JPH01151911A - Electrodialysis tank - Google Patents

Electrodialysis tank

Info

Publication number
JPH01151911A
JPH01151911A JP62310869A JP31086987A JPH01151911A JP H01151911 A JPH01151911 A JP H01151911A JP 62310869 A JP62310869 A JP 62310869A JP 31086987 A JP31086987 A JP 31086987A JP H01151911 A JPH01151911 A JP H01151911A
Authority
JP
Japan
Prior art keywords
anion
membrane
cation
exchange membrane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310869A
Other languages
Japanese (ja)
Other versions
JPH0757308B2 (en
Inventor
Takahisa Yamamoto
宜契 山本
Masaaki Nakajima
政明 中島
Ryuji Takeshita
竹下 竜二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP62310869A priority Critical patent/JPH0757308B2/en
Publication of JPH01151911A publication Critical patent/JPH01151911A/en
Publication of JPH0757308B2 publication Critical patent/JPH0757308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain an electrodialysis tank in which regeneration of iron exchange resin is made unnecessary by packing ion-exchange resin between a bipolar membrane and an ion-exchange membrane. CONSTITUTION:Three units are arranged between a cathode and an anode in an electrodialysis tank. In one unit, membranes are arranged in order of a bipolar membrane 6, a cation exchange membrane 7, an anion exchange membrane 8 and the bipolar membrane 6. Cation exchange resin is packed in a cation desalting chamber 2 comparted by both the bipolar membrane 6 and the cation exchange membrane 7. Further anion exchange resin is packed in an anion desalting chamber 3 comparted by both the anion exchange membrane 8 and the bipolar membrane 6. A concentration chamber 4 is formed between the cation exchange membrane 7 and the anion exchange membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン交換膜とイオン交換樹脂とを組合わせ
て使用した電気透析槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrodialysis cell using a combination of an ion exchange membrane and an ion exchange resin.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

従来、純水製造方法としては、強酸性ヤチオン樹脂と強
塩基性及び弱塩基性アニオン交換樹脂を同一イオン交換
塔内に存在させて行なう混床式イオン交換装置、または
単一種のイオン交換樹脂を用いて処理する車床式イオン
交換装置を使用する方法等がある。
Conventionally, methods for producing pure water include a mixed-bed ion exchange device in which a strongly acidic ion exchange resin and strong and weakly basic anion exchange resins are present in the same ion exchange column, or a single type of ion exchange resin. There are methods such as using a car floor type ion exchange device.

しかし、これらの装置においてはイオン交換樹脂の再生
工程が必要であり、その再生工程は、逆洗2通薬、押出
、洗浄等の操作を行わねばならなかった。再生工程に於
いて各操作が必要時間を越えると再生剤の損失、洗浄液
の損失をきたし、各操作が必要時間に満たない場合には
、再生不完全、押出不完全、洗浄不完全等をきたす。ま
た、各操作は煩雑であり、誤操作を起こすと再生操作か
らくり返し始めなければならないといった問題もあった
However, these devices require a regeneration step for the ion exchange resin, and the regeneration step requires operations such as backwashing, extrusion, and washing. In the regeneration process, if each operation exceeds the required time, there will be loss of regenerant and cleaning solution, and if each operation takes less than the required time, incomplete regeneration, incomplete extrusion, incomplete cleaning, etc. will occur. . In addition, each operation is complicated, and if an erroneous operation occurs, there is a problem that the reproduction operation must be repeated.

近年、この煩雑な操作を解消するために、イオン交換装
置の自動再生機構等が提案されているが、設備が高価で
ある。
In recent years, in order to eliminate this complicated operation, automatic regeneration mechanisms for ion exchange equipment have been proposed, but the equipment is expensive.

〔閏#、縞目#獣」まためつ手段  〕本発明者らは、
従来のイオン交換樹脂の再生工程を解消すると共に高純
度の純水を多量に製造する電気透析槽の開発に成功し、
本発明を提案するに至った。
[Leap #, striped #beast” means of retrieval] The present inventors,
We succeeded in developing an electrodialysis tank that eliminates the conventional regeneration process of ion exchange resin and produces large quantities of highly purified water.
This led us to propose the present invention.

