating, the pins were soldered and the tensile strength was examined. The results are shown in Table 1.

第  1  表 〔発明の効果〕 以上詳述したように本発明のAfLN焼結体では、着色
によりメタライズの位置決めが容易となり、メタライズ
層の接合強度が向上し、更に熱伝導率も従来よりも高く
なる。したがって、半導体素子の実装基板などとしての
実用化という点で、その工業的価値は極めて高い。
Table 1 [Effects of the Invention] As detailed above, in the AfLN sintered body of the present invention, the coloring makes it easier to position the metallized layer, the bonding strength of the metallized layer is improved, and the thermal conductivity is also higher than before. Become. Therefore, its industrial value is extremely high in terms of its practical use as a mounting board for semiconductor elements.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] Y_2O_3 1〜10重量%、TiN 0.1〜15
重量%、残部AlNからなることを特徴とするAlN質
焼結体。
Y_2O_3 1-10% by weight, TiN 0.1-15
An AlN-based sintered body characterized in that the balance by weight is AlN.
JP62313427A 1987-12-11 1987-12-11 Sintered aln material Pending JPH01153573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313427A JPH01153573A (en) 1987-12-11 1987-12-11 Sintered aln material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313427A JPH01153573A (en) 1987-12-11 1987-12-11 Sintered aln material

Publications (1)

Publication Number Publication Date
JPH01153573A true JPH01153573A (en) 1989-06-15

Family

ID=18041166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313427A Pending JPH01153573A (en) 1987-12-11 1987-12-11 Sintered aln material

Country Status (1)

Country Link
JP (1) JPH01153573A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197364A (en) * 1988-02-03 1989-08-09 Sumitomo Electric Ind Ltd Colored ceramic sintered body
JP2006251784A (en) * 2005-02-09 2006-09-21 Dainippon Printing Co Ltd Multi-pattern bright sled and bright multi-pattern product using the same
WO2012123413A1 (en) * 2011-03-11 2012-09-20 Ceramtec Gmbh Coil bodies having a ceramic core
JP2018184316A (en) * 2017-04-25 2018-11-22 株式会社Maruwa Aluminum nitride sintered body and manufacturing method thereof
US11319254B2 (en) 2018-09-19 2022-05-03 Maruwa Co., Ltd. Aluminum nitride sintered body and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128971A (en) * 1985-11-28 1987-06-11 京セラ株式会社 Aluminum nitride base sintered body and manufacture
JPH01100066A (en) * 1987-10-10 1989-04-18 Nippon Chemicon Corp Production of aluminum nitride sintered compact
JPH01115856A (en) * 1987-10-27 1989-05-09 Hitachi Metals Ltd Production of ceramic resistive element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128971A (en) * 1985-11-28 1987-06-11 京セラ株式会社 Aluminum nitride base sintered body and manufacture
JPH01100066A (en) * 1987-10-10 1989-04-18 Nippon Chemicon Corp Production of aluminum nitride sintered compact
JPH01115856A (en) * 1987-10-27 1989-05-09 Hitachi Metals Ltd Production of ceramic resistive element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197364A (en) * 1988-02-03 1989-08-09 Sumitomo Electric Ind Ltd Colored ceramic sintered body
JP2006251784A (en) * 2005-02-09 2006-09-21 Dainippon Printing Co Ltd Multi-pattern bright sled and bright multi-pattern product using the same
WO2012123413A1 (en) * 2011-03-11 2012-09-20 Ceramtec Gmbh Coil bodies having a ceramic core
CN103703522A (en) * 2011-03-11 2014-04-02 陶瓷技术有限责任公司 Coil bodies having a ceramic core
JP2018184316A (en) * 2017-04-25 2018-11-22 株式会社Maruwa Aluminum nitride sintered body and manufacturing method thereof
US11319254B2 (en) 2018-09-19 2022-05-03 Maruwa Co., Ltd. Aluminum nitride sintered body and method for producing same

Similar Documents

Publication Publication Date Title
EP0574956B1 (en) Metallized circuit substrate comprising nitride type ceramics
JP3575068B2 (en) Ceramic metallized substrate having smooth plating layer and method of manufacturing the same
JPS6341165B2 (en)
JPH0574166B2 (en)
JPH01153573A (en) Sintered aln material
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH0349108A (en) Copper conductor composition material
JPH01107592A (en) Electric circuit board
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JPH02101131A (en) Metallizing composition on the surface of ceramics and metallizing method
JPH01188483A (en) Metallizing composition
JPH07172961A (en) Sintered aluminum nitride having metallized layer and its production
JPH04285085A (en) Ceramic substrate with thick film
JPS6310226B2 (en)
JP2531716B2 (en) Beryllia Ceramic Metallizing Paste
JPH02217383A (en) Sintered aluminum nitride and production thereof
JPS63115393A (en) High heat-conductivity circuit board
JPH04280880A (en) Metallizer and ceramic metallized substrate
JPH01192757A (en) Production of paste of ceramic superconductor
JPH0312379A (en) Metallizing paste
JPH01788A (en) Surface conductive ceramic substrate, method for manufacturing the same, and metallizing composition used therefor
JPH01260713A (en) Metallized paste composition for nitride-based ceramic substrate
JPH01286938A (en) Metallizing composition for substrate having low thermal expansion