JPH01151035A - High density reproducing device and recording and reproducing device - Google Patents

High density reproducing device and recording and reproducing device

Info

Publication number
JPH01151035A
JPH01151035A JP31153187A JP31153187A JPH01151035A JP H01151035 A JPH01151035 A JP H01151035A JP 31153187 A JP31153187 A JP 31153187A JP 31153187 A JP31153187 A JP 31153187A JP H01151035 A JPH01151035 A JP H01151035A
Authority
JP
Japan
Prior art keywords
recording
recording medium
density
conductive probe
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31153187A
Other languages
Japanese (ja)
Inventor
Akio Shiga
志賀 明夫
Yasuhiro Ota
康博 太田
Norio Goto
典雄 後藤
Nobuhiro Tokujiyuku
徳宿 伸弘
Koichi Moriya
宏一 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31153187A priority Critical patent/JPH01151035A/en
Publication of JPH01151035A publication Critical patent/JPH01151035A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information

Abstract

PURPOSE:To make a recording picture density into a high density by reproducing the information with a tunnel current to fluctuate in accordance with a projection or a hollow formed on the recording medium surface. CONSTITUTION:A conductive probe 11 is arranged at a constant distance on a conductive film 2 of a disk 1 to record information by a ruggedness by using a piezoelectric driving device 12 and a direct current voltage is impressed between the conductive probe 11 and the conductive film 2. By rotating the disk 1, the conductive probe 11 is scanned onto the disk surface and the tunnel current in accordance with the distance of ruggedness flows. Since the tunnel current is converted to the fluctuation of the voltage from a current voltage converter 13 through a current sensor 17, fluctuated in an index function way to the distance of the ruggedness of the conductive probe 11 and the conductive film 2, the fluctuation is made linear by a logarithm converter 15 after an amplifier 14, the comparison with a standard supply voltage is executed by a comparator 16 and the digital information in accordance with the ruggedness is reproduced. Thus, a high density and large capacity can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な高密度再生装置および記録再生装置に関
し、さらに詳しくはイオンビームを利用して情報を記録
し、STM(走査トンネリング顕微鏡)技術を用いて情
報を再生するようにした高密度再生装置および記録再生
装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a novel high-density reproducing device and recording/reproducing device, and more specifically to a novel high-density reproducing device and a recording/reproducing device, and more specifically, it records information using an ion beam and uses STM (scanning tunneling microscopy) technology. The present invention relates to a high-density playback device and a recording/playback device that play back information using.

(従来の技術) 高密度記録としては従来から種々の方法が知られている
が、代表的な例として磁気記録および光記録がある。し
かし、これらの記録密度には0、5〜1μm程度の限界
がある。
(Prior Art) Various methods have been known for high-density recording, and typical examples include magnetic recording and optical recording. However, these recording densities have a limit of about 0.5 to 1 μm.

磁気記録では、強磁性体として存在できる最小のドメイ
ン径の10nmが原理的に可能な記録密度と考えられて
いるが、記録再生に使用する磁気ヘッド等の装置側の制
約から記録の最短波長は1μm〜0.7μm程度となっ
ている。
In magnetic recording, the smallest domain diameter that can exist in a ferromagnetic material, 10 nm, is thought to be the theoretically possible recording density, but due to constraints on the equipment such as the magnetic head used for recording and reproduction, the shortest wavelength for recording is limited. The thickness is about 1 μm to 0.7 μm.

また、光記録では、記録再生に使用する光のスポット径
によって記録密度が制限され、記録の最短波長は1μm
〜0.5μm程度となっている。
In addition, in optical recording, the recording density is limited by the spot diameter of the light used for recording and reproduction, and the shortest recording wavelength is 1 μm.
It is approximately 0.5 μm.

記録密度が高い程、小さいスペースに多量の情報を記録
することができるので、各種の技術分野において、特に
最近ではAI(人口知能)システム用メモリの分野にお
いて、より高密度の記録再生方法が求められている。
The higher the recording density, the more information can be recorded in a small space, so there is a demand for higher density recording and reproducing methods in various technical fields, especially in the field of memory for AI (artificial intelligence) systems. It is being

磁気記録、光記録以上の高密度記録の方策としては、従
来、特開昭59−221846号に記載されているよう
に電子ビームを用いる方法が行なわれていた。電子ビー
ムはビーム径を1〜2nm程度まで絞り込むことができ
るため記録ピット径を小さくできる。しかし電子は散乱
されやすく、近接したピット間のコントラストが低下す
る近接効果のためにピット間隔を小さくできず、記録の
最短波長は約0.06μm程度が限度となる。
Conventionally, as a method for recording at a higher density than magnetic recording or optical recording, a method using an electron beam has been used as described in Japanese Patent Laid-Open No. 59-221846. Since the beam diameter of the electron beam can be narrowed down to about 1 to 2 nm, the recording pit diameter can be reduced. However, electrons are easily scattered, and the pit spacing cannot be made small due to the proximity effect that reduces the contrast between adjacent pits, and the shortest recording wavelength is limited to about 0.06 μm.

