JPH01152728A - Multilayer structure resist - Google Patents

Multilayer structure resist

Info

Publication number
JPH01152728A
JPH01152728A JP31099787A JP31099787A JPH01152728A JP H01152728 A JPH01152728 A JP H01152728A JP 31099787 A JP31099787 A JP 31099787A JP 31099787 A JP31099787 A JP 31099787A JP H01152728 A JPH01152728 A JP H01152728A
Authority
JP
Japan
Prior art keywords
resist
electron beam
temperature
substance
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31099787A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
勲 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31099787A priority Critical patent/JPH01152728A/en
Publication of JPH01152728A publication Critical patent/JPH01152728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To eliminate variations in sensitivity of resist in an electron beam lithography by coating the surface of the resist with substance which is easily sublimed, and controlling the temperature of the resist to be constant by the heat of sublimation. CONSTITUTION:The surface of a resist for forming a latent image is coated with substance which is easily vaporized or sublimed at a temperature rising due to the collision of particle beam. For example, as the resist 3, polymethacrylate(PMMA) is employed, as sublimated substance, phenanthrene 4 is employed, and a glass substrate 1, a pattern forming layer (Cr) 2 are coated with PMMA 3, phenanthrene 4. Since the sublimation point of phenanthrene in vacuum is 95.5 deg.C, it is lower than 120-150 deg.C of the glass transition point of the PMMA, and the temperature rise of the resist due to the irradiation of an electron beam does not exceeds 95.5 deg.C. Thus, a variation in the sensitivity of the resist to the heating of the resist does not occur, but it is maintained constant, thereby forming a pattern of high accuracy.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は集積回路製造の際に、電子線などの描画で微
細パターンを形成する為に用いられる多層構造レジスト
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a multilayer resist used for forming fine patterns by drawing with an electron beam or the like during the manufacture of integrated circuits.

(従来の技術) 集積回路の微細化は、高密度化による信頼性の向上や高
速化などからとどまれる事を知らず、最近は1t1m以
下の1/4tIM乃至1/10μs以下のパターン形成
へと進みつつある。この様な微細パターン形成には、従
来主に用いられていた光学的な方法では、光の波長の限
界から0.5μs程度までと考えられている。
(Conventional technology) The miniaturization of integrated circuits has not stopped due to improvements in reliability and speed due to higher density, and recently progress has been made to pattern formation from 1/4tIM of 1t1m or less to 1/10μs or less. It's coming. It is thought that the optical method, which has been mainly used in the past, can form such fine patterns up to about 0.5 μs due to the limit of the wavelength of light.

これ以下の微細加工の手段としては種々あるけれども、
未だ各々長短が有り、いずれが主流となるかは明確にな
っていない。しかし、これらの中でも、電子線による。
Although there are various methods of microfabrication below this,
Each still has its advantages and disadvantages, and it is not clear which one will become the mainstream. However, among these, by electron beam.

いわゆるEB描画は比較的早期から開発されており、光
学的リングラフイーに用いられているマスク製作には生
産的レベルで既に活躍している。
So-called EB lithography was developed relatively early, and is already in use at a productive level in the production of masks used in optical lithography.

集積回路製造は現在のところ、光学的リングラフイーに
よる方法、いわゆるフォトリングラフイーが主であり、
光源や光学レンズの改良により。
At present, the main method for manufacturing integrated circuits is optical phosphorography, so-called photophosphorography.
Through improvements in light sources and optical lenses.

1μs以下のパターニングも可能となって来ている。Patterning in less than 1 μs is becoming possible.

従って、これに用いられるマスクパターン精度もより以
上の高精度化が望まれている。
Therefore, it is desired that the precision of the mask pattern used therefor be even higher.

このマスク製作は従来、主に、光学的な方法によって行
なわれていたが、最近は、精度、生産性などの観点から
ほとなんと全て電子線描画によって作られているのが現
状である。
Traditionally, masks have been manufactured mainly by optical methods, but in recent years, from the viewpoint of accuracy and productivity, almost all masks have been manufactured by electron beam lithography.

上記の様に、現在は、この集積回路製造用マスクはほと
んど電子線描画によって作られているが、電子線描画方
式には種々有り、大きく分類すると、スポット電子線に
よるラスター描画方式と矩形成形電子線によるベクター
描画方式の二つが有る。
As mentioned above, most of the masks for integrated circuit manufacturing are currently made by electron beam lithography, but there are various types of electron beam lithography, and they can be broadly classified into raster lithography using spot electron beams, and rectangular pattern lithography. There are two vector drawing methods using lines.