即ち、本発明は、バイポーラ−膜、陽イオン交換膜、陰
イオン交換膜及びバイポーラ−膜の順に配列され、該バ
イポーラ−膜と該陽イオン交換膜とで区画される陽イオ
ン脱塩室には陽イオン交換樹脂が、また、該陰イオン交
換膜と該バイポーラ−膜とで区画される陰イオン脱塩室
には陰イオン交換樹脂が夫々充填され、また、該陽イオ
ン交換膜と該陰イオン交換膜とで区画された室が濃縮室
である構造のユニットが、陰極と陽極との間に1以上配
列されてなり、該陽イオン脱塩室と該陰イオン脱塩室の
いずれか一方には被脱塩液の供給管が、他方には被脱塩
液の排出管が夫々接続されており、更に該陰イオン脱塩
室と該陰イオン脱塩室とは通液管により接続されてなる
ことを特徴とする電気透析槽である。
That is, the present invention has a bipolar membrane, a cation exchange membrane, an anion exchange membrane, and a bipolar membrane arranged in this order, and a cation demineralization chamber partitioned by the bipolar membrane and the cation exchange membrane. An anion exchange resin is filled in each anion demineralization chamber partitioned by the anion exchange membrane and the bipolar membrane, One or more units having a structure in which a chamber partitioned by an exchange membrane is a concentration chamber are arranged between a cathode and an anode, and one or more units are arranged between a cathode and an anode, and one of the cation demineralization chamber and the anion demineralization chamber A supply pipe for the liquid to be demineralized is connected to one, and a discharge pipe for the liquid to be demineralized is connected to the other, and the anion demineralization chamber and the anion demineralization chamber are connected by a liquid passage pipe. This is an electrodialysis tank characterized by:

また、本発明は、陽イオン交換膜、バイポーラ−膜及び
陰イオン交換膜の順に配列され、該陽イオン交換膜と該
バイポーラ−膜とで区画される陰イオン脱塩室には陽イ
オン交換樹脂が、また該バイポーラ−膜と該陰イオン交
換膜とで区画される陰イオン脱塩室には陰イオン交換樹
脂が夫々充填された構造のユニットが、陰極と陽極との
間に1以上配列されてなり、該陽イオン脱塩室と該陰イ
オン脱塩室のいずれか一方には被脱塩液の供給管が、他
方には被脱塩液の排出管が夫々接続されており、更に該
陰イオン脱塩室と該陰イオン脱塩室とは通液管により接
続されてなることを特徴とする電気透析槽である。
The present invention also provides a cation exchange membrane, a bipolar membrane, and an anion exchange membrane arranged in this order, and an anion demineralization chamber partitioned by the cation exchange membrane and the bipolar membrane containing a cation exchange resin. However, in the anion demineralization chamber partitioned by the bipolar membrane and the anion exchange membrane, one or more units each filled with an anion exchange resin are arranged between the cathode and the anode. A supply pipe for the liquid to be demineralized is connected to one of the cation demineralization chamber and the anion demineralization chamber, and a discharge pipe for the demineralized liquid is connected to the other. The electrodialysis cell is characterized in that the anion demineralization chamber and the anion demineralization chamber are connected by a liquid passage pipe.

以下、本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.

第1図は、本発明の電気透析槽を示す概略図である。第
1図に於いて、バイポーラ−膜6、Ii!イオン交換膜
7.陰イオン交換膜8及びバイポーラ−膜6の順に各膜
が配列されて1ユニツトが構成されている。バイポーラ
−膜6と陽イオン交換膜7とで区画される陽イオン脱塩
室2には陽イオン交換樹脂9が充填され、また、陰イオ
ン交換膜8とバイポーラ−膜6とで区画される陰イオン
脱塩室3には陰イオン交換樹脂10が充填されている。
FIG. 1 is a schematic diagram showing an electrodialysis cell of the present invention. In FIG. 1, bipolar membrane 6, Ii! Ion exchange membrane7. The anion exchange membrane 8 and the bipolar membrane 6 are arranged in this order to form one unit. A cation exchange resin 9 is filled in the cation demineralization chamber 2, which is partitioned by a bipolar membrane 6 and a cation exchange membrane 7, and an anion demineralization chamber 2, which is partitioned by an anion exchange membrane 8 and a bipolar membrane 6, is filled with a cation exchange resin 9. The ion demineralization chamber 3 is filled with an anion exchange resin 10.