AIシステム用のメモリとしての用途を考えるならば、
その容量は人間の脳細胞の容量である約100ギガバイ
}(G  Byte)程度は必要であり、この大容量を
直径100mm程度の小面積で実現するには、少なくと
も記録最短波長は約0、03μm程度必要となる。
Considering its use as memory for AI systems,
Its capacity is approximately 100 gigabytes (GBytes), which is the capacity of a human brain cell, and in order to achieve this large capacity in a small area of approximately 100 mm in diameter, the shortest recording wavelength must be at least approximately 0.03 μm. degree is required.

一方、最近STM(走査トンネリング顕微鏡)技術とし
て知られる高解像度顕微鏡技術が急速に開発されている
。STMは、薄いポテンシャル障壁(たとえば真空層な
ど)を突き抜けて一対の電極間に流れるトンネル電流を
利用して固体の表面状態を水平分解能的0,5nm、垂
直分解能的0、01nmという極めて高い分解能で分析
することができる。このため、固体表面科学その他にお
ける革新的分析手法となりつつある。
On the other hand, high-resolution microscopy technology known as STM (scanning tunneling microscopy) technology has recently been rapidly developed. STM uses a tunnel current that passes through a thin potential barrier (such as a vacuum layer) and flows between a pair of electrodes to measure the surface state of a solid at an extremely high resolution of 0.5 nm horizontally and 0.01 nm vertically. can be analyzed. For this reason, it is becoming an innovative analytical method in solid surface science and other areas.

該STMについての議論は、たとえば「走査型トンネル
顕微鏡による原子像と電子状態」 (日本物理学会誌第
42巻第3号P247〜P255(1987))に見ら
れる。
A discussion of the STM can be found, for example, in "Atomic images and electronic states using a scanning tunneling microscope" (Journal of the Physical Society of Japan, Vol. 42, No. 3, P247-P255 (1987)).

(発明が解決しようとする問題点) 上述したように、従来の磁気記録、光記録さらには電子
ビーム記録においては、記録スポット径や散乱による広
がり等によって記録密度が制限され、高密度記録が得ら
れないという問題があった。
(Problems to be Solved by the Invention) As mentioned above, in conventional magnetic recording, optical recording, and even electron beam recording, the recording density is limited by the recording spot diameter and spread due to scattering, and it is difficult to achieve high-density recording. The problem was that I couldn't do it.

本発明の目的は、最近、技術開発されたSTMの高分解
能(水平分解能、約0.5nm、垂直分解能、約0.0
1nm)に着目し、記録面密度が約50Gビツト/cI
#という極めて高密度の再生装置を提供することにある
。本発明の他の目的は、該高密度の再生装置を用いた高
密度記録再生装置を提供することにある。
The purpose of the present invention is to achieve high resolution (horizontal resolution, approximately 0.5 nm, vertical resolution, approximately 0.0 nm) of STM, which has been developed recently.
1 nm), the recording surface density is approximately 50 Gbit/cI.
The purpose of the present invention is to provide an extremely high-density reproducing device. Another object of the present invention is to provide a high-density recording and reproducing device using the high-density reproducing device.

(問題点を解決するための手段) 本発明は、前記目的を達成するために、記録媒体表面か
ら予め選択された空間距離に設けられ、かつ該記録媒体
を半径方向に走査する導電性探針と、該導電性探針と前
記記録媒体間に電位を与える手段と、前記導電性探針と
前記記録媒体との間に生じるトンネル電流の変動を検知
し、デジタル再生情報を出力する手段とを具備し、前記
記録媒体表面に形成された突起あるいはくぼみ等の情報
に応じて変動するトンネル電流により、該情報の再生を
行うようにした点に特徴がある。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a conductive probe that is provided at a preselected spatial distance from the surface of a recording medium and that scans the recording medium in the radial direction. , means for applying a potential between the conductive probe and the recording medium, and means for detecting fluctuations in tunnel current generated between the conductive probe and the recording medium and outputting digital reproduction information. The present invention is characterized in that the information is reproduced by a tunnel current that varies depending on the information such as protrusions or depressions formed on the surface of the recording medium.

本発明は、さらに、記録情報に応じて強度変調されたイ
オンビームを放出するイオン銃と、該イオンビームを集
束し、偏向する電磁光学系とからなる記録装置を設けた
点に特徴がある。
The present invention is further characterized in that it includes a recording device comprising an ion gun that emits an ion beam whose intensity is modulated according to recorded information, and an electromagnetic optical system that focuses and deflects the ion beam.