この二つの描画方式を比較すると、電子線描画装置の構
造及び電子光学系の制御はより複雑になるけれども、矩
形成形電子線によるベクタ一方式の方が生産性(スルー
プット)、精度などの点から優れている。
Comparing these two lithography methods, although the structure of the electron beam lithography equipment and the control of the electron optical system are more complex, the vector type using a rectangular shaped electron beam is superior in terms of productivity (throughput) and accuracy. Are better.

まずスループットに関しては、スポット電子線では電子
線の太さは、最小パターンサイズで決められるので、大
きなパターンでも全面を細かく走査する必要があるのに
対して、ベクター描画方式の矩形成型電子線では、大き
なパターンは大きな形状の電子線で、しかもパターンの
有る領域のみを走査すればよいので描画速度が格段に速
くなる。
First, in terms of throughput, with a spot electron beam, the thickness of the electron beam is determined by the minimum pattern size, so even large patterns need to be scanned over the entire surface finely, whereas with a rectangular electron beam using a vector drawing method, A large pattern requires a large electron beam to scan only the area where the pattern is, so the drawing speed becomes much faster.

精度に関しては、スポット電子線はその強度分布はガウ
ス分布なので、パターンエツジの切れのシャープさ、い
わゆるエツジ分解能は矩形成形電子線に比べると劣る。
Regarding accuracy, since the intensity distribution of a spot electron beam is a Gaussian distribution, the sharpness of pattern edges, so-called edge resolution, is inferior to that of a rectangular electron beam.

この様に、ベクター描画方式の矩形成形電子線による描
画は多くの利点、特に生産性の点で非常に優れている。
As described above, drawing using a rectangular electron beam using a vector drawing method has many advantages, particularly in terms of productivity.

しかし唯一の欠点として次の様なものがある。それはレ
ジスト加熱と呼ばれており、電子線の衝突によるレジス
トの温度上昇が、矩形成型電子線の大きさによって差が
有る為、大きな電子線で照射する場合のレジスト温度上
昇が小さな電子線の場合よりも高くなり、電子線照射量
が同一でも、レジスト温度の温度依存性によって、レジ
ストの現像の際に、設計通りの精度の良い均一なパター
ン形成が困難であると言う点である。
However, the only drawbacks are as follows. This is called resist heating, and since the temperature rise of the resist due to the collision of the electron beam differs depending on the size of the rectangular electron beam, the temperature rise of the resist when irradiated with a large electron beam is different from that when irradiated with a small electron beam. Even if the amount of electron beam irradiation is the same, the temperature dependence of the resist temperature makes it difficult to form an accurate and uniform pattern as designed during resist development.

つまり、マスクは熱伝導率の低いガラスから構成されて
いるので、衝突の際に発生する熱の蓄積が電子線の大き
さの大小によって異なる為、パターンの大きさにより温
度上昇に差が生じる。また形成するパターンの粗密に依
存して温度上昇が異なる。即ち、同一の電流密度でも電
子線の大きさが大きい程、又、パターン密度が高い程レ
ジストの温度上昇が著しくなる。
In other words, since the mask is made of glass with low thermal conductivity, the accumulation of heat generated during collision differs depending on the size of the electron beam, resulting in a difference in temperature rise depending on the size of the pattern. Furthermore, the temperature rise varies depending on the density of the pattern to be formed. That is, even at the same current density, the larger the size of the electron beam and the higher the pattern density, the more significant the temperature rise of the resist becomes.

ガラスマスク上にはCr金属の薄膜が有り、その上にレ
ジストが塗布されている。電子の飛程は通常Cra膜の
厚さより長いけれども、温度上昇は主としてレジスト及
びCr薄膜内で発生する。非常に薄いCr薄膜及びガラ
ス基板は熱伝導性が悪いので、上昇したレジストの温度
は低減しない。
There is a thin film of Cr metal on the glass mask, and a resist is applied on top of the thin film of Cr metal. Although the range of electrons is usually longer than the thickness of the Cr film, the temperature increase mainly occurs within the resist and Cr thin film. Since the very thin Cr thin film and glass substrate have poor thermal conductivity, the increased temperature of the resist does not decrease.

(発明が解決しようとする問題点) 従ってこれらの問題を解決するには、電子線の衝突によ
る基板ガラスの温度上昇を無くするか、あるいは、温度
が上昇してもレジストの分解する温度(ガラス転移点)
以下でしかもガラスマスク内全面に渡って均一な温度に
なるようにする必要がある。
(Problems to be solved by the invention) Therefore, in order to solve these problems, it is necessary to eliminate the rise in temperature of the substrate glass due to the collision of electron beams, or, even if the temperature rises, the temperature at which the resist decomposes (glass transition point)
It is necessary to maintain a uniform temperature over the entire surface of the glass mask.

本発明の目的は、電子線描画の際、電子線の衝突による
レジスト温度上昇を抑制し、常に一定温度に保たれるよ
うにして描画中のレジスト感度が変化しない様レニする
事にある。
An object of the present invention is to suppress resist temperature rise due to collision of electron beams during electron beam writing, and to maintain constant temperature so that resist sensitivity during writing does not change.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、衝突する電子線によるレジスト温度上昇を抑
制するもので、容易に昇華する物質をレジスト表面上に
塗布し、その昇華熱によりレジスト温度を一定に制御す
る。
(Means for Solving the Problems) The present invention suppresses the rise in resist temperature caused by colliding electron beams, by coating the resist surface with a substance that sublimates easily, and using the heat of sublimation to keep the resist temperature constant. Control.

(作 用) 従来は、電子線描画において、衝突する電子線面積が広
い程、又、描画パターン密度が高い程熱蓄積効果の差の
為レジスト温度上昇が激しかったが、本発明ではレジス
ト温度がある温度に達するとレジスト表面上に塗布され
た物質が直ちに昇華し、その際の昇華熱による熱吸収に
よって、温度上昇がそれ以上に上るのを妨げるので、電
子線面積、描画パターン密度によらずレジストは一定温
度に保たれ、レジスト感度も変化しないので、均一な現
像が可能になり設計通りの精度の良いレジストパターン
が得られる。
(Function) Conventionally, in electron beam lithography, the larger the area of the colliding electron beam and the higher the density of the drawn pattern, the more the resist temperature rose due to the difference in heat accumulation effect, but in the present invention, the resist temperature increases. When a certain temperature is reached, the substance coated on the resist surface immediately sublimates, and the heat absorbed by the heat of sublimation at that time prevents the temperature from rising any further, regardless of the electron beam area or drawing pattern density. Since the resist is kept at a constant temperature and the resist sensitivity does not change, uniform development is possible and a resist pattern with high precision as designed can be obtained.

(実施例) 一実施例として、レジストとしてポリメチルメタアクリ
レート(PMMA)、昇華物質としてフェナントレンを
塗布した場合について述べる。
(Example) As an example, a case will be described in which polymethyl methacrylate (PMMA) is applied as a resist and phenanthrene is applied as a sublimation substance.

図面に示す様に、ガラス基板1、パターン形成層(Cr
) 2の上にPMMA 3 、フェナントレン4を塗布
した二層構造になっており、フェナントレンの厚さは電
子線照射による温度上昇の程度、即ち電子線強度に応じ
て変化させる。即ち、電子線強度が強い場合には温度上
昇も大きいので厚く塗布する。
As shown in the drawing, a glass substrate 1, a pattern forming layer (Cr
) It has a two-layer structure in which PMMA 3 and phenanthrene 4 are coated on 2, and the thickness of phenanthrene is changed depending on the degree of temperature rise due to electron beam irradiation, that is, the intensity of the electron beam. That is, when the electron beam intensity is high, the temperature rise is also large, so the coating is applied thickly.

〔発明の効果〕〔Effect of the invention〕

真空中に於けるフェナントレンの昇華点は95.5℃な
ので、PMMAのガラス転移点120〜150℃よりも
低い。従って、電子線照射によるレジストの温度上昇は
95.5℃を越えることがなく、その結果レジスト加熱
によるレジスト感度の変化が起こらず、一定に保たれる
。従って、描画パターンの粗密や大きさによらず精度の
良いパターン形成が出来る。
The sublimation point of phenanthrene in vacuum is 95.5°C, which is lower than the glass transition point of PMMA, 120 to 150°C. Therefore, the temperature rise of the resist due to electron beam irradiation does not exceed 95.5° C., and as a result, resist sensitivity does not change due to resist heating and is kept constant. Therefore, highly accurate pattern formation is possible regardless of the density and size of the drawn pattern.

なお、昇華物質としては、昇華温度が120〜130℃
の尿素でもPMMAレジストの場合には同様な効果があ
る。
In addition, the sublimation temperature of the sublimation substance is 120 to 130°C.
urea has a similar effect in the case of PMMA resist.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す要部断面図である。 1・・・ガラス基板 2・・・パターン形成層(Cr) 3・・・PMMAレジスト   4・・−フェナントレ
ン代理人 弁理士 則 近 憲 佑 同     松  山  光  之
The drawing is a sectional view of a main part showing an embodiment of the present invention. 1...Glass substrate 2...Pattern forming layer (Cr) 3...PMMA resist 4...-Phenanthrene agent Patent attorney Noriyuki Chika Yudo Hikaru Matsuyama

Claims (2)

【特許請求の範囲】[Claims] (1)潜像を形成するレジストの表面上に、運動エネル
ギーを有する粒子線の衝突により上昇する温度によって
、蒸発あるいは昇華し易い物質を塗付した事を特徴とす
る多層構造レジスト。
(1) A multilayer structure resist characterized in that a substance that easily evaporates or sublimates is coated on the surface of the resist that forms a latent image due to the temperature rising due to the collision of particle beams having kinetic energy.
(2)蒸発あるいは昇華し易い物質として、レジストの
ガラス転移点以下の温度で昇華する物質を用いた事を特
徴とする特許請求の範囲第1項記載の多層構造レジスト
(2) A multilayer structure resist according to claim 1, characterized in that a substance that sublimates at a temperature below the glass transition point of the resist is used as the substance that easily evaporates or sublimates.
JP31099787A 1987-12-10 1987-12-10 Multilayer structure resist Pending JPH01152728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31099787A JPH01152728A (en) 1987-12-10 1987-12-10 Multilayer structure resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31099787A JPH01152728A (en) 1987-12-10 1987-12-10 Multilayer structure resist

Publications (1)

Publication Number Publication Date
JPH01152728A true JPH01152728A (en) 1989-06-15

Family

ID=18011887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31099787A Pending JPH01152728A (en) 1987-12-10 1987-12-10 Multilayer structure resist

Country Status (1)

Country Link
JP (1) JPH01152728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101147A1 (en) * 2005-03-23 2006-09-28 Fujifilm Corporation Method of and apparatus for laminated substrate assembly
JP2008286059A (en) * 2007-05-16 2008-11-27 Hino Motors Ltd Exhaust emission treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101147A1 (en) * 2005-03-23 2006-09-28 Fujifilm Corporation Method of and apparatus for laminated substrate assembly
JP2008286059A (en) * 2007-05-16 2008-11-27 Hino Motors Ltd Exhaust emission treatment device

Similar Documents

Publication Publication Date Title
US4426584A (en) Method of compensating the proximity effect in electron beam projection systems
Broers Resolution limits of PMMA resist for exposure with 50 kV electrons
US4504558A (en) Method of compensating the proximity effect in electron beam projection systems
EP0166119B1 (en) Method for depositing material with nanometer dimensions
US6051346A (en) Process for fabricating a lithographic mask
US5401932A (en) Method of producing a stencil mask
Broers Combined electron and ion beam processes for microelectronics
JPH01152728A (en) Multilayer structure resist
JP3719837B2 (en) Pattern formation method
JPS52119172A (en) Forming method of fine pattern
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPS62106625A (en) Exposure mask
JPS6246976B2 (en)
CS209199B1 (en) Apparatus for manufacture of semiconductor structures
JPS59132132A (en) Forming method of fine pattern
JPS607131A (en) Pattern formation
JPS6035820B2 (en) Cathode sputtering method for manufacturing etched structures
JPH11274038A (en) Pattern drawing method and drawing apparatus thereof
JP2979631B2 (en) Stencil mask forming method
JPS58152241A (en) Manufacture of high-precision mask
KR100277812B1 (en) Mask for electron beam exposure and electron beam drawing method
Gillespie Resist profile control in e-beam Lithography
JPH0588368A (en) Production of semiconductor pattern
JPS5999435A (en) Formation of mask
Hohn Electron-beam lithography: directions in direct write and mask making