そシテ、陽イオン交換膜7と陰イオン交換膜とで区画さ
れることによって濃縮室4が形成されている。上記した
構造のユニットが陽極及び陰極の間に、陽極側に陽イオ
ン交換膜がくるように1以上配列されている。第1図に
は、上記のユニットが3個配列された例を示したが、一
般には、1−100個であることが脱環効率の点から好
ましい。上記した構造のユニットを腹数個配列する場合
、鈍り合うユニットのバイポーラ−膜同士は、互いに接
していても良く、また離れていても良い。しかし、電気
透析を行なう場合の電圧を低く抑えるためには、上記の
バイポーラ−膜同士は、離れているよりは接している方
が好ましく、さらには、第1図に示したように1枚のバ
イポーラ−膜に置き換えられている方が好ましい。
A concentration chamber 4 is formed by being partitioned by a cation exchange membrane 7 and an anion exchange membrane. One or more units having the above structure are arranged between an anode and a cathode so that the cation exchange membrane is on the anode side. Although FIG. 1 shows an example in which three of the above units are arranged, it is generally preferable to have 1 to 100 units from the viewpoint of ring removal efficiency. When several units having the above-mentioned structure are arranged, the bipolar membranes of the blunt units may be in contact with each other or may be separated from each other. However, in order to keep the voltage low during electrodialysis, it is preferable for the bipolar membranes mentioned above to be in contact with each other rather than apart, and furthermore, as shown in Figure 1, it is preferable that the bipolar membranes be in contact with each other. Preferably, it is replaced by a bipolar membrane.

さらに、第1図では、被脱塩液の供給管12及び排出管
13は、夫青陽イオン脱壌室2及び陰イオン脱塩室3に
接続されているが、被脱塩液の供給管と排出管は、いず
れか一方が、陰イオン脱塩室に、他方が陰イオン脱塩室
に設けられておれば良い。さらに、陽イオン脱塩室と陰
イオン脱塩室とは通液管】1により接続されている。通
液管110人口及び出口は、第1図に示したように陽イ
オン脱塩室と陰イオン脱塩室に充填された陽イオン交換
樹脂及び陰イオン交換樹脂をはさんで被脱塩液の供給管
及び排出管の位置と反対側になるように設けることが好
ましい。そして、濃縮室4には濃縮液の供給管14と排
出管15が接続されている。
Furthermore, in FIG. 1, the supply pipe 12 and the discharge pipe 13 for the liquid to be demineralized are connected to the cation demineralization chamber 2 and the anion demineralization chamber 3, but the supply pipe 12 and the discharge pipe 13 for the demineralized liquid are It is sufficient that one of the discharge pipes is provided in the anion demineralization chamber and the other in the anion demineralization chamber. Further, the cation demineralization chamber and the anion demineralization chamber are connected by a liquid passage pipe 1. As shown in Fig. 1, the liquid passage pipe 110 and the outlet are connected to the cation exchange resin and anion exchange resin filled in the cation demineralization chamber and the anion demineralization chamber, and to supply the liquid to be demineralized. It is preferable to provide it on the opposite side to the positions of the supply pipe and the discharge pipe. A concentrate supply pipe 14 and a discharge pipe 15 are connected to the concentration chamber 4.

本発明のTIL気透析槽に使用される陽イオン交換膜、
陰イオン交換膜、バイポーラ−膜及び陽、陰イオン交換
樹脂は、従来公知の膜及び樹脂が適宜採用することがで
きるが、それぞれ塩の分離%塩の吸着、加水分解と有効
な膜及び樹脂を選択すれば良い。
Cation exchange membrane used in the TIL gas dialysis tank of the present invention,
Conventionally known membranes and resins can be used as appropriate for the anion exchange membrane, bipolar membrane, and cation and anion exchange resin, but the membranes and resins are effective for salt separation, salt adsorption, and hydrolysis, respectively. All you have to do is choose.

例えば、陽イオン交換膜としては陽イオンのみを選択的
に透過せしめるもので、スルホン酸基、カルボン酸基を
有する公知の膜が使用できる。陰イオン交換膜としては
、陰イオンを選択的に透過せしめるものであれは従来の
いかなる膜でもよい。また、バイポーラ−膜としては、
陰イオン交換層と陽イオン交換層とを有し、加水分解効
率が高いものであれは良い。陽、陰イオン交換樹脂とし
ては従来公知の樹脂が使用できる。
For example, as the cation exchange membrane, a membrane that selectively allows only cations to permeate, and a known membrane having a sulfonic acid group or a carboxylic acid group can be used. The anion exchange membrane may be any conventional membrane as long as it selectively allows anions to pass therethrough. In addition, as a bipolar membrane,
It is good as long as it has an anion exchange layer and a cation exchange layer and has high hydrolysis efficiency. Conventionally known resins can be used as the positive and anion exchange resins.