(作用) 前記導電性探針は、イオンビームによって表面に凹部を
形成されたディスクの表面上に、約10mの距離に設置
され、かつ該導電性探針とディスク表面間に、数mVの
電位が印加される。また、該導電性探針は、ディスクの
回転に応じて、半径方向に動かされる。
(Function) The conductive probe is installed at a distance of approximately 10 m on the surface of the disk in which a recess is formed by the ion beam, and a potential of several mV is applied between the conductive probe and the disk surface. is applied. Further, the conductive probe is moved in the radial direction according to the rotation of the disk.

この結果、該導電性探針は、該ディスクを走査すること
になり、該導電性探針とディスク表面間に応じたトンネ
ル電流が流れる。このトンネル電流を、0と1の2値の
デジタル量に変換することにより、情報の再生を高密度
で行うことができる。
As a result, the conductive probe scans the disk, and a corresponding tunnel current flows between the conductive probe and the disk surface. By converting this tunnel current into a binary digital quantity of 0 and 1, information can be reproduced at high density.

また、イオンビームを記録情報に応じて強度変調し、こ
れを集束偏向して、ディスク表面上に照射すると、該デ
ィスク上に凹凸から形成された情報を高密度に記録する
ことができる。
Further, by intensity-modulating the ion beam according to recorded information, focusing and deflecting the ion beam, and irradiating the ion beam onto the disk surface, it is possible to record information formed from irregularities on the disk with high density.

(実施例) まず本発明の原理について説明する。最初に記録方法に
ついて説明する。記録は、記録信号に従って強度変調さ
れたイオンビームを回転するディスク表面に照射し、該
ディスク表面に形成されている導電膜をエツチングして
四部を形成することによって行なう。
(Example) First, the principle of the present invention will be explained. First, the recording method will be explained. Recording is performed by irradiating the rotating disk surface with an ion beam whose intensity is modulated according to the recording signal, and etching the conductive film formed on the disk surface to form four parts.

トラッキング用グループに対応するイオンビーム強度を
P、記録信号に応じてピットを形成するイオンビーム強
度をP とし、P、、Pp間の強度変調を行なうことに
よりトラッキンググループ(深さd )、ビット(深さ
d )をτ                 pd 
 <d  として形成することができる。d とτ  
  p                      
     τしてはトラッキングのためのトンネル電流
が流れる範囲であればよく、 dは d (nm) >d (nm) +0.1 (nm)p
   τ を満足する範囲で任意の値をとることができる。
The ion beam intensity corresponding to the tracking group is P, and the ion beam intensity that forms pits according to the recording signal is P, and by performing intensity modulation between P, , Pp, the tracking group (depth d), bit ( depth d) as τ pd
<d. d and τ
p
τ may be within the range where the tunnel current for tracking flows, and d is d (nm) > d (nm) +0.1 (nm)p
It can take any value within the range that satisfies τ.

イオンは電子に比べて質量が大きく、導電膜内でほとん
ど散乱されないため、照射ビーム径に等しい四部が形成
でき、かつ近接して照射することも可能である。現在、
イオンビーム径は電磁光学系によって30nm程度まで
絞ることが可能であり、ビット径を約30nmφ、トラ
ックピッチを約60nmとすると、記録面密度として約
50Gビット/C−が得られる。
Ions have a larger mass than electrons and are hardly scattered within the conductive film, so it is possible to form four parts with the same diameter as the irradiation beam, and it is also possible to irradiate them closely. the current,
The ion beam diameter can be narrowed down to about 30 nm by an electromagnetic optical system, and if the bit diameter is about 30 nmφ and the track pitch is about 60 nm, a recording surface density of about 50 Gbit/C- can be obtained.

ここで、イオンビームによって導電膜を直接エツチング
する場合、エツチング速度Rと、ビーム電流■およびビ
ーム径Sの間には、 Rべ IS2 の関係が成立する。すなわち、ビーム径を細く絞るとエ
ツチング速度は減少するため、短時間で工ツチングする
ためには、大電流、すなわちビームエネルギ約100k
ey、照射量約101フイオン/ciが必要である。
Here, when a conductive film is directly etched with an ion beam, the following relationship RbeIS2 holds between the etching rate R, the beam current (2), and the beam diameter S. In other words, if the beam diameter is narrowed, the etching speed will decrease, so in order to process in a short time, a large current, that is, a beam energy of approximately 100k, is required.
ey, a dose of approximately 101 ions/ci is required.

したがって、イオンビーム源としては、長時間、安定に
かつ大照射量の得られる液体金属イオン源とし、イオン
の元素としてはR,b、CsあるいはGaなどが適して
いる。
Therefore, as the ion beam source, a liquid metal ion source that can stably provide a large irradiation amount over a long period of time is used, and R, b, Cs, Ga, or the like is suitable as the ion element.

