JPH01149931A - Manufacture of thermoelectric material - Google Patents

Manufacture of thermoelectric material

Info

Publication number
JPH01149931A
JPH01149931A JP30738287A JP30738287A JPH01149931A JP H01149931 A JPH01149931 A JP H01149931A JP 30738287 A JP30738287 A JP 30738287A JP 30738287 A JP30738287 A JP 30738287A JP H01149931 A JPH01149931 A JP H01149931A
Authority
JP
Japan
Prior art keywords
alloy
type
thermoelectric material
group
molten state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30738287A
Other languages
Japanese (ja)
Inventor
Takuji Okumura
卓司 奥村
Masao Yamashita
山下 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP30738287A priority Critical patent/JPH01149931A/en
Publication of JPH01149931A publication Critical patent/JPH01149931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Bi-Sb-type thermoelectric material showing high p-type properties at low temp. (e.g., 77-200 deg.K) by solidifying a Bi-Sb alloy with a specific composition from a molten state at a cooling velocity capable of producing a nonequilibrium phase and then subjected the resulting thin film to cold forming. CONSTITUTION:A Bi-Sb alloy having a composition represented by a formula is solidified from a molten state at a cooling velocity capable of producing a nonequilibrium state. Concretely, in an illustrated apparatus, Bi-Sb alloy 3 is charged into a molten metal well 4 and heated by means of a high-frequency coil 2, by which the Bi-Sb alloy is formed into a molten state. On the other hand, a metallic roll 1 is rotated at 500-4,000rpm rotational speed, and the above molten metal is sprayed from the wall 4 onto the above roll 1 at 0.5-4kg/cm<2> inert-gas pressure to undergo solidification by cooling. Subsequently, the resulting thin rapidly cooled film is cold-formed, by which the desired p-type Bi-Sb-type thermoelectric material can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温(77〜200@K)で高い性能を発揮
するB1−5b系熱電材料の製造方法に関し、さらに詳
しくは、ベルチェ効果を利用する電子冷却用モジュール
の脚部材料、あるいはゼーベック効果を利用する冷熱(
源)発電用モジュールの脚部材料などに有用なp型B1
−5b系合金熱電材料のバルク製造法に関するものであ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing B1-5b thermoelectric materials that exhibit high performance at low temperatures (77 to 200 @K), and more specifically, to The leg material of the electronic cooling module to be used, or the cooling energy that utilizes the Seebeck effect (
Source) p-type B1 useful as leg material for power generation modules, etc.
The present invention relates to a method for bulk manufacturing a -5b alloy thermoelectric material.

〔従来の技術〕[Conventional technology]

B1−5b系合金は低温域で限られた範囲(例えば4.
2’ KにおいてBL 95S b 5〜Bi sos
 b 20)で!0.015eV程度のバンドギャップ
を有するn型半導体となり、これが低温域で優れたベル
チェ効果を発揮することは広く知られている(例えば、
特公昭38−15421号公報参照)。
B1-5b alloys have a limited range in low temperature range (e.g. 4.
BL 95S b 5 ~ Bi sos at 2'K
b 20)! It is an n-type semiconductor with a bandgap of about 0.015 eV, and it is widely known that it exhibits an excellent Bertier effect at low temperatures (for example,
(See Japanese Patent Publication No. 38-15421).

このn型B1−Sb合金は、実は真性半導体であり、キ
ャリアとして電子、正孔ともほぼ同数存在する。しかし
、電子の移動度が正孔の移動度に比べて大きいため、n
型伝導となるとされテイル(例えば、T、 AONO及
びS、 AIZAwA”5tudy on Therm
al Gap of’ B1−8b A11oys”T
okyo DenkI Unlv、参照)。
This n-type B1-Sb alloy is actually an intrinsic semiconductor, and has approximately the same number of electrons and holes as carriers. However, since the mobility of electrons is larger than that of holes, n
type conduction and tails (e.g. T, AONO and S, AIZAwA"5tudy on Therm
al Gap of' B1-8b A11oys”T
(see Okyo Denki Unlv).