本発明の電気透析槽による被脱塩液の脱塩過程を第1図
に従って説明すると次のとおり ・である。被脱塩液は
電気透析槽の陰イオン脱塩室2に供給される。被脱塩液
の陽イオンは選択的に陽イオン交換膜7を透過するか、
陽イオン交換樹脂9に吸着される。そして、陽イオン交
換樹脂9に吸着された陽イオンは、バイポーラ−膜6か
ら発生するプロトン(H“)により脱着され、陽イオン
交換膜7を透過する。次いで、陽イオンを排除した被脱
塩液は通液管11を通り、陰イオン脱塩室3に供給され
る。被脱塩液の陰イオンは選択的に陰イオン交換膜8を
透過するか、陰イオン交換樹脂10に吸着される。しか
し、陰イオン交換樹脂に吸着された陰イオンは、バイポ
ーラ−膜6から発生する水酸イオン(OH−)  によ
り脱着され、陰イオン交換膜8を透過し排除される。陽
、陰イオンを排除した被脱塩液は高純度の純水として得
られる。一方、排除された陽、陰イオンは濃縮室4で中
性塩として排出される。
The process of desalting a liquid to be desalinated using the electrodialysis tank of the present invention is explained as follows with reference to FIG. The liquid to be demineralized is supplied to the anion demineralization chamber 2 of the electrodialyzer. The cations of the solution to be demineralized selectively pass through the cation exchange membrane 7, or
It is adsorbed on the cation exchange resin 9. The cations adsorbed on the cation exchange resin 9 are desorbed by protons (H'') generated from the bipolar membrane 6 and pass through the cation exchange membrane 7. The liquid passes through the liquid passage pipe 11 and is supplied to the anion demineralization chamber 3.Anions in the liquid to be demineralized selectively pass through the anion exchange membrane 8 or are adsorbed on the anion exchange resin 10. However, the anions adsorbed on the anion exchange resin are desorbed by hydroxyl ions (OH-) generated from the bipolar membrane 6, and are passed through the anion exchange membrane 8 and eliminated. The removed liquid to be desalinated is obtained as highly purified water.On the other hand, the removed cations and anions are discharged as neutral salts in the concentration chamber 4.

この工程で高純度の純水を効率的に得るためには、電気
透析を実施する条件を適切に選択すれは良い。
In order to efficiently obtain high-purity pure water in this step, the conditions for performing electrodialysis should be appropriately selected.

例えは、被脱塩液の供給速度は、0.01〜20ルヘe
o 、好ましくは0.05〜2 cm /secであり
、濃縮室に供給する希薄塩の濃度は0.01N以上で、
供給速度は0.1〜20 cm / secであり、好
ましくは0.5〜□C1l/ascである。
For example, the supply rate of the liquid to be desalinated is 0.01 to 20 l
o, preferably 0.05 to 2 cm/sec, and the concentration of the dilute salt supplied to the concentration chamber is 0.01N or more,
The feeding rate is 0.1 to 20 cm/sec, preferably 0.5 to □Cl/asc.

電流密度は0,01〜30A/am’  であり、好ま
しくはα1〜5A/dゴが適用される。温度は5〜50
℃が好ましい。
The current density is 0.01 to 30 A/am', preferably α1 to 5 A/d. Temperature is 5-50
°C is preferred.

また、有機物を含む水を処理して純水を製造する場合は
本発明の電気透析槽の前段に活性炭を充填した処理装置
を設けると良い。
Further, when producing pure water by treating water containing organic substances, it is preferable to provide a treatment device filled with activated carbon upstream of the electrodialysis tank of the present invention.

次に、本発明の電気透析槽の他の一例を第2図に示した
。第2図に於いて、陽イオン交換膜7.バイポーラ−膜
6及び陰イオン交換膜8の順に6膜が配列されて1ユニ
ツトが構成されている。そして、陽イオン交換膜7とバ
イポーラ−膜6とで区画される陰イオン脱塩室2には陽
イオン交換樹脂9が充填され、また、バイポーラ−膜6
と陰イオン交換膜8とで区画される陰イオン脱塩室3に
は陰イオン交換樹脂IOが充填されている。上記した構
造のユニットが、陽極と陰極との間に、陽極側に陰イオ
ン交換膜がくるように1以上配列されている。第2図に
は、上記のユニットが4個配列された例を示した。上記
した構造のユニット′It+M数個配列する場合、隣り
合うユニットの陽イオン交換膜及び陰イオン交換膜を適
当な間隔をあけて配置し、濃縮室4を形成させることが
好ましい。被脱壌液の供給管及び排出管、並びに陰イオ
ン脱塩室2と陰イオン脱塩室3とを連結する通液管11
は、既に前に説明した電気透析槽と同様である。
Next, another example of the electrodialysis tank of the present invention is shown in FIG. In FIG. 2, cation exchange membrane 7. Six membranes, a bipolar membrane 6 and an anion exchange membrane 8, are arranged in this order to form one unit. The anion demineralization chamber 2 divided by the cation exchange membrane 7 and the bipolar membrane 6 is filled with a cation exchange resin 9, and the bipolar membrane 6
The anion demineralization chamber 3 partitioned by the anion exchange membrane 8 and the anion exchange membrane 8 is filled with an anion exchange resin IO. One or more units having the above structure are arranged between an anode and a cathode such that the anion exchange membrane is on the anode side. FIG. 2 shows an example in which four of the above units are arranged. When several units 'It+M of the above structure are arranged, it is preferable to arrange the cation exchange membranes and anion exchange membranes of adjacent units with an appropriate interval to form the concentration chamber 4. A supply pipe and a discharge pipe for the deionized liquid, and a liquid passage pipe 11 that connects the anion demineralization chamber 2 and the anion demineralization chamber 3.
is similar to the electrodialysis cell already described earlier.