例えば、イオンビームのイオン元素としてGa+、イオ
ンエネルギー約100keV、イオン照射量約101フ
イオン/ cj、ビーム径約30nmとするとエツチン
グ速度として、約10nm/secが得られる。
For example, when the ion element of the ion beam is Ga+, the ion energy is about 100 keV, the ion irradiation amount is about 101 ions/cj, and the beam diameter is about 30 nm, an etching rate of about 10 nm/sec can be obtained.

次に、再生方法について説明する。再生には、STM(
走査トンネリング顕微鏡)技術を用いる。
Next, a reproduction method will be explained. For playback, STM (
using scanning tunneling microscopy (scanning tunneling microscopy) technology.

導電性探針をイオンビームによって表面に四部を形成さ
れたディスク上に約1nmの距離に近付け、該導電性探
針とディスク表面の導電膜間に数mV〜1v程度の電圧
を印加する。ディスクを回転させることにより導電性探
針はディスク表面上を走査し、導電性探針とディスク表
面間の距離に応じたトンネル電流が流れる。導電性探針
とディスク表面、トラッキンググループ、ピット部間の
距離変化に応じてトンネル電流は変動するから、この変
動量を閉ループ系で感知することにより情報の再生がな
される。
A conductive probe is brought close to a distance of about 1 nm from a disk having four parts formed on its surface by an ion beam, and a voltage of about several mV to 1 V is applied between the conductive probe and the conductive film on the disk surface. By rotating the disk, the conductive probe scans over the disk surface, and a tunnel current flows depending on the distance between the conductive probe and the disk surface. Since the tunneling current fluctuates in response to changes in the distance between the conductive probe and the disk surface, tracking group, and pit, information is reproduced by sensing this amount of fluctuation in a closed-loop system.

なお、STM技術においては、表面の凸凹を測定するの
に大きく分けて次の2つのモードがある。
In addition, in the STM technology, there are two main modes for measuring surface irregularities:

(1)定電流モードと呼ばれるもので、変動するトンネ
ル電流が一定になるように、探針と試料表面の距離を圧
電駆動装置を用いて制御するもの、 (2)可変電流モードと呼ばれるもので、探針と試料表
面間にあらかじめ選択された距離空間にセットされ、変
動するトンネル電流を距離変化に変換するもの、 メモリとしての用途を考えた場合、高転送レートを得る
ためにはディスク表面を高速走査する必要があるため、
上記の(2)の可変電流モードを用いるのがよい。
(1) Constant current mode, in which the distance between the probe and the sample surface is controlled using a piezoelectric drive device so that the fluctuating tunnel current remains constant; (2) Variable current mode, in which the distance between the probe and the sample surface is controlled using a piezoelectric drive device. , which is set at a preselected distance space between the tip and the sample surface, and converts the fluctuating tunnel current into a change in distance.When considering the use as a memory, in order to obtain a high transfer rate, it is necessary to Because it is necessary to scan at high speed,
It is preferable to use the variable current mode (2) above.

次に、本発明の一実施例を図面を参照して詳細に説明す
る。第2図は本発明の一実施例の記録装置の概念的構成
図である。
Next, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 is a conceptual block diagram of a recording apparatus according to an embodiment of the present invention.

図において、1はガラス、プラスチックあるいはSi等
表面が平坦かつ滑らかな基板である。2は導電膜であり
、その材料としてスパッタ率の大きいAuやAg等の貴
金属が適している。該材料を用いると、スパッタリング
により均一性の良い導電膜か形成される。導電膜2の厚
さは特に厳密でなく、表面が滑らかであればよい。3は
イオンビーム発生装置であり(F I 8機器)、極細
イオンビームを50〜100keVのエネルギで発生さ
せる。4はイオンビーム収束装置であり、イオンビーム
の直径を30nm程度に集束する。5はビーム変調器で
あり、記録信号に応じてイオンビームの強度を制御する
。6はディスク回転用モータであり、7は真空室、8は
真空ポンプである。
In the figure, 1 is a substrate with a flat and smooth surface, such as glass, plastic, or Si. Reference numeral 2 represents a conductive film, and its material is preferably a noble metal such as Au or Ag, which has a high sputtering rate. When this material is used, a conductive film with good uniformity can be formed by sputtering. The thickness of the conductive film 2 is not particularly critical, as long as the surface is smooth. 3 is an ion beam generator (F I 8 equipment), which generates an extremely fine ion beam with an energy of 50 to 100 keV. 4 is an ion beam focusing device, which focuses the ion beam to a diameter of about 30 nm. 5 is a beam modulator, which controls the intensity of the ion beam according to the recording signal. 6 is a disk rotation motor, 7 is a vacuum chamber, and 8 is a vacuum pump.