また、■族元素Sn、Pbなどを数1100pp固溶さ
せた単結晶B1−5bでは、極低温のいわゆる不純物領
域ではn型伝導を示すが、温度上昇と共にn型へ反転す
るという報告がある(例えば、曾、YIll及び^、 
Aa+1th、 5olid−8tate Elect
ronlcs、 1972. Vol、15. P、1
141〜L185参照)。
In addition, there is a report that single crystal B1-5b containing several 1,100 pp of group III elements Sn, Pb, etc., exhibits n-type conduction in the so-called impurity region at extremely low temperatures, but reverses to n-type as the temperature rises ( For example, 曛, YIll and ^,
Aa+1th, 5solid-8tate Elect
ronlcs, 1972. Vol, 15. P, 1
141-L185).

従って、極低温から室温近傍までp型となるB1−8b
系合金は、単結晶製造を目的とするブリッジマン法やゾ
ーンメルティング法では作製不可能であり、n型材料し
か作製できなかったため、従来、電子冷却用モジニール
の脚部材料への実用は行なわれていなかった。
Therefore, B1-8b becomes p-type from extremely low temperatures to near room temperature.
This type of alloy cannot be produced by the Bridgman method or zone melting method, which aims to produce single crystals, and only n-type materials can be produced, so it has not been put to practical use in the leg material of Modinyl for electronic cooling. It wasn't.

このような基本的な問題を解決するため、本出願人は、
以下の組成を有し、低温、例えば77〜200@Kにお
いて高い性能を発揮するB1−5b系熱電材料及びその
製造方法を開発し、既に特許出願している(特願昭61
−35337号)。
In order to solve these basic problems, the applicant
We have developed a B1-5b thermoelectric material that has the following composition and exhibits high performance at low temperatures, e.g. 77 to 200 K, and a method for producing the same, and have already applied for a patent (Patent Application No. 61).
-35337).

((B1+oo−x Sbx ) +00−7 E 寥
1 roo、+ E !ここで、EIは■族又は■族元
素を示し、EIは■・■族元素を示し、Xは5〜20、
yは0〜20.2は0.05〜10である。(但し、上
記合金組成を得るには、350〜800℃の温度で完全
に一液相となっている状態から急冷ロール法などを用い
て、強制固溶体を作製しなければならない場合がある。
((B1+oo-x Sbx) +00-7 E 寥1 roo, + E!Here, EI represents the ■ group or ■ group element, EI represents the ■/■ group element, X is 5 to 20,
y is 0-20.2 is 0.05-10. (However, in order to obtain the above alloy composition, it may be necessary to create a forced solid solution from a completely one-liquid phase state at a temperature of 350 to 800° C. using a quench roll method or the like.

) すなわち、上記のB1−5b系熱電材料は、B1−5b
系母合金として真性半導体色なるB1 +oo−x S
 bx  (ここで、x−5〜20)を採用すると共に
、p型ドーパントとして■族又は■族元素を0.05〜
10at%添加し、また、実用に際して熱電材料の性能
を上げるため、必要に応じて■・■族元素を0〜20a
t%添加するものである。なお、p型ドーパントとして
■族元素を添加する場合には、上記■・■族元素を添加
する必要性はない。
) That is, the above B1-5b thermoelectric material is B1-5b
B1 +oo-x S, which has an intrinsic semiconductor color as a mother alloy
bx (here, x-5 to 20), and 0.05 to 0.05 to
In addition, in order to improve the performance of thermoelectric materials in practical use, group ■ and ■ elements may be added in the range of 0 to 20 at%.
t% is added. Incidentally, when adding a group (1) element as a p-type dopant, there is no need to add the above-mentioned group (1) and (2) element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本出願人の開発に係る上記p型B1−5b合金は、溶融
状態にあるB1−Sb系合金を非平衡相になりうる冷却
速度で凝固させることにより得られる。すなわち、従来
のブリッジマン法やゾーンメルティング法では、p型ド
ーパントが平衡凝固で固溶される量(数1100pp程
度)しか添加できないが、前記した本出願人の方法によ
ると、平衡凝固全以上のp型ドーパントを添加すること
が可能となり、その結果、従来作製不可能であったp型
B1−8b合金が作製可能となる。
The p-type B1-5b alloy developed by the present applicant is obtained by solidifying a B1-Sb alloy in a molten state at a cooling rate that can result in a non-equilibrium phase. In other words, in the conventional Bridgman method and zone melting method, it is possible to add only the amount of p-type dopant that is dissolved in solid solution during equilibrium solidification (approximately several 1100 pp), but according to the above-mentioned method of the present applicant, more than all It becomes possible to add a p-type dopant of 100%, and as a result, it becomes possible to produce a p-type B1-8b alloy, which was previously impossible to produce.