イオン交換膜及びイオン交換樹脂の種類も、既述のもの
が何ら制限なく採用される。
Regarding the types of ion exchange membranes and ion exchange resins, those already described can be used without any restriction.

尚、上記のユニットと陽極及び陰極の各電極室5との間
に、第2図に示すように緩衝室16を夫々設け、これら
2つの緩衝室16を連結して夫々の緩衝室に蓄積する陽
イオン及び陰イオンを中性塩として排出させることもで
きる。
Incidentally, as shown in FIG. 2, buffer chambers 16 are provided between the above unit and each of the anode and cathode electrode chambers 5, and these two buffer chambers 16 are connected to each other to accumulate in the respective buffer chambers. Cations and anions can also be discharged as neutral salts.

〔効 果〕〔effect〕

上記のように、本発明によれば、高純度の純水を多量に
得ることができる。また、イオン交換樹脂の再生が不要
であるため、長期にわたって連続して安定に電気う析槽
の運転をすることができる。
As described above, according to the present invention, a large amount of highly purified water can be obtained. Furthermore, since it is not necessary to regenerate the ion exchange resin, the electrolytic deposition tank can be operated continuously and stably for a long period of time.

〔実施例〕〔Example〕

以下に本発明を更に具体的に示すために実施例を示すが
、本発明は上記説明及び下記の実施例によって何ら限定
されるものではない。
Examples are shown below to more specifically illustrate the present invention, but the present invention is not limited by the above description or the following examples.

実施例1 工業用水を被脱壌液として第1図に示した電気透析槽で
ユニット数20のものを用いて処理した。被脱墳液の分
析値は、第1表に示すとおりであった。電気透析槽とし
ては、ネオセプタCM及びネオセプタAMCそれぞれ徳
山曹達■製の強酸性陽イオン交換膜と強境基性陰イオン
交換膜)とバイポーラ−BPM(徳山曹達■製1強酸性
陽イオン交換基と強塩基性陰イオン交換基を有したバイ
ポーラ−N)により、陽イオン説壌室、陰イオン脱塩室
、濃縮室とに区画し、陰イオン脱塩室にはアンバーライ
ト(登録商標)IR−120(強酸性カチオン樹脂)5
00.9と陰イオン脱塩室にはアンバーライト(登録商
@)IRA−400(強塩基性アニオン交換樹脂)50
0Iを充填した電気透析!(徳山1達■製、有効膜面積
2(!I11’)を使用した。
Example 1 Industrial water was treated as a liquid to be removed using an electrodialysis tank with 20 units as shown in FIG. The analytical values of the removed burial fluid were as shown in Table 1. The electrodialysis tanks used were Neocepta CM and Neocepta AMC (strongly acidic cation exchange membrane and strong base anion exchange membrane manufactured by Tokuyama Soda) and bipolar BPM (strongly acidic cation exchange membrane and strongly acidic cation exchange membrane manufactured by Tokuyama Soda). It is divided into a cation extraction chamber, an anion demineralization chamber, and a concentration chamber by bipolar N) having a strong basic anion exchange group, and the anion demineralization chamber is equipped with Amberlite (registered trademark) IR- 120 (strongly acidic cationic resin) 5
00.9 and Amberlite (registered trademark) IRA-400 (strongly basic anion exchange resin) 50 in the anion demineralization chamber.
Electrodialysis filled with 0I! (Effective membrane area 2 (!I11') manufactured by Tokuyama 1Tatsu ■ was used.