記録にあたっては、まず真空ポンプ8により真空室7内
を約lX10’Pa程度に排気する。基板1および導電
膜2よりなるディスクは回転用モータ6によって回転さ
れ、記録信号に応じて変調器5によって強度変調された
Ga  イオンビームが導膜膜2上に照射される。この
時、ビーム径は集束装置4によって約30nm程度に集
束される。
For recording, first, the inside of the vacuum chamber 7 is evacuated to about 1×10'Pa using the vacuum pump 8. A disk consisting of a substrate 1 and a conductive film 2 is rotated by a rotation motor 6, and the conductive film 2 is irradiated with a Ga 2 ion beam whose intensity is modulated by a modulator 5 in accordance with a recording signal. At this time, the beam diameter is focused by the focusing device 4 to about 30 nm.

イオンビームは導電膜2をエツチングし、巾約30nm
、深さ約1nm、ピッチ約[5Qnmのトラッキンググ
ループおよび前記トラッキンググループ内に、巾約30
nm、深さ約1nmのピットを形成する。
The ion beam etches the conductive film 2 to a width of about 30 nm.
, a tracking group with a depth of about 1 nm, a pitch of about [5Q nm, and a width of about 30 nm in the tracking group.
pits with a depth of approximately 1 nm.

第3図(a)は導電膜2表面上に形成されたトラッキン
ググループおよび四部(ビットに相当する)の一部拡大
平面図であり、同図(b)および同図(e)は同図(a
)におけるb−b’線位置およびC−C’線位置におけ
る縦断側面図である。
FIG. 3(a) is a partially enlarged plan view of the tracking group and four parts (corresponding to bits) formed on the surface of the conductive film 2, and FIG. 3(b) and FIG. a
) is a vertical cross-sectional side view taken along line bb' and line C-C'.

トラッキンググループ9部ではイオンビーム強度を弱く
、ピット部10ではイオンビーム強度を強くすることに
よりトラッキンググループ内にピットを形成することが
できる。再生時にはこのトラッキンググループ9に沿っ
て再生用探針が走査し、正確に情報を読み取ることがで
きる。
By lowering the ion beam intensity in the tracking group 9 portion and increasing the ion beam intensity in the pit portion 10, pits can be formed within the tracking group. During reproduction, the reproduction probe scans along this tracking group 9, allowing accurate reading of information.

前記第3図(b)、(e)において、fl:F2−約3
0nm、13−約5QnmShl−約1nm。
In FIGS. 3(b) and (e), fl:F2-about 3
0 nm, 13 - about 5 Qnm Shl - about 1 nm.

h2−約2nmである。h2 - approximately 2 nm.

第1図は本発明の一実施例の再生装置の概念的構成図で
ある。図において、11は導電性探針、12は圧電駆動
装置、13は電流電圧変換器、14は増幅器、15は対
数変換器、16は比較器、17は電流センサを示す。
FIG. 1 is a conceptual diagram of a reproducing apparatus according to an embodiment of the present invention. In the figure, 11 is a conductive probe, 12 is a piezoelectric drive device, 13 is a current-voltage converter, 14 is an amplifier, 15 is a logarithmic converter, 16 is a comparator, and 17 is a current sensor.

前記導電性探針11はpt、w等の金属から構成されて
いる。その先端は機械的に研摩され、先端半径は約11
00n程度に構成されている。
The conductive probe 11 is made of metal such as PT and W. Its tip is mechanically polished and the tip radius is approximately 11
00n.

なお、該先端半径Rと水平分解能δとの間にはδキR1
12の関係があるので、ピット径が約30nmのピット
を読取るためには、その先端半径Rを、R<900nm
とすればよい。
Note that there is a distance δkiR1 between the tip radius R and the horizontal resolution δ.
Since there is a relationship of 12, in order to read a pit with a pit diameter of approximately 30 nm, the tip radius R must be
And it is sufficient.

また、前記圧電駆動装置12は、チタン酸ジルコン酸鉛
系セラミックスから構成されており、ディスクの半径方
向および垂直方向の2次元に変位可能に構成されている
The piezoelectric drive device 12 is made of lead zirconate titanate ceramics, and is configured to be able to be displaced two-dimensionally in the radial direction and the vertical direction of the disk.

次に、該再生装置の動作を説明する。Next, the operation of the playback device will be explained.

前記導電性探針11は、前記圧電駆動装置12を用いて
、情報が凸凹により記録されたディスク1の導電膜2上
に、約1nmの距離をおいて配置されている。そして、
該導電性探針11と導電膜2間に、約IV程度の直流電
圧が印加されている。
The conductive probe 11 is placed at a distance of about 1 nm on the conductive film 2 of the disk 1 on which information is recorded in a concave and convex manner using the piezoelectric drive device 12. and,
A DC voltage of about IV is applied between the conductive probe 11 and the conductive film 2.