すなわち、前記従来技術の項で説明したように、■族元
素を平衡凝固で数1100pp添加されたB1−5b合
金は温度上昇と共にp→n型へ反転するが、本出願人の
開発した方法に従って、B i 100−x S b 
x  (x −5〜20)の真性半導体にp型ドーパン
トとして■族又は■族元素を0.05〜10at%添加
する二とにより、77”K〜室温近傍においてn型伝導
を示すB1−5b合金が得られる。
That is, as explained in the prior art section, the B1-5b alloy to which several 1,100 pp of group II elements are added by equilibrium solidification changes from p to n type as the temperature rises, but according to the method developed by the applicant, , B i 100-x S b
By adding 0.05 to 10 at% of a group II or group III element as a p-type dopant to the intrinsic semiconductor of An alloy is obtained.

しかしながら、前記したp型B1−5b合金組成のなか
には、非平衡相になりうる冷却速度で凝固させることに
より得られる急冷薄膜はn型伝導を示すが、該薄膜から
例えば200℃でホットプレスしてバルクを作製する際
に著しくp型性能を損なうものがあった。
However, in some of the p-type B1-5b alloy compositions described above, a rapidly quenched thin film obtained by solidifying at a cooling rate that can result in a non-equilibrium phase exhibits n-type conduction; There were some materials that significantly impaired p-type performance during bulk fabrication.

従って、本発明の目的は、低温(例えば77〜200’
K)で高いp型′性能を発揮するB1−5b系熱電材料
のバルクを製造できる方法を提供することにある。
Therefore, the object of the present invention is to
The object of the present invention is to provide a method for producing a bulk B1-5b thermoelectric material exhibiting high p-type performance in K).

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、前記目的を達成するため、1(BI+
oo−x Sb−) +oo−FE e l  too
−、E !(但し、式中E1は■族又は■族元素を示し
、ElはIV−VI族元素を示し、Xは5〜20、yは
0〜20.2は0:05〜10である。)で示される組
成を持つB1−5b系合金を溶融状態より非平衡相とな
りうる冷却速度で凝固させた後、冷間成形することを特
徴とする熱電材料の製造方法が提供される。
According to the present invention, in order to achieve the above object, 1(BI+
oo-x Sb-) +oo-FE e l too
-,E! (However, in the formula, E1 represents a group ■ or group ■ element, El represents a group IV-VI element, X is 5 to 20, and y is 0 to 20.2 is 0:05 to 10.) A method for producing a thermoelectric material is provided, which comprises solidifying a B1-5b alloy having the composition shown above at a cooling rate that allows it to form a non-equilibrium phase from a molten state, and then cold forming it.

上記組成のB1−5b系合金を溶融状態から非平衡相と
なりうる冷却速度で凝固させて得られる急冷薄膜はp型
伝導を示すが、これを冷間加工してバルクとすることに
より、急冷により得られたp型B1−Sb系合金の性能
を失うことなくバルクを作製できる。
The quenched thin film obtained by solidifying the B1-5b alloy with the above composition from a molten state at a cooling rate that allows it to become a non-equilibrium phase exhibits p-type conduction. A bulk can be produced without losing the performance of the obtained p-type B1-Sb alloy.

冷間加工の方法としては、具体的には、(イ)金型等で
冷間成形する、(ロ)大型プレスで5.000〜20,
000気圧で成形する、(ハ)等方的にC,I 、  
P (Cold l5ostatic Press)に
より5.000〜10,000気圧で成形する、などの
方法が採用できる。
Specifically, the cold working method includes (a) cold forming with a mold, etc., (b) a large press with a diameter of 5,000 to 20,
Molding at 000 atmospheres, (c) isotropically C,I,
A method such as molding by P (cold static press) at 5,000 to 10,000 atmospheres can be adopted.

以下、本発明の方法について説明すると、まず溶融状態
にある前記組成のB1−8b系合金を非平衡相になりう
る冷却速度で凝固させる。
Hereinafter, the method of the present invention will be explained. First, the B1-8b alloy having the above composition which is in a molten state is solidified at a cooling rate that allows it to become a non-equilibrium phase.

具体的には、第1図に示すような装置において、溶湯溜
4にB1−Sb系合金3を装填し、高周波コイル2で加
熱し、B1−5b系合金を溶融状態とする。一方、金属
製ロール1(φ200關1幅20關程度)を500〜4
00Orpmで回転させ、溶湯溜4より不活性ガス圧(
0,5〜4 kg / cj )により溶湯をロールに
噴射させて冷却凝固させる。なお、急冷ロール法を用い
なくとも、平衡凝固より多量のp型ドーパントを添加で
きる急速凝固の方法(例えば急冷粉末)でp型B1−5
b合金を作製することは可能であろう。また、上記急速
ロール法においては、製造条件をロール回転数500〜
4000rpm、ガス噴射圧0.5〜4 kg / c
dの範囲に設定しないと、良質な急冷膜が得られないの
で、好ましくは上記範囲に設定する。
Specifically, in an apparatus as shown in FIG. 1, a B1-Sb alloy 3 is loaded into a molten metal reservoir 4 and heated by a high frequency coil 2 to bring the B1-5b alloy into a molten state. On the other hand, a metal roll 1 (about 200 mm in diameter and 20 mm in width) was
Rotate at 00 rpm, and inert gas pressure (
0.5-4 kg/cj), the molten metal is injected onto a roll and cooled and solidified. In addition, p-type B1-5 can be produced by a rapid solidification method (e.g., rapid cooling powder) that allows addition of a larger amount of p-type dopant than in equilibrium solidification without using the rapid cooling roll method.
It would be possible to make b alloys. In addition, in the above-mentioned rapid roll method, the manufacturing conditions are set at a roll rotation speed of 500 to
4000rpm, gas injection pressure 0.5-4 kg/c
If it is not set within the range d, a good quality quenched film cannot be obtained, so it is preferably set within the above range.

次いで、得られた急冷薄膜を、前記した方法により冷間
成形する。
Next, the obtained quenched thin film is cold-formed by the method described above.

なお、前記した組成のB1−5b系合金において、■族
元素(AfISTN等)又は■族元素(Sn、Pb等)
の添加量が0.05at%未満となると室温近傍までp
型伝導を示さなくなり、一方上記元素の添加量を10a
t%より多くすることは実用的に不適当である。(実用
的には、キャリア濃度を1019〜102°程度に制御
する。)また、本発明のp型B1−5b合金には、実用
に際し熱電材料の熱伝導度を下げ、性能向上を図るため
に、p型伝導を損なわない範囲で■φ■族元素(Pb5
e 、 PbTe等)を添加してもよい。
In addition, in the B1-5b alloy with the above-mentioned composition, group II elements (AfISTN, etc.) or group II elements (Sn, Pb, etc.)
When the amount of addition is less than 0.05at%, p
On the other hand, when the amount of addition of the above elements was increased to 10a
It is practically inappropriate to increase the content by more than t%. (Practically speaking, the carrier concentration is controlled to about 1019 to 102°.) In addition, the p-type B1-5b alloy of the present invention has the following properties: , ■φ■ group elements (Pb5
e, PbTe, etc.) may be added.

当然のこと乍ら、■・■族元素は添加しなくてもよい。Of course, it is not necessary to add group ■ and group ■ elements.

■。■族元素の添加量は20at%を超えるとB1−S
b系合金としての熱電能が損なわれるため好ましくない
■. ■If the amount of group elements added exceeds 20 at%, B1-S
This is not preferable because the thermoelectric power as a b-based alloy is impaired.

〔実 施 例〕〔Example〕

以下、実施例及び比較例を示して本発明について具体的
に説明する。なお、本発明が下記実施例により何ら限定
されるものでないことはもとよりである。
Hereinafter, the present invention will be specifically explained by showing Examples and Comparative Examples. It goes without saying that the present invention is not limited to the following examples.

比較例l B15sSt)+□の組成をもつB1−5b合金にp型
ドーパントとしてInを0,5at%添加し、約600
℃に加熱し、均一な液相状態とした(latm前後のA
r雰囲気中)。この状態より、約11000rpで回転
するCu製ロールにガス噴射圧約1.0kg/c−で溶
湯を噴きつけ、長さ約20龍、巾約2鰭、厚さ約30μ
の薄膜を作製した。
Comparative Example 1 0.5 at% of In was added as a p-type dopant to a B1-5b alloy having a composition of B15sSt)+□, and approximately 600
℃ to obtain a uniform liquid phase (A around latm)
r atmosphere). From this state, the molten metal is sprayed at a gas injection pressure of about 1.0 kg/c- onto a Cu roll rotating at about 11,000 rpm, and the length is about 20 fins, the width is about 2 fins, and the thickness is about 30 μm.
A thin film was prepared.

得られた薄膜をA「雰囲気中で200℃、5kg / 
c−でホットプレスし、10cm角のバルクを得た。
The obtained thin film was heated at 200°C in an atmosphere of A, with a weight of 5 kg/
A 10 cm square bulk was obtained by hot pressing at c-.

ホットプレスに供した薄膜のゼーベック定数αと、ホッ
トプレス後のαを測定したところ、第2図に示す結果が
得られた。
When the Seebeck constant α of the thin film subjected to hot pressing and α after hot pressing were measured, the results shown in FIG. 2 were obtained.

比較例2 Bi−Te系市販材(小松エレクトロニクス(株)製)
p型材料の電気伝導度σ及びゼーベック定数αを測定し
たところ、それぞれ第3図及び第4図に示すとおりであ
った。
Comparative Example 2 Bi-Te commercially available material (manufactured by Komatsu Electronics Co., Ltd.)
When the electrical conductivity σ and Seebeck constant α of the p-type material were measured, they were as shown in FIGS. 3 and 4, respectively.

実施例1 比較例1と同様の方法で得た急冷膜を2万気圧で冷間成
形し、10叩角のバルクを得た。この電気伝導度σ及び
ゼーベック定数αを測定したところ、第5図及び第6図
に示すとおりであった。
Example 1 A rapidly cooled film obtained in the same manner as in Comparative Example 1 was cold-formed at 20,000 atm to obtain a bulk with a crush angle of 10. When the electrical conductivity σ and Seebeck constant α were measured, the results were as shown in FIGS. 5 and 6.

実施例2 実施例1における2万気圧成形に代えて1万気圧のC,
1,P、成形を行ない、10cm角のバルクを得た。こ
の電気伝導度σ及びゼーベック定数αを測定したところ
、実施例1で得られた結果と同様であった。
Example 2 Instead of 20,000 atm molding in Example 1, 10,000 atm C,
1.P. Molding was performed to obtain a 10 cm square bulk. When the electrical conductivity σ and Seebeck constant α were measured, the results were similar to those obtained in Example 1.

〔発明の作用・効果〕[Action/effect of the invention]

比較例1の結果を示す第2図から明らかなように、81
ssSb+□ 0.5%Inは熱的に不安定なため、急
冷薄状態では低温域において正のゼーベック定数、すな
わちp型の高い熱電性能を示すが、200℃でホットプ
レスするとゼーベック定数αは著しく損われ、n型とな
ってしまう。
As is clear from FIG. 2 showing the results of Comparative Example 1, 81
Since ssSb+□ 0.5%In is thermally unstable, it exhibits a positive Seebeck constant in the low temperature range in the rapidly quenched thin state, that is, high p-type thermoelectric performance, but when hot-pressed at 200°C, the Seebeck constant α significantly decreases. It becomes damaged and becomes n-type.

これに対して、本発明の方法に従って実施例1.2で得
られたp型B1Sbは、第5図及び第6図から明らかな
ように、冷間成形後にも急冷状態のままの高いp型熱電
性能を有している。
On the other hand, as is clear from FIGS. 5 and 6, the p-type B1Sb obtained in Example 1.2 according to the method of the present invention remained in the quenched state even after cold forming. It has thermoelectric performance.

実施例1及び比較例2の熱電材料の100゜Kにおける
ゼーベック定数α及び電気伝導度σ及び、定常伝熱法で
測定した熱伝導度にの値を下記表−1に示す。
The Seebeck constant α and electrical conductivity σ at 100°K of the thermoelectric materials of Example 1 and Comparative Example 2, as well as the thermal conductivity measured by the steady heat transfer method, are shown in Table 1 below.

表−1;100°Kにおける特性の比較熱電材料の性能
は、一般に2=α2 ・σ/K(Z:性能指数、α:ゼ
ーベック定数、σ:電気伝導度、K:熱伝導度)で評価
され、Zが多きい程優れた材料である。
Table 1: Comparison of properties at 100°K The performance of thermoelectric materials is generally evaluated using 2 = α2 ・σ/K (Z: figure of merit, α: Seebeck constant, σ: electrical conductivity, K: thermal conductivity) The higher the number of Z, the better the material.

上記表−1より、B1−SbのZがB1−Teのそれを
上まわっていることがわかる。
From Table 1 above, it can be seen that Z of B1-Sb exceeds that of B1-Te.

すなわち、本発明の方法(実施例1.2)により、低温
域!ごおいて、一般に電子冷却に用いられているB1−
Te素子よりも優れた性能指数Zを有するp型B1Sb
が得られる。
That is, by the method of the present invention (Example 1.2), the low temperature range! In addition, B1-, which is generally used for electronic cooling,
p-type B1Sb with better figure of merit Z than Te element
is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は急冷ロール法を実施するための装置の概略構成
図、第2図は比較例1で得られたB15ssb+20.
5%In急冷薄急冷ホットプレス後のバルクのゼーベッ
ク定数の温度変化を示すグラフ、第3図はB1−Te系
市販p型材料の電気伝導度の温度変化を示すグラフ、第
4図はそのゼーベック定数の温度変化を示すグラフ、第
5図は実施例1で得られたB1−Sb素子の電気伝導度
の温度変化を示すグラフ、第6図はそのゼーベック定数
の温度変化を示すグラフである。 1は金属製ロール、2は高周波コイル、3はBi−Bb
系合金、4は溶湯溜。 第2図 遍 度 (K) 第3図 ? 第4図 第5図 第6図
FIG. 1 is a schematic diagram of an apparatus for carrying out the quench roll method, and FIG. 2 is a diagram of the B15ssb+20.
A graph showing the temperature change in the Seebeck constant of the bulk after 5% In quenching, thin quenching, and hot pressing. Figure 3 is a graph showing the temperature change in electrical conductivity of a B1-Te commercially available p-type material. Figure 4 is the Seebeck constant. FIG. 5 is a graph showing the temperature change of the electrical conductivity of the B1-Sb element obtained in Example 1, and FIG. 6 is a graph showing the temperature change of the Seebeck constant. 1 is a metal roll, 2 is a high frequency coil, 3 is Bi-Bb
Series alloy, 4 is a molten metal sump. Figure 2: Degree of variation (K) Figure 3? Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1){(Bi_1_0_0_−_xSb_x)_1_
0_0_−_yE^II_y}_1_0_0_−_zE^
I _z(但し、式中E^ I はIII族又はIV族元素を示
し、E^IIはIV・VI族元素を示し、xは5〜20、yは
0〜20、zは0.05〜10である。)で示される組
成を持つBi−Sb系合金を溶融状態より非平衡相とな
りうる冷却速度で凝固させた後、冷間成形することを特
徴とする熱電材料の製造方法。
(1) {(Bi_1_0_0_-_xSb_x)_1_
0_0_-_yE^II_y}_1_0_0_-_zE^
I_z (However, in the formula, E^I represents a group III or IV element, E^II represents a group IV/VI element, x is 5 to 20, y is 0 to 20, z is 0.05 to 10) A method for producing a thermoelectric material, which comprises solidifying a Bi-Sb alloy having a composition shown in 10) at a cooling rate capable of forming a non-equilibrium phase from a molten state, and then cold forming the alloy.
(2)冷間成形圧が5000気圧以上であることを特徴
とする特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the cold forming pressure is 5000 atmospheres or more.
(3)冷間成形圧が等方的に5000気圧以上であるこ
とを特徴とする特許請求の範囲第1項に記載の方法。
(3) The method according to claim 1, wherein the cold forming pressure is isotropically 5000 atmospheres or more.
(4)Bi−Sb系合金が(Bi_1_0_0_−_x
Sb_x)_1_0_0_zE^ I _z(但し、E^
I はIV族元素であり、x及びzは前記のとおり)で示
される組成を持つものであることを特徴とする特許請求
の範囲第1項乃至第3項のいずれかに記載の方法。
(4) Bi-Sb alloy (Bi_1_0_0_-_x
Sb_x)_1_0_0_zE^ I _z(However, E^
4. The method according to claim 1, wherein I is a group IV element, and x and z have the composition shown above.
JP30738287A 1987-12-07 1987-12-07 Manufacture of thermoelectric material Pending JPH01149931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30738287A JPH01149931A (en) 1987-12-07 1987-12-07 Manufacture of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30738287A JPH01149931A (en) 1987-12-07 1987-12-07 Manufacture of thermoelectric material

Publications (1)

Publication Number Publication Date
JPH01149931A true JPH01149931A (en) 1989-06-13

Family

ID=17968380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30738287A Pending JPH01149931A (en) 1987-12-07 1987-12-07 Manufacture of thermoelectric material

Country Status (1)

Country Link
JP (1) JPH01149931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267239A (en) * 1989-04-06 1990-11-01 Komatsu Ltd Thermoelectric material for low temperature use and its manufacture
US5313220A (en) * 1991-05-30 1994-05-17 Conifer Corporation Low noise integrated MMDS antenna and down converter
JPWO2018038146A1 (en) * 2016-08-26 2019-06-24 国立研究開発法人産業技術総合研究所 Thermoelectric material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267239A (en) * 1989-04-06 1990-11-01 Komatsu Ltd Thermoelectric material for low temperature use and its manufacture
JP2729964B2 (en) * 1989-04-06 1998-03-18 株式会社小松製作所 Thermoelectric material for low temperature
US5313220A (en) * 1991-05-30 1994-05-17 Conifer Corporation Low noise integrated MMDS antenna and down converter
JPWO2018038146A1 (en) * 2016-08-26 2019-06-24 国立研究開発法人産業技術総合研究所 Thermoelectric material

Similar Documents

Publication Publication Date Title
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
EP0235702B1 (en) Thermoelectric material for low temperature use and method of manufacturing the same
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
US20180138385A1 (en) Method for manufacturing bi-te-based thermoelectric material using resistance-heating element
US7067733B2 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JPH01149931A (en) Manufacture of thermoelectric material
EP0258361A1 (en) Thermoelectric semiconductor materials and preparation method.
JP3079423B2 (en) Manufacturing method of thermoelectric material for low temperature
JP4303924B2 (en) Method for manufacturing thermoelectric semiconductor member
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
JPS62196346A (en) Thermoelectric material for low temperature use and its production
JP2556970B2 (en) Thermoelectric material manufacturing method
JP2000261044A (en) Thermoelectric conversion material and its manufacture
JP2729964B2 (en) Thermoelectric material for low temperature
RU2518353C1 (en) Method of obtaining thermoelectrical material for thermoelectrical generator devices
JPH0341780A (en) Manufacture of thermoelectric material
JP2000261043A (en) Thermoelectric conversion material and its manufacture
JP3603698B2 (en) Thermoelectric material and thermoelectric conversion element
KR102612880B1 (en) Preparation method of P-type Ag-Bi-Se based thermoelectric material using selenium steam heat treatment and P-type Ag-Bi-Se based thermoelectric material and thermoelectric device
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP4092776B2 (en) Thermoelectric semiconductor sintered element manufacturing method and apparatus
JP3278140B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material