電気透析槽は、温度27℃、平均電流密度IA/d!1
1’−被脱塩液供給速度0.5 am /s @Q。
The electrodialysis tank had a temperature of 27°C and an average current density of IA/d! 1
1'-Demineralized liquid supply rate 0.5 am/s @Q.

濃縮液にαINの食塩水溶液を供給速度α/8・Cで供
給し、2力月連続して運転した。
A saline solution of αIN was supplied to the concentrate at a supply rate of α/8·C, and the system was operated continuously for two months.

その結果、電気比抵抗が1.0X10’Ωα以上の純水
が得られた。
As a result, pure water with an electrical specific resistance of 1.0×10′Ωα or more was obtained.

また、電槽内の陽イオン交換樹脂と陰イオン交換樹脂を
取り出し、ドナン壌の濃度を測定した。
In addition, the cation exchange resin and anion exchange resin in the container were taken out and the concentration of Donnan soil was measured.

その結果、陽イオン交換樹脂からはC& 2 +Mg2
4″、Na”、K”等が約2−検出され、陰イオン交換
樹脂からは5o2−@CJ−INO;等が約3−検出さ
れた。この分析結果より、イオン交換樹脂はそのほとん
どがH型又はOH型であり、再生処理を行なう必要はな
かった。
As a result, from the cation exchange resin, C & 2 + Mg2
4", Na", K", etc. were detected, and approximately 3" of 5o2-@CJ-INO; etc. It was H type or OH type, and there was no need for regeneration treatment.

実施例2 第2図に示した電気透析槽でユニット数20のものを使
用した他は実施例1と同様にして被脱塩液の処理を2力
月連続して行なった。その結果、電気抵抗が1.0X1
0’Ω1以上の純水が得られ、また実施例1と同様に陽
・陰イオン交換樹脂のドナン壌の濃度を調べたが、実施
例1とPIF!同じ分析値であった。この結果よりイオ
ン交換樹脂はほとんどがH型又はOH型であり、イオン
交換樹脂の再生処理を行なう必要はなかった。
Example 2 The desalted solution was treated continuously for two months in the same manner as in Example 1 except that the electrodialysis tank shown in FIG. 2 having 20 units was used. As a result, the electrical resistance is 1.0X1
Pure water with a resistance of 0'Ω1 or more was obtained, and the concentration of the cation/anion exchange resin Donnan powder was investigated in the same manner as in Example 1. The analytical values were the same. From this result, most of the ion exchange resins were H type or OH type, and there was no need to carry out regeneration treatment of the ion exchange resins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の電気透析槽の概略図である
。図中、1は電気透析槽、2は陰イオン脱塩室、3は陰
イオン脱塩室、4は濃縮室、5は電極室、6はバイポー
ラ−膜。 7は陽イオン交換膜、8は陰イオン交換膜。 9は陽イオン交換樹脂、10は陰イオン交換樹脂、11
は通液管、12は被脱塩液の供給管、13は被脱塩液の
排出管、14は濃縮液の供給管、15は濃縮液の排出管
、16は紅衝室、17は緩衝室液の給排管を夫々示す。
1 and 2 are schematic diagrams of the electrodialysis cell of the present invention. In the figure, 1 is an electrodialysis tank, 2 is an anion demineralization chamber, 3 is an anion demineralization chamber, 4 is a concentration chamber, 5 is an electrode chamber, and 6 is a bipolar membrane. 7 is a cation exchange membrane, and 8 is an anion exchange membrane. 9 is a cation exchange resin, 10 is an anion exchange resin, 11
12 is a supply pipe for the liquid to be desalted, 13 is a discharge pipe for the liquid to be desalted, 14 is a supply pipe for the concentrated liquid, 15 is a discharge pipe for the concentrated liquid, 16 is a red washing chamber, and 17 is a buffer. The indoor fluid supply and discharge pipes are shown.

Claims (1)