ディスク1をモータ6により回転させることにより、導
電性探針11はディスク表面上を走査し、導電性探針1
1と導電膜2に形成された凸凹間の距離に応じたトンネ
ル電流が流れる。記録された情報(表面の凸凹)によっ
て変動するトンネル電流は、電流センサ17を介して、
電流電圧変換器13により電圧の変動に変換される。こ
こで、トンネル電流は導電性探針11と導電膜2の凸凹
間の距離に対して指数関数的に変動するため、増幅器1
4の後には対数変換器15によって変動をリニアとし、
標準電源電圧との比較を比較器16によって行ない、凸
凹に応じたデジタル情報を再生する。
By rotating the disk 1 by the motor 6, the conductive probe 11 scans the surface of the disk, and the conductive probe 1
A tunnel current flows in accordance with the distance between the unevenness formed on the conductive film 1 and the conductive film 2. The tunnel current, which varies depending on the recorded information (surface irregularities), is transmitted via the current sensor 17 to
The current-voltage converter 13 converts the voltage into voltage fluctuations. Here, since the tunneling current varies exponentially with the distance between the conductive probe 11 and the unevenness of the conductive film 2, the amplifier 1
After 4, the variation is made linear by a logarithmic converter 15,
Comparison with the standard power supply voltage is performed by a comparator 16, and digital information corresponding to the unevenness is reproduced.

また、高さ制御信号aにより、導電性探針11と導電膜
2との空間距離を設定し、導電性探針11と導電膜2の
空間距離の許容範囲内への再設定およびトンネル電流の
異常時の際に導電性探針11を退避させるために、増幅
器14後の信号すを圧電駆動装置12ヘフイードバツク
させる。
In addition, the spatial distance between the conductive probe 11 and the conductive film 2 is set using the height control signal a, and the spatial distance between the conductive probe 11 and the conductive film 2 is reset to within the allowable range and the tunnel current is In order to evacuate the conductive probe 11 in the event of an abnormality, the signal after the amplifier 14 is fed back to the piezoelectric drive device 12.

なお、本実施例においてはイオンビームにより導電膜を
直接エツチングして記録する方法を示したが、基板上に
PMMA等のレジストを塗布し、レジスト露光により記
録を行なうこともできる。
Although this embodiment shows a method of recording by directly etching the conductive film with an ion beam, it is also possible to apply a resist such as PMMA on the substrate and perform recording by exposing the resist.

本実施例によれば、ピット径を約30nm、トラックピ
ッチを約60nm、ディスク径を約10cmとした場合
、約100Gバイトの記録容量が得られる。
According to this embodiment, when the pit diameter is about 30 nm, the track pitch is about 60 nm, and the disk diameter is about 10 cm, a recording capacity of about 100 Gbytes can be obtained.

本実施例では外乱を抑止するために、室7を真空排気し
ているが、トンネル電流は大気中でも生じることは明白
であり、必ずしも真空排気は必要でない。
In this embodiment, the chamber 7 is evacuated in order to suppress disturbances, but it is clear that tunnel current occurs even in the atmosphere, so evacuating is not necessarily necessary.

(発明の効果) 本発明によれば、記録面密度を現在の光ディスクの約1
03倍に向上でき、高密度大容量の再生装置および記録
再生装置を提供することができる。
(Effects of the Invention) According to the present invention, the recording surface density can be reduced to about 1 that of current optical discs.
It is possible to provide a high-density, large-capacity reproducing device and recording/reproducing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の再生装置の概念的構成図、
第2図は本発明の実施例の記録装置の概念的構成図、第
3図はディスク表面の平面図および断面図を示す。 1・・・基板、2・・・導電膜、3・・・イオンビーム
発生装置、4・・・イオンビーム収束装置、5・・・ビ
ーム変調器、6・・・ディスク回転用モータ、7・・・
真空室、8・・・真空ポンプ、11・・・導電性探針、
12・・・圧電駆動装置、13・・・電流電圧変換器、
14・・・増幅器、15・・・対数変換器、16・・・
比較器、17・・・電流センサ
FIG. 1 is a conceptual configuration diagram of a playback device according to an embodiment of the present invention;
FIG. 2 is a conceptual block diagram of a recording apparatus according to an embodiment of the present invention, and FIG. 3 is a plan view and a sectional view of a disk surface. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Conductive film, 3... Ion beam generator, 4... Ion beam focusing device, 5... Beam modulator, 6... Disk rotation motor, 7...・・・
Vacuum chamber, 8... Vacuum pump, 11... Conductive probe,
12... Piezoelectric drive device, 13... Current voltage converter,
14... Amplifier, 15... Logarithmic converter, 16...
Comparator, 17... current sensor

Claims (7)

【特許請求の範囲】[Claims] (1)記録媒体上の突起あるいはくぼみを読み取って情
報の再生を行なう高密度再生装置において、前記記録媒
体表面からあらかじめ選択された空間距離に設けられ、
かつ該記録媒体を半径方向に走査する導電性探針と、該
導電性探針と前記記録媒体間に電位を与える手段と、前
記導電性探針と前記記録媒体との間に生じるトンネル電
流の変動を検知し、デジタル再生情報を出力する手段と
を具備し、前記記録媒体表面に形成された前記突起ある
いはくぼみに応じて変動するトンネル電流により情報の
再生を行なうようにしたことを特徴とする高密度再生装
置。
(1) In a high-density reproduction device that reads protrusions or depressions on a recording medium to reproduce information, the device is installed at a preselected spatial distance from the surface of the recording medium,
and a conductive probe that scans the recording medium in a radial direction, a means for applying a potential between the conductive probe and the recording medium, and a means for applying a potential between the conductive probe and the recording medium, and a means for controlling a tunnel current generated between the conductive probe and the recording medium. It is characterized by comprising means for detecting fluctuations and outputting digital reproduction information, and reproduction of information is performed by means of a tunnel current that varies according to the protrusions or depressions formed on the surface of the recording medium. High-density playback equipment.
(2)前記記録媒体の表面が、Au、Ag、Cuおよび
Siからなる元素の群の中から選ばれた元素であること
を特徴とする前記特許請求の範囲第1項記載の高密度再
生装置。
(2) The high-density playback device according to claim 1, wherein the surface of the recording medium is made of an element selected from the group of elements consisting of Au, Ag, Cu, and Si. .
(3)前記記録媒体の形状が、ディスクであることを特
徴とする前記特許請求の範囲第1項または第2項記載の
高密度再生装置。
(3) The high-density playback device according to claim 1 or 2, wherein the recording medium has a disk shape.
(4)記録媒体上に突起あるいはくぼみを形成して記録
を行い、該記録媒体上の突起あるいはくぼみを読取って
情報の再生を行う高密度記録再生装置において、 記録情報に応じて強度変調されたイオンビームを放出す
るイオン銃と、前記イオンビームを集束し偏向する電磁
光学系とからなる記録装置と、前記記録媒体表面からあ
らかじめ選択された空間距離に設けられ、かつ該記録媒
体を半径方向に走査する導電性探針と、該導電性探針と
前記記録媒体間に電位を与える手段と、前記導電性探針
と前記記録媒体との間に生じるトンネル電流の変動を検
知し、デジタル再生情報を出力する手段とからなる再生
装置とを具備し、 前記イオンビームを前記記録媒体表面に照射して高密度
記録を行い、該記録媒体表面に形成された情報の再生を
行うようにしたことを特徴とする高密度記録再生装置。
(4) In a high-density recording/reproducing device that performs recording by forming protrusions or depressions on a recording medium and reproduces information by reading the protrusions or depressions on the recording medium, the intensity is modulated according to the recorded information. a recording device comprising an ion gun that emits an ion beam; an electromagnetic optical system that focuses and deflects the ion beam; A scanning conductive probe, a means for applying a potential between the conductive probe and the recording medium, and a means for detecting fluctuations in tunnel current generated between the conductive probe and the recording medium, and detecting digital reproduction information. and a reproducing device comprising a means for outputting the ion beam, the ion beam is irradiated onto the surface of the recording medium to perform high-density recording, and the information formed on the surface of the recording medium is reproduced. A high-density recording and reproducing device with special features.
(5)前記記録において使用するイオンビームの元素が
、Rb、Cs、Gaからなる元素の群の中から選ばれた
元素であることを特徴とする前記特許請求の範囲第4項
記載の高密度記録再生装置。
(5) The high density according to claim 4, wherein the element of the ion beam used in the recording is an element selected from the group of elements consisting of Rb, Cs, and Ga. Recording and playback device.
(6)前記記録媒体の表面が、Au、Ag、Cuおよび
Siからなる元素の群の中から選ばれた元素であること
を特徴とする前記特許請求の範囲第4または5項記載の
高密度記録再生装置。
(6) The high density according to claim 4 or 5, wherein the surface of the recording medium is made of an element selected from the group of elements consisting of Au, Ag, Cu, and Si. Recording and playback device.
(7)前記記録媒体の形状が、ディスクであることを特
徴とする前記特許請求の範囲第4ないし6項記載の高密
度記録再生装置。
(7) The high-density recording and reproducing apparatus according to any one of claims 4 to 6, wherein the recording medium has a disk shape.
JP31153187A 1987-12-09 1987-12-09 High density reproducing device and recording and reproducing device Pending JPH01151035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31153187A JPH01151035A (en) 1987-12-09 1987-12-09 High density reproducing device and recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31153187A JPH01151035A (en) 1987-12-09 1987-12-09 High density reproducing device and recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH01151035A true JPH01151035A (en) 1989-06-13

Family

ID=18018358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31153187A Pending JPH01151035A (en) 1987-12-09 1987-12-09 High density reproducing device and recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH01151035A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271439A (en) * 1988-09-07 1990-03-12 Canon Inc Recording and reproducing device
JPH02282945A (en) * 1989-04-25 1990-11-20 Canon Inc Recording and reproducing device
JPH03278341A (en) * 1990-03-28 1991-12-10 Canon Inc Fine probe electrode employed recording/reproducing device
US5199021A (en) * 1990-04-18 1993-03-30 Canon Kabushiki Kaisha Method of access to recording medium, and apparatus and method for processing information
US5255259A (en) * 1990-04-18 1993-10-19 Canon Kabushiki Kaisha Method of access to recording medium, and apparatus and method for processing information
US5446720A (en) * 1990-03-09 1995-08-29 Canon Kabushiki Kaisha Information recording method and apparatus recording two or more changes in topographical and electrical states
US5581364A (en) * 1991-03-06 1996-12-03 Canon Kabushiki Kaisha Method for recording and/or reproducing image signals and an apparatus therefor utilizing two dimensional scanning of a recording medium by a probe
CN105940228A (en) * 2014-01-31 2016-09-14 株式会社海莱客思 Connection mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180536A (en) * 1984-09-14 1986-04-24 ゼロツクス コーポレーシヨン Apparatus and method for recording and reading atom-size density information
JPS6396756A (en) * 1986-10-13 1988-04-27 Nippon Telegr & Teleph Corp <Ntt> Storage device
JPH01116940A (en) * 1987-10-29 1989-05-09 Hitachi Ltd Method for recording and reproducing information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180536A (en) * 1984-09-14 1986-04-24 ゼロツクス コーポレーシヨン Apparatus and method for recording and reading atom-size density information
JPS6396756A (en) * 1986-10-13 1988-04-27 Nippon Telegr & Teleph Corp <Ntt> Storage device
JPH01116940A (en) * 1987-10-29 1989-05-09 Hitachi Ltd Method for recording and reproducing information

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271439A (en) * 1988-09-07 1990-03-12 Canon Inc Recording and reproducing device
JPH02282945A (en) * 1989-04-25 1990-11-20 Canon Inc Recording and reproducing device
US5446720A (en) * 1990-03-09 1995-08-29 Canon Kabushiki Kaisha Information recording method and apparatus recording two or more changes in topographical and electrical states
JPH03278341A (en) * 1990-03-28 1991-12-10 Canon Inc Fine probe electrode employed recording/reproducing device
US5199021A (en) * 1990-04-18 1993-03-30 Canon Kabushiki Kaisha Method of access to recording medium, and apparatus and method for processing information
US5255259A (en) * 1990-04-18 1993-10-19 Canon Kabushiki Kaisha Method of access to recording medium, and apparatus and method for processing information
US5581364A (en) * 1991-03-06 1996-12-03 Canon Kabushiki Kaisha Method for recording and/or reproducing image signals and an apparatus therefor utilizing two dimensional scanning of a recording medium by a probe
CN105940228A (en) * 2014-01-31 2016-09-14 株式会社海莱客思 Connection mechanism

Similar Documents

Publication Publication Date Title
US5453970A (en) Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe
US5485451A (en) Information processing apparatus
US5627815A (en) Precision machining method precision machining apparatus and data storage apparatus using the same
KR100772756B1 (en) Information recorder
JPH0344387B2 (en)
US5446720A (en) Information recording method and apparatus recording two or more changes in topographical and electrical states
JPH04178938A (en) Information recording carrier, and method and device for recording and/or reproducing information
JPH01151035A (en) High density reproducing device and recording and reproducing device
CA2040703C (en) Method of access to recording medium, and apparatus and method for processing information
JP4104943B2 (en) High density information recording method using electron emission and phase change material, information recording apparatus employing the same, and medium used therefor
JPS62189649A (en) Electron beam recording and reproducing device
JPH01116940A (en) Method for recording and reproducing information
JP2892022B2 (en) Recording element
JPS62245530A (en) Ultrahigh density recording system utilizing fine beam
JP2962603B2 (en) Information recording method
JP3209295B2 (en) Recording and playback device
JP2968610B2 (en) Information recording / reproducing device
JPH0765417A (en) Recording and reproducing method using probe and device therefor
JP3236423B2 (en) Optical memory device and its recording method and reproducing method
JP3093065B2 (en) Recording / reproducing method and recording / reproducing apparatus
CA2037848C (en) Information recording method/apparatus and information reproducing method/apparatus
JP2856375B2 (en) Magneto-optical recording / reproducing device
Kitahara et al. Development of Practical Electron Beam Recorder for High-density Optical and Magnetic Disc Mastering
JPH0636364A (en) Recording/reproducing device
JP2000090483A (en) Recording medium having opening array and its production as well as recording and reproduction device utilizing proximate field by the same and their method