【特許請求の範囲】 1)バイポーラー膜、陽イオン交換膜、陰イオン交換膜
及びバイポーラー膜の順に配列され、該バイポーラー膜
と該陽イオン交換膜とで区画される陽イオン脱塩室には
陽イオン交換樹脂が、また、該陰イオン交換膜と該バイ
ポーラー膜とで区画される陰イオン脱塩室には陰イオン
交換樹脂が夫々充填され、また、該陽イオン交換膜と該
陰イオン交換膜とで区画された室が濃縮室である構造の
ユニットが、陰極と陽極との間に1以上配列されてなり
、該陽イオン脱塩室と該陰イオン脱塩室のいずれか一方
には被脱塩液の供給管が、他方には被脱塩液の排水管が
夫々接続されており、更に該陽イオン脱塩室と該陰イオ
ン脱塩室とは通液管により接続されてなることを特徴と
する電気透析槽。 2)陽イオン交換膜、バイポーラー膜及び陰イオン交換
膜の順に配列され、該陽イオン交換膜と該バイポーラー
膜とで区画される陽イオン脱塩室には陽イオン交換樹脂
が、また該バイポーラー膜と該陰イオン交換膜とで区画
される陰イオン脱塩室には陰イオン交換樹脂が夫々充填
された構造のユニットが、陰極と陽極との間に1以上配
列されてなり、該陽イオン脱塩室と該陰イオン脱塩室の
いずれか一方には被脱塩液の供給管が、他方には被脱塩
液の排出管が夫々接続されており、更に該陽イオン脱塩
室と該陰イオン脱塩室とは通液管により接続されてなる
ことを特徴とする電気透析槽。
[Scope of Claims] 1) A cation demineralization chamber in which a bipolar membrane, a cation exchange membrane, an anion exchange membrane, and a bipolar membrane are arranged in this order and partitioned by the bipolar membrane and the cation exchange membrane. is filled with a cation exchange resin; an anion demineralization chamber partitioned between the anion exchange membrane and the bipolar membrane is filled with an anion exchange resin; One or more units having a structure in which a chamber partitioned by an anion exchange membrane is a concentration chamber are arranged between a cathode and an anode, and either the cation demineralization chamber or the anion demineralization chamber A supply pipe for the liquid to be demineralized is connected to one side, and a drain pipe for the liquid to be demineralized is connected to the other side, and the cation demineralization chamber and the anion demineralization chamber are connected by a liquid passage pipe. An electrodialysis tank characterized by: 2) A cation exchange membrane, a bipolar membrane, and an anion exchange membrane are arranged in this order, and a cation exchange resin is placed in a cation demineralization chamber partitioned by the cation exchange membrane and the bipolar membrane. The anion demineralization chamber partitioned by the bipolar membrane and the anion exchange membrane has one or more units each filled with an anion exchange resin arranged between the cathode and the anode. A supply pipe for the liquid to be demineralized is connected to one of the cation demineralization chamber and the anion demineralization chamber, and a discharge pipe for the demineralized liquid is connected to the other. An electrodialysis cell characterized in that the chamber and the anion demineralization chamber are connected by a liquid passage pipe.
JP62310869A 1987-12-10 1987-12-10 Electrodialysis tank Expired - Fee Related JPH0757308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310869A JPH0757308B2 (en) 1987-12-10 1987-12-10 Electrodialysis tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310869A JPH0757308B2 (en) 1987-12-10 1987-12-10 Electrodialysis tank

Publications (2)

Publication Number Publication Date
JPH01151911A true JPH01151911A (en) 1989-06-14
JPH0757308B2 JPH0757308B2 (en) 1995-06-21

Family

ID=18010368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310869A Expired - Fee Related JPH0757308B2 (en) 1987-12-10 1987-12-10 Electrodialysis tank

Country Status (1)

Country Link
JP (1) JPH0757308B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259646A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Electric deionized water producer
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001276836A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP2001276835A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP2002001072A (en) * 2000-06-19 2002-01-08 Japan Organo Co Ltd Deionization module and electric type device for producing deionized water
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
WO2005075359A1 (en) * 2004-02-09 2005-08-18 Hitachi Maxell, Ltd. Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
CN100391859C (en) * 2004-02-09 2008-06-04 日立麦克赛尔株式会社 Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP2009138253A (en) * 2007-12-11 2009-06-25 Mitsubishi Heavy Ind Ltd Electrolyzer and fuel cell power generation system using the same
JP2010155235A (en) * 2008-12-31 2010-07-15 Millipore Corp Electrodeionization method and device with hydrodynamic flow splitting
JP2010253451A (en) * 2009-04-28 2010-11-11 Japan Organo Co Ltd Method for cleaning electrical deionized-water producing apparatus
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
JP2011062662A (en) * 2009-09-18 2011-03-31 Japan Organo Co Ltd Electric deionized water making apparatus
WO2011152227A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for producing deionized water
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2012096176A (en) * 2010-11-02 2012-05-24 Japan Organo Co Ltd Electric deionized water making apparatus
WO2012108310A1 (en) * 2011-02-08 2012-08-16 オルガノ株式会社 Electric device for producing deionized water
WO2014132888A1 (en) * 2013-03-01 2014-09-04 オルガノ株式会社 Desalination method and desalination apparatus
JP2014168732A (en) * 2013-03-01 2014-09-18 Japan Organo Co Ltd Desalination method and desalination apparatus
JP5661930B2 (en) * 2011-08-04 2015-01-28 オルガノ株式会社 Electric deionized water production equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899401B2 (en) * 2011-05-13 2016-04-06 パナソニックIpマネジメント株式会社 Water softener
JP5929008B2 (en) * 2011-05-13 2016-06-01 パナソニック株式会社 Method for producing water-splitting ion exchange membrane of regenerative water softener

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481418B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Electric deionized water production equipment
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001259646A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Electric deionized water producer
JP4481417B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Deionized water production method
JP2001276836A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP2001276835A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP4492898B2 (en) * 2000-06-19 2010-06-30 オルガノ株式会社 Deionization module and electric deionized water production apparatus
JP2002001072A (en) * 2000-06-19 2002-01-08 Japan Organo Co Ltd Deionization module and electric type device for producing deionized water
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
KR100697049B1 (en) * 2004-02-09 2007-03-20 히다치 막셀 가부시키가이샤 Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
CN100391859C (en) * 2004-02-09 2008-06-04 日立麦克赛尔株式会社 Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
WO2005075359A1 (en) * 2004-02-09 2005-08-18 Hitachi Maxell, Ltd. Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP2009138253A (en) * 2007-12-11 2009-06-25 Mitsubishi Heavy Ind Ltd Electrolyzer and fuel cell power generation system using the same
JP2012179605A (en) * 2008-12-31 2012-09-20 Emd Millipore Corp Electrodeionization method with hydrodynamic flow splitting and device therefor
JP2010155235A (en) * 2008-12-31 2010-07-15 Millipore Corp Electrodeionization method and device with hydrodynamic flow splitting
JP2014036960A (en) * 2008-12-31 2014-02-27 E M D Millipore Corp Electrodeionization method with hydrodynamic flow splitting
JP2010253451A (en) * 2009-04-28 2010-11-11 Japan Organo Co Ltd Method for cleaning electrical deionized-water producing apparatus
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
JP2011062662A (en) * 2009-09-18 2011-03-31 Japan Organo Co Ltd Electric deionized water making apparatus
US8871073B2 (en) 2010-06-03 2014-10-28 Organo Corporation Electrodeionization apparatus for producing deionized water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
WO2011152227A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for producing deionized water
CN102939266A (en) * 2010-06-03 2013-02-20 奥加诺株式会社 Electric device for production of deionized water
JP5385457B2 (en) * 2010-06-03 2014-01-08 オルガノ株式会社 Electric deionized water production equipment
TWI482658B (en) * 2010-06-03 2015-05-01 Organo Corp Electrical deionized water production device
JP2012096176A (en) * 2010-11-02 2012-05-24 Japan Organo Co Ltd Electric deionized water making apparatus
WO2012108310A1 (en) * 2011-02-08 2012-08-16 オルガノ株式会社 Electric device for producing deionized water
JP5661930B2 (en) * 2011-08-04 2015-01-28 オルガノ株式会社 Electric deionized water production equipment
US9896357B2 (en) 2011-08-04 2018-02-20 Organo Corporation Electrodeionization apparatus for producing deionized water
JP2014168732A (en) * 2013-03-01 2014-09-18 Japan Organo Co Ltd Desalination method and desalination apparatus
WO2014132888A1 (en) * 2013-03-01 2014-09-04 オルガノ株式会社 Desalination method and desalination apparatus

Also Published As

Publication number Publication date
JPH0757308B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JPH01151911A (en) Electrodialysis tank
EP0803474B1 (en) Electrodeionization apparatus and process for purifying a liquid
US3686089A (en) Method of separation of ions from a solution
US3291713A (en) Removal of weakly basic substances from solution by electrodeionization
US5868915A (en) Electrodeionization apparatus and method
US2788319A (en) Ion exchange method and apparatus
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
US3433726A (en) Method and apparatus for treating liquid milk products
US3730770A (en) Sugar recovery method
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP3273707B2 (en) Production method of deionized water by electrodeionization method
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
US3355018A (en) Demineralization of water
JP5114307B2 (en) Electric deionized water production equipment
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
US2962438A (en) Ion exchange process for water purification
JP3593892B2 (en) Pure water production method and apparatus
US3386914A (en) Process of removing a component from a fluid
JP3729347B2 (en) Electric regenerative desalination equipment
GB702316A (en) Process and apparatus for desalting liquids by means of ion-exchangers, and for regenerating said exchangers
KR20190039886A (en) Regenerative ion exchange apparatus and method of operating the same
JP4979677B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees