JP2000261043A - Thermoelectric conversion material and its manufacture - Google Patents

Thermoelectric conversion material and its manufacture

Info

Publication number
JP2000261043A
JP2000261043A JP11063074A JP6307499A JP2000261043A JP 2000261043 A JP2000261043 A JP 2000261043A JP 11063074 A JP11063074 A JP 11063074A JP 6307499 A JP6307499 A JP 6307499A JP 2000261043 A JP2000261043 A JP 2000261043A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
type semiconductor
additive element
additive elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11063074A
Other languages
Japanese (ja)
Inventor
Nobuhiro Sadatomi
信裕 貞富
Osamu Yamashita
治 山下
Tsunekazu Saigo
恒和 西郷
Masao Nomi
正夫 能見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11063074A priority Critical patent/JP2000261043A/en
Priority to AU29415/00A priority patent/AU752619B2/en
Priority to EP00908000A priority patent/EP1083610A4/en
Priority to CNB008005028A priority patent/CN100385694C/en
Priority to US09/674,978 priority patent/US7002071B1/en
Priority to CA002331533A priority patent/CA2331533A1/en
Priority to PCT/JP2000/001469 priority patent/WO2000054343A1/en
Priority to KR10-2000-7012611A priority patent/KR100419488B1/en
Publication of JP2000261043A publication Critical patent/JP2000261043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce thermal conductivity and to improve performance or the Seebeck coefficient by melting additive elements in Si separately or in combination, such that the Si contains a predetermined amount of additive elements and by rapidly cooling the molten substance to form a phase which is rich in the additive elements at the grain boundary rich in Si, where Si is the main component. SOLUTION: Additive elements for making a p-type or n-type semiconductor are melted in Si separately or in combination, such that Si contains 0.001 atom% to 20 atom% additive elements, and the melted substance is rapidly cooled to form a phase rich in the additive elements at the grain boundary rich in Si, where the Si is the main component. In short, a texture in which a phase rich in the additive elements is dispersed and formed at the grain boundary rich in Si of a Si-based thermoelectric conversion material is obtained by controlling the cooling rate after melting, and rapid cooling restrains the grain size to be comparatively small and moderate segregation of the additive elements except for Si at the grain boundary takes place, which produces high Seebeck coefficient in spite of high electrical conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、Siに種々の添加
元素を20原子%以下含有させた新規な熱電変換材料に関
し、Siリッチ相の粒界に添加元素のリッチ相を分散させ
た組織となすことにより、ゼーベック係数が極めて大き
くかつ熱伝導率が小さくなり、熱電変換効率を著しく高
めることが可能で、資源的に豊富なSiが主体で環境汚染
が極めて少ないことを特徴とする多結晶Si系熱電変換材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel thermoelectric conversion material containing 20 atomic% or less of various additive elements in Si, and relates to a structure in which a rich phase of an additive element is dispersed in a grain boundary of a Si-rich phase. By doing so, polycrystalline Si is characterized by extremely high Seebeck coefficient and low thermal conductivity, which can significantly increase thermoelectric conversion efficiency, and is mainly composed of resource-rich Si and has extremely low environmental pollution. The present invention relates to a thermoelectric conversion material.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効利用の観点から実用化が
期待されているデバイスであり、例えば、廃熱を利用し
て電気エネルギーに変換するシステムや、屋外で簡単に
電気を得るための小型携帯用発電装置、ガス機器の炎セ
ンサー等、非常に広範囲の用途が検討されている。
2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries. For example, thermoelectric conversion elements convert waste heat into electric energy. A very wide range of applications are being studied, such as systems, small portable generators for easily obtaining electricity outdoors, and flame sensors for gas appliances.

【0003】この熱エネルギーから電気エネルギーへの変換
効率は、性能指数ZTの関数であり、ZTが高いほど高くな
る。この性能指数ZTは(1)式のように表されている。 ZT=α2σT/κ (1)式 ここで、αは熱電材料のゼーベック係数、σは電気伝導
率、κは熱伝導率、そしてTは熱電素子の高温側(TH)と
低温側(TL)の平均値で表した絶対温度である。
[0003] The conversion efficiency from heat energy to electric energy is a function of the figure of merit ZT, and increases as ZT increases. This figure of merit ZT is expressed as in equation (1). ZT = α 2 σT / κ (1) where α is the Seebeck coefficient of the thermoelectric material, σ is the electrical conductivity, κ is the thermal conductivity, and T is the high-temperature side (T H ) and low-temperature side ( It is the absolute temperature represented by the average value of T L ).

【0004】今までに知られている熱電変換材料であるFeSi
2、SiGe等のケイ化物は資源的に豊富であるが、前者は
性能指数(ZT)が0.2以下でその変換効率が低くかつ使用
温度範囲が非常に狭く、後者は資源的に乏しいGeの含有
量が20〜30at%程度でなければ熱伝導の低下は見られ
ず、またSiとGeは全律固溶の液相線と固相線の幅広い状
態をもち、溶解やZL法(Zone-Leveling)では組成を均一
に作製するのが困難で工業化し難い等の理由から汎用さ
れるには至っていない。
[0004] FeSi, a thermoelectric conversion material known so far,
2 , silicides such as SiGe are abundant in resources, but the former has a figure of merit (ZT) of 0.2 or less, its conversion efficiency is low and the operating temperature range is very narrow, and the latter contains Ge which is poor in resources. If the amount is not about 20 to 30 at%, no decrease in heat conduction is observed, and Si and Ge have a wide range of liquid-solid and solid-phase lines of totally controlled solid solution, dissolution and ZL method (Zone-Leveling ) Is not widely used because it is difficult to produce a uniform composition and it is difficult to industrialize.

【0005】現在、最も高い性能指数を示すスクッテルダイ
ト型結晶構造を有するIrSb3を初め、BiTe、PbTe等のカ
ルコゲン系化合物は高効率の熱電変換能力を有すること
が知られているが、地球環境保全の観点からみれば、こ
れらの重金属系元素の使用は今後規制されていくことが
予想される。
At present, chalcogen-based compounds such as BiTe and PbTe, such as IrSb 3 having a skutterudite-type crystal structure exhibiting the highest figure of merit, are known to have high-efficiency thermoelectric conversion capabilities. From the viewpoint of environmental protection, it is expected that the use of these heavy metal elements will be regulated in the future.

【0006】[0006]

【発明が解決しようとする課題】一方、Siは高いゼーベ
ック係数を有する反面、熱伝導率が非常に高いために、
高効率の熱電材料には適していないと考えられ、その熱
電特性の研究はキャリヤー濃度1018(Mm3)以下のSiに限
られていた。
On the other hand, while Si has a high Seebeck coefficient, it has a very high thermal conductivity,
It is not considered suitable for high-efficiency thermoelectric materials, and the study of its thermoelectric properties has been limited to Si with a carrier concentration of 10 18 (Mm 3 ) or less.

【0007】ところが、発明者らは、Si単体に各種元素を添
加すること、例えば、Siに微量の3族あるいは5族元素と
少量のGeを複合添加することにより、熱伝導率を下げる
ことが可能で、従来から知られるSi-Ge系、Fe-Si系に比
べ、ゼーベック係数が同等以上、あるいは所定のキャリ
ヤー濃度で極めて高くなることを知見し、Si単体が有す
る本質的な長所を損ねることなく、熱電変換材料として
大きな性能指数を示し高性能化できることを知見した。
[0007] However, the inventors have found that adding various elements to Si alone, for example, adding a small amount of a group 3 or 5 element and a small amount of Ge to Si can lower the thermal conductivity. It is possible to find that the Seebeck coefficient is equal to or higher than that of conventionally known Si-Ge and Fe-Si systems, or that it is extremely high at a given carrier concentration, impairing the essential advantages of Si alone. Instead, it was found that the thermoelectric conversion material exhibited a large figure of merit and could be improved in performance.

【0008】また、発明者らは、Siに種々元素を添加してP
型半導体とN型半導体を作製し、その添加量と熱電特性
の関係を調査検討した結果、添加量つまりキャリヤー濃
度が1018(M/m3)まではキャリヤーの増加と共にゼーベッ
ク係数は低下するが、1018〜1019(M/m3)にかけて極大値
を持つことを知見した。
[0008] The inventors have also added various elements to Si to add P
As a result of investigating the relationship between the amount of addition and the thermoelectric properties, the Seebeck coefficient decreased with the increase of the carrier up to the addition amount, that is, the carrier concentration of 10 18 (M / m 3 ). , 10 18 to 10 19 (M / m 3 ).

【0009】この発明は、発明者らが知見したこの新規なSi
系熱電変換材料が有する高いゼーベック係数を有し、電
気伝導度を損なうことなく、熱伝導率をさらに低下させ
て高性能化、あるいはさらにゼーベック係数を向上させ
ることを目的としている。
[0009] The present invention is based on this novel Si which the inventors have found.
The object is to have a high Seebeck coefficient possessed by a system thermoelectric conversion material, to further lower the thermal conductivity without deteriorating the electric conductivity, to improve the performance, or to further improve the Seebeck coefficient.

【0010】[0010]

【課題を解決するための手段】発明者らは、種々の添加
元素を添加したSi系熱電変換材料において、高いゼーベ
ック係数が得られる機構について鋭意調査したところ、
この新規なSi系材料は、Siが主体となるSiリッチ相の粒
界に当該添加元素のリッチ相が形成された組織を有する
ことを知見した。
Means for Solving the Problems The present inventors have conducted intensive studies on the mechanism of obtaining a high Seebeck coefficient in a Si-based thermoelectric conversion material to which various additive elements are added.
It has been found that this novel Si-based material has a structure in which a rich phase of the additive element is formed at the grain boundary of a Si-rich phase mainly composed of Si.

【0011】さらに発明者らは、結晶組織の検討を加えたと
ころ、ゼーベック係数が高くなるのは、結晶粒界に添加
元素を凝集させ、そこでキャリヤーの伝導が大きくなる
ため、結晶粒内のSiリッチ相で高いゼーベック係数が得
られることを知見した。
The inventors further studied the crystal structure. As a result, the increase in the Seebeck coefficient was caused by the addition of the added element at the crystal grain boundaries, which increased the carrier conduction. It was found that a high Seebeck coefficient was obtained in the rich phase.

【0012】そこで発明者らは、ゼーベック係数を高く保
ち、熱伝導率を低下させる方法として、成分系以外に結
晶組織の制御を検討したところ、Siリッチ相と添加元素
リッチ相を溶解、凝固時の冷却速度を制御することによ
り、これらの相が材料内に所要配置で分散した構造を持
ち、高い性能指数を有する材料が得られることを知見し
た。
[0012] Therefore, the inventors examined the control of the crystal structure other than the component system as a method of keeping the Seebeck coefficient high and lowering the thermal conductivity. As a result, the Si-rich phase and the additive element-rich phase were dissolved and solidified. It has been found that by controlling the cooling rate, a material having a structure in which these phases are dispersed in a required arrangement in the material and having a high figure of merit can be obtained.

【0013】すなわち、この発明は、Siに、P型半導体とな
すための添加元素(添加元素αという)又はN型半導体と
なすための添加元素(添加元素βという)を単独又は複合
にて0.001原子%〜20原子%含有するように溶解し、溶融
物を急冷して、Siが主体となるSiリッチ相の粒界に前記
添加元素のリッチ相が形成された組織を有する熱電変換
材料を得ることを特徴とする。
[0013] That is, the present invention provides an additive element (referred to as an additional element α) for forming a P-type semiconductor or an additional element (referred to as an additional element β) for forming an N-type semiconductor in 0.001 Atomic% to 20 atomic% is melted and the melt is quenched to obtain a thermoelectric conversion material having a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si. It is characterized by the following.

【0014】[0014]

【発明の実施の形態】この発明による熱電変換材料の特
徴である、Siが主体となるSiリッチ相の粒界に前記添加
元素のリッチ相が形成された組織について説明すると、
高純度Si(10N)へのGe(4N)の添加量を種々変えてアーク
溶解によりSi1-xGex溶湯(at%)を作製し、その溶解後の
冷却速度を50K/sec〜200K/secと急冷して試料用基板を
作製し、結晶組織をEPMAで観察したところ、x=0.03の場
合、図1Aに示すごとく、写真の黒いところは添加元素を
含むがほとんどがSiであり、Siが主体となるSiリッチ相
であって、写真の白いところが添加元素Geのリッチ相で
あり、Siリッチ相の粒界にGeのリッチ相が分散あるいは
多く形成された組織であることが分かる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the thermoelectric conversion material according to the present invention, in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si, will be described.
Various amounts of Ge (4N) added to high-purity Si (10N) were varied to produce a melt of Si 1-x Ge x (at%) by arc melting, and the cooling rate after the melting was 50 K / sec to 200 K /. A sample substrate was prepared by rapid cooling with sec and the crystal structure was observed by EPMA.When x = 0.03, as shown in Fig. Is the main Si-rich phase, the white part in the photograph is the rich phase of the additive element Ge, and it can be seen that the structure is such that the Ge-rich phase is dispersed or formed at the grain boundaries of the Si-rich phase.

【0015】また、上記Si1-xGex溶湯にはPを微量ドープし
ていたが、このPのみを観察したところ、EPMA写真を図1
Bに示すごとく、白いところがドープしたPの存在箇所を
示し、上述した図1AのGeリッチ相が形成されたSiリッチ
相の粒界と同位置にPが偏析した組織であることが分か
る。
[0015] In addition, although a small amount of P was doped into the above - mentioned Si 1-x Ge x molten metal, only this P was observed.
As shown in B, the white portion indicates the location of the doped P, and it can be seen that P is segregated at the same position as the grain boundary of the Si-rich phase where the Ge-rich phase shown in FIG. 1A was formed.

【0016】要するに、この発明による熱電変換材料の組織
は、図2の模式図に示すごとく、Siのみ、または添加元
素を含むがほとんどがSiであり、Siが主体となるSiリッ
チ相と、このSiリッチ相の粒界に添加元素が偏析した添
加元素リッチ相とが形成された組織である。なお、Siリ
ッチ相のサイズは冷却速度で異なるが、10〜200μm程度
である。
[0016] In short, the structure of the thermoelectric conversion material according to the present invention is, as shown in the schematic diagram of FIG. 2, only Si or an Si-rich phase containing an additive element but mostly Si, This is a structure in which an additive element-rich phase in which an additive element segregates at the grain boundary of the Si-rich phase. The size of the Si-rich phase varies depending on the cooling rate, but is about 10 to 200 μm.

【0017】また、Geに変えてPやBの添加元素の結晶粒界へ
の析出とn型とp型Siのキャリヤー濃度との関係を調査し
たところ、添加量とキャリヤー濃度との相関は一致して
増加することを確認し、Siリッチ相の粒界に前記添加元
素のリッチ相が形成された組織によって、結晶粒界に添
加元素を凝集させ、そこでキャリヤーの伝導を大きく
し、結晶粒内のSiリッチ相で高いゼーベック係数が得ら
れることを確認した。
Further, when the relationship between the precipitation of added elements of P and B instead of Ge at the crystal grain boundaries and the carrier concentration of n-type and p-type Si was investigated, the correlation between the added amount and the carrier concentration was one. It was confirmed that the additive element was agglomerated at the crystal grain boundary by the structure in which the rich phase of the additional element was formed at the grain boundary of the Si-rich phase, where the carrier conduction was increased and the It was confirmed that a high Seebeck coefficient can be obtained in the Si-rich phase.

【0018】さらに、このSi系熱電変換材料の熱伝導率は、
キャリヤー濃度を増加させるに従って小さくなることを
確認した。これは結晶中の添加元素による不純物の局在
フォノンの散乱によりκphが低下したためであると考え
られる。
Further, the thermal conductivity of the Si-based thermoelectric conversion material is:
It was confirmed that it decreased as the carrier concentration increased. This is considered to be because κ ph decreased due to scattering of localized phonons of impurities due to the added element in the crystal.

【0019】Si系熱電変換材料の特徴であるSiリッチ相の粒
界にGeなどの添加元素のリッチ相が分散、形成された組
織は、溶製後の冷却速度の制御によって得られ、急冷に
より結晶粒径は比較的小さく抑えられ、結晶粒界に適度
なSi以外の添加元素の偏析が起こり、これによって高い
電気伝導率にもかかわらず、高いゼーベック係数が得ら
れるものと考えられる。
A structure in which a rich phase of an additive element such as Ge is dispersed and formed in a grain boundary of a Si-rich phase, which is a feature of a Si-based thermoelectric conversion material, is obtained by controlling a cooling rate after melting, and is rapidly cooled. It is considered that the crystal grain size is kept relatively small, and moderate segregation of additional elements other than Si occurs at the crystal grain boundaries, whereby a high Seebeck coefficient can be obtained despite high electrical conductivity.

【0020】この発明によるSi系熱電変換材料は、Si系溶解
材を冷却して上述の組織を得るが、溶解方法としては、
アーク溶解法、高周波溶解法が量産に最適で好ましい。
また、Si系溶解材の冷却速度は、後述する添加元素の種
類や組合せ、添加量など、さらには採用する冷却方法並
びに得られる鋳塊、薄板、基板、リボンなどの形態によ
って、適宜選定される。
[0020] The Si-based thermoelectric conversion material according to the present invention obtains the above-described structure by cooling the Si-based melting material.
The arc melting method and the high frequency melting method are optimal and preferable for mass production.
In addition, the cooling rate of the Si-based melting material is appropriately selected depending on the type and combination of the additional elements to be described later, the amount of addition, and the cooling method to be adopted and the form of the obtained ingot, thin plate, substrate, ribbon, and the like. .

【0021】この発明において、冷却方法としては、鋳塊の
まま冷却する方法、あるいは引き上げながら冷却する方
法、例えば、公知の単結晶シリコンを得るためのCZ法、
FZ法を利用して、多結晶シリコンが得られる条件で引上
げ、冷却する方法が採用できる。CZ法、FZ法は引き上げ
た鋳塊棒より所要厚みの基板を多数製造できるため、熱
電変換素子用のSi系基板の製造法として最適である。ま
た、前述のZL法にて製造することも可能である。
In the present invention, as a cooling method, a method of cooling a cast ingot or a method of cooling while pulling up, for example, a CZ method for obtaining a known single crystal silicon,
Using the FZ method, a method of pulling and cooling under conditions that can obtain polycrystalline silicon can be adopted. The CZ method and the FZ method can be used to manufacture a large number of substrates of a required thickness from a drawn ingot bar, and thus are optimal as a method for manufacturing a Si-based substrate for a thermoelectric conversion element. Further, it can be manufactured by the ZL method described above.

【0022】さらに、Si系溶解材を浅いプレートに流し込み
冷却してより薄板を作製する方法や、公知のメルトクエ
ンチ法などのロール冷却法を利用して、所要厚みの薄板
が得られるよう冷却速度を制御するなど、いずれの方法
であっても採用できる。
Further, the cooling rate is adjusted so that a thin plate having a required thickness can be obtained by using a method of producing a thinner plate by pouring the Si-based molten material into a shallow plate and cooling it, or by using a roll cooling method such as a known melt quenching method. And any other method can be adopted.

【0023】例えば、Si系溶解材を浅いプレートに流し込み
冷却したり、プレートを水冷したり冷やし金を当てたり
するなどの方法の場合、例えば、50K/sec以上の冷却速
度で冷却させることが適当で、これにより結晶粒径は数
100μm以下に抑えられ、高いゼーベック係数が得られ
る。好ましい冷却速度は、50K/sec〜500K/secであり、
平均結晶粒径を30μm〜200μmにすることが可能であ
る。
[0023] For example, in the case of a method in which a Si-based dissolving material is poured into a shallow plate and cooled, or a plate is cooled with water or a chill is applied, for example, cooling at a cooling rate of 50 K / sec or more is appropriate. Thus, the crystal grain size is
It is suppressed to 100 μm or less, and a high Seebeck coefficient can be obtained. Preferred cooling rates are 50K / sec to 500K / sec,
The average crystal grain size can be in the range of 30 μm to 200 μm.

【0024】この発明による熱電変換材料は、ダイヤモンド
型結晶構造を有する多結晶Si半導体中に各種不純物を添
加してキャリヤー濃度を調整することにより、Si単体が
有する本来的な長所を損ねることなく、電気抵抗を下げ
てゼーベック係数を向上させて、性能指数を飛躍的に高
めたP型半導体とN型半導体の高効率のSi系熱電変換材料
である。
[0024] The thermoelectric conversion material according to the present invention is capable of adjusting the carrier concentration by adding various impurities to a polycrystalline Si semiconductor having a diamond-type crystal structure, without impairing the inherent advantages of Si alone. This is a highly efficient Si-based thermoelectric conversion material of P-type and N-type semiconductors whose electrical index has been lowered and the Seebeck coefficient has been improved to dramatically improve the figure of merit.

【0025】ここで、熱電変換材料の用途を考慮すると、熱
源、使用箇所や形態、扱う電流、電圧の大小などの用途
に応じて異なる条件によって、ゼーベック係数、電気伝
導率、熱伝導率などの特性のいずれかに重きを置く必要
が生じるが、この発明の熱電変換材料は、選択元素の添
加量によりキャリヤー濃度を選定できる。
Here, considering the application of the thermoelectric conversion material, the Seebeck coefficient, electric conductivity, thermal conductivity, etc., vary depending on the application such as the heat source, the place of use and form, the current to be handled, and the magnitude of the voltage. Although it is necessary to place emphasis on any of the characteristics, in the thermoelectric conversion material of the present invention, the carrier concentration can be selected by the addition amount of the selected element.

【0026】例えば、前述の添加元素αの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるP型半導体が得られ、また、
添加元素αを0.5原子%〜5.0原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるP型半導体が得られる。
[0026] For example, it contains 0.001 atomic% to 0.5 atomic% of elements added element α of the foregoing alone or combined to give P-type semiconductor carrier concentration is 10 17 ~10 20 (M / m 3) is And
A P-type semiconductor having a carrier concentration of 10 19 to 10 21 (M / m 3 ) containing 0.5 to 5.0 atomic% of the additional element α is obtained.

【0027】同様に、前述の添加元素βの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるN型半導体が得られ、また、
添加元素βを0.5原子%〜10原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるN型半導体が得られる。
Similarly, an N-type semiconductor containing 0.001 atomic% to 0.5 atomic% of the above-mentioned additive element β alone or in combination and having a carrier concentration of 10 17 to 10 20 (M / m 3 ) Obtained and also
An N-type semiconductor containing 0.5 to 10 atomic% of the additive element β and having a carrier concentration of 10 19 to 10 21 (M / m 3 ) is obtained.

【0028】前述の添加元素αあるいは添加元素βの元素を
含有させて、キャリヤー濃度が1019〜1021(M/m3)となる
ように0.5〜5.0原子%添加したとき、高効率な熱電変換
素子が得られ、優れた熱電変換効率を有するが、その熱
伝導率が室温で50〜150W/m・K程度であり、熱伝導率を
低下させることができれば、さらに性能指数ZTを向上さ
せることが期待できる。
When the additive element α or the additive element β is contained and 0.5 to 5.0 atomic% is added so that the carrier concentration becomes 10 19 to 10 21 (M / m 3 ), a highly efficient thermoelectric Although the conversion element is obtained and has excellent thermoelectric conversion efficiency, its thermal conductivity is about 50 to 150 W / mK at room temperature, and if the thermal conductivity can be reduced, the figure of merit ZT is further improved. I can expect that.

【0029】一般に、固体の熱伝導率はフォノンによる伝導
とキャリヤーによる伝導との和で与えられる。Si系半導
体の熱電変換材料の場合、キャリヤー濃度が小さいた
め、フォノンによる伝導が支配的となる。よって、熱伝
導率を下げるためにはフォノンの吸収または散乱を大き
くしてやる必要がある。フォノンの吸収または散乱を大
きくするためには、結晶粒径や結晶構造の規則性を乱し
てやることが効果的である。
In general, the thermal conductivity of a solid is given by the sum of phonon conduction and carrier conduction. In the case of a Si-based semiconductor thermoelectric conversion material, phonon conduction is dominant because the carrier concentration is low. Therefore, in order to reduce the thermal conductivity, it is necessary to increase the absorption or scattering of phonons. In order to increase the absorption or scattering of phonons, it is effective to disturb the regularity of the crystal grain size and the crystal structure.

【0030】そこで、Siへの添加元素について種々検討した
結果、Siに、3族元素と5族元素の各々を少なくとも1種
ずつ添加して、キャリヤー濃度を1019〜1021(M/m3)に制
御することにより、Si中のキャリヤー濃度を変えずに結
晶構造を乱してやることが可能で、熱伝導率を30〜90%
低下させ、室温で150W/m・K以下にすることができ、高
効率な熱電変換材料が得られることを知見した。
Therefore, as a result of various studies on the elements to be added to Si, at least one of a Group 3 element and a Group 5 element was added to Si, and the carrier concentration was 10 19 to 10 21 (M / m 3 ), It is possible to disturb the crystal structure without changing the carrier concentration in Si, and to reduce the thermal conductivity by 30 to 90%.
It was found that the temperature can be reduced to 150 W / m · K or less at room temperature, and a highly efficient thermoelectric conversion material can be obtained.

【0031】また、上記構成の熱電変換材料において、3族
元素を5族元素より0.3〜5原子%多く含有させるとP型半
導体が得られ、5族元素を3族元素より0.3〜5原子%多く
含有させるとN型半導体が得られる。
In the thermoelectric conversion material having the above structure, a P-type semiconductor is obtained when the Group 3 element is contained in an amount of 0.3 to 5 atomic% more than the Group 5 element, and the Group 5 element is contained in an amount of 0.3 to 5 atomic% than the Group 3 element. If a large amount is contained, an N-type semiconductor can be obtained.

【0032】さらに、3族元素と5族元素以外で熱伝導率の低
下が達成できるか検討したところ、Siに、3‐5族化合物
半導体あるいは2‐6族化合物半導体を添加して、さらに
3族元素または5族元素の少なくとも1種を添加し、キャ
リヤー濃度を1019〜1021(M/m3)に制御することにより、
Si中のキャリヤー濃度を変えずに結晶構造を乱してやる
ことが可能で、熱伝導率が室温で150W/m・K以下にする
ことができ、高効率な熱電変換材料が得られる。
Further, it was examined whether a reduction in thermal conductivity could be achieved with elements other than the group 3 element and the group 5 element, and it was found that adding a group 3-5 compound semiconductor or a group 2-6 compound semiconductor to Si further
By adding at least one of a Group 3 element or a Group 5 element and controlling the carrier concentration to 10 19 to 10 21 (M / m 3 ),
The crystal structure can be disturbed without changing the carrier concentration in Si, the thermal conductivity can be reduced to 150 W / mK or less at room temperature, and a highly efficient thermoelectric conversion material can be obtained.

【0033】また、Siへの他の添加元素について種々検討し
た結果、SiにGe,C,Snの4族元素を0.1〜5原子%含有し、S
iの元素の一部を原子量の異なる4族元素に置換させてや
ることにより、結晶中のフォノンの散乱が大きくなり、
半導体の熱伝導率を20〜90%低下させ、室温で150W/m・K
以下にすることが可能であること、さらに3族元素を0.1
〜5.0原子%含有させてP型半導体となした熱電変換材
料、さらに5族元素を0.1〜10原子%含有させてN型半導体
となした熱電変換材料が得られる。
Further, as a result of various studies on other additional elements to Si, it was found that Si contained a Group 4 element of Ge, C, and Sn in an amount of 0.1 to 5 atomic%,
By substituting a part of the element i with a group 4 element with a different atomic weight, the scattering of phonons in the crystal increases,
Reduces the thermal conductivity of semiconductors by 20 to 90%, 150 W / mK at room temperature
It is possible to make
A thermoelectric conversion material containing a P-type semiconductor by containing 5.05.0 at% and a N-type semiconductor containing a Group V element by 0.1 to 10 at% can be obtained.

【0034】この発明の熱電変換材料において、以上の3族
元素や5族元素以外の元素で、同様にSiに添加可能であ
るかを調査したところ、P型、N型半導体になるものであ
れば、特に制限されるものはないが、あまりイオン半径
の異なる元素を添加すると、ほとんどが粒界相に析出し
てしまうので、イオン半径はSiのそれに比較的近い元素
が好ましく、P型半導体となすための添加元素αとし
て、また、N型半導体となすための添加元素βとして、
以下のグループの元素の単独又は複合添加が特に有効で
あることを確認した。
[0034] In the thermoelectric conversion material of the present invention, it was investigated whether elements other than the above-mentioned Group 3 elements and Group 5 elements can be similarly added to Si. For example, although there is no particular limitation, if an element having a very different ionic radius is added, most of the element is precipitated in the grain boundary phase. As an additive element α for forming, and as an additional element β for forming an N-type semiconductor,
It has been confirmed that the single or combined addition of the following groups of elements is particularly effective.

【0035】添加元素αとしては、添加元素A(Be,Mg,Ca,Sr,
Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)、遷移金属元素M1(M1;Y,M
o,Zr)の各群であり、添加元素βとしては、添加元素B
(N,P,As,Sb,Bi,O,S,Se,Te)、遷移金属元素M2(M2;Ti,V,C
r,Mn,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Os,Ir,P
t,Au、但しFeは10原子%以下)、希土類元素RE(RE;La,Ce,
Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)の各群がある。
As the additional element α, the additional element A (Be, Mg, Ca, Sr,
Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), transition metal element M 1 (M 1 ; Y, M
o, Zr), and the additive element β is the additive element B
(N, P, As, Sb, Bi, O, S, Se, Te), transition metal element M 2 (M 2 ; Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, P
t, Au, where Fe is 10 atomic% or less), rare earth element RE (RE; La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu).

【0036】またさらに、P型半導体となすための添加元素
αとN型半導体となすための添加元素βを、各群より少
なくとも1種ずつ総量で0.002原子%〜20原子%含有し、例
えば、P型半導体を得るには、添加元素αの総量が添加
元素βのそれを超えてP型半導体となるのに必要量だけ
含有すれば、各群の組合せは任意に選定できる。
Further, the additive element α for forming a P-type semiconductor and the additional element β for forming an N-type semiconductor are contained in a total amount of at least one from each group in a total amount of 0.002 to 20 atomic%. In order to obtain a P-type semiconductor, the combination of each group can be arbitrarily selected as long as the total amount of the additional element α exceeds that of the additional element β and is contained in a necessary amount to become a P-type semiconductor.

【0037】[0037]

【実施例】実施例1 P型およびN型のSi熱電変換半導体を作製するために、高
純度Si(10N)と添加元素を表1に示すように配合した後、
Arガス雰囲気中でアーク溶解した。アーク溶解での溶解
温度は約1900Kであり、溶解材は水冷された銅製の台盤
により50〜100K/secの冷却速度で冷却された。得られた
材料の平均結晶粒径は約50〜100μmであった。
Example 1 In order to produce P-type and N-type Si thermoelectric conversion semiconductors, high-purity Si (10N) and additional elements were blended as shown in Table 1,
Arc melting was performed in an Ar gas atmosphere. The melting temperature in the arc melting was about 1900K, and the melting material was cooled by a water-cooled copper base at a cooling rate of 50 to 100K / sec. The average grain size of the resulting material was about 50-100 μm.

【0038】得られたボタン状のインゴットを、5×5×15m
m、10×10×2mm、外径10×2mmの形状に切断加工し、そ
れぞれのゼーベック係数、ホール係数(キャリヤー濃度
と電気伝導率を含む)、熱伝導率を測定した。1100Kにお
ける測定値と、性能指数(ZT=S2T/ρκ)を表2に示す。
[0038] The obtained button-shaped ingot is 5x5x15m
The sample was cut into a shape of m, 10 × 10 × 2 mm and outer diameter of 10 × 2 mm, and its Seebeck coefficient, Hall coefficient (including carrier concentration and electric conductivity), and thermal conductivity were measured. Table 2 shows the measured values at 1100 K and the figure of merit (ZT = S 2 T / ρκ).

【0039】ゼーベック係数は、昇温しながら高温部と低温
部の温度差を約6Kになるように設定し、試料の熱起電力
をデジタルマルチメーターで測定した後、温度差で割っ
た値として求めた。また、ホール係数の測定は、交流法
により行い、キャリヤー濃度と同時に四端子法により電
気抵抗を測定した。熱伝導率は、レーザーフラッシュ法
により測定を行った。
The Seebeck coefficient is set as a value obtained by setting the temperature difference between the high temperature part and the low temperature part to about 6K while increasing the temperature, measuring the thermoelectromotive force of the sample with a digital multimeter, and dividing by the temperature difference. I asked. The Hall coefficient was measured by an AC method, and the electrical resistance was measured by a four-terminal method simultaneously with the carrier concentration. The thermal conductivity was measured by a laser flash method.

【0040】実施例2 P型およびN型のSi熱電半導体を作製するために、高純度
Si(10N)と添加元素を表3に示すように配合した後、黒鉛
るつぼに挿入し、真空中(10-4Torr)の高周波溶解炉にて
溶解した。溶解温度は約1900Kで、鋳込み温度は約1800K
で厚さ10mmの鋳型に鋳込んだ。溶解材の冷却速度は10〜
50K/secであり、材料の平均結晶粒径は約100〜500μmで
あった。
Example 2 In order to produce P-type and N-type Si thermoelectric semiconductors, high purity
After mixing Si (10N) and the additive element as shown in Table 3, the mixture was inserted into a graphite crucible and melted in a high-frequency melting furnace in vacuum (10 -4 Torr). Melting temperature is about 1900K, casting temperature is about 1800K
And cast into a 10 mm thick mold. Melting material cooling rate is 10 ~
The average crystal grain size of the material was about 100 to 500 μm.

【0041】得られたインゴットを5×5×15mm、10×10×2m
m、外径10×2mmの形状に切断加工し、実施例1と同方法
でそれぞれのゼーベック係数、ホール係数(キャリヤー
濃度と電気伝導率を含む)、熱伝導率を測定した。1100K
における測定値と、性能指数(ZT=S2T/ρκ)を表4に示
す。
[0041] The obtained ingot is 5 × 5 × 15 mm, 10 × 10 × 2 m
m, and cut into a shape having an outer diameter of 10 × 2 mm. The Seebeck coefficient, the Hall coefficient (including the carrier concentration and the electrical conductivity), and the thermal conductivity were measured in the same manner as in Example 1. 1100K
Table 4 shows the measured values and the figure of merit (ZT = S 2 T / ρκ).

【0042】実施例3 P型およびN型のSi熱電半導体を作製するために、高純度
Si(10N)と添加元素を表5に示すように配合した後、黒鉛
るつぼに挿入し、真空中(10-4Torr)の高周波溶解炉にて
溶解し、約1800Kで均質に溶解したことを確認した。
Example 3 In order to produce P-type and N-type Si thermoelectric semiconductors, high purity
After compounding Si (10N) and the additive elements as shown in Table 5, it was inserted into a graphite crucible, melted in a high-frequency melting furnace in vacuum (10 -4 Torr), and homogeneously melted at about 1800K. confirmed.

【0043】その後、上記黒鉛るつぼの上部を1700Kに下げ
てSiの種結晶を溶湯上部に接触させ、溶湯をゆっくりと
引き上げた。るつぼの内径は100mmで、引き上げ速度は
0.3〜1mm/secで行い、引き上げ結晶を多結晶化するため
に5秒に1回の間隔で径に振動を与えた。得られた材料の
平均結晶粒径は約1〜10mmであった。
Thereafter, the upper portion of the graphite crucible was lowered to 1700K, and a Si seed crystal was brought into contact with the upper portion of the molten metal, and the molten metal was slowly pulled up. The inner diameter of the crucible is 100mm and the lifting speed is
At a rate of 0.3 to 1 mm / sec, the diameter was vibrated once every 5 seconds to polycrystallize the pulled crystal. The average grain size of the resulting material was about 1-10 mm.

【0044】得られた試料を5×5×15mm、10×10×2mm、外
径10×2mmの形状に切断加工し、実施例1と同方法でそれ
ぞれのゼーベック係数、ホール係数(キャリヤー濃度と
電気伝導率を含む)、熱伝導率を測定した。1100Kにおけ
る測定値と、性能指数(ZT=S2T/ρκ)を表6に示す。
The obtained sample was cut into a shape of 5 × 5 × 15 mm, 10 × 10 × 2 mm, and an outer diameter of 10 × 2 mm, and the respective Seebeck coefficient and Hall coefficient (carrier concentration and (Including electrical conductivity) and thermal conductivity. Table 6 shows the measured values at 1100K and the figure of merit (ZT = S 2 T / ρκ).

【0045】[0045]

【表1】 【table 1】

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【発明の効果】この発明による熱電変換材料は、主体の
Siが地球環境、地球資源さらに安全性の点からも優れて
おり、しかも比重が小さく軽いために自動車用の熱電変
換素子として非常に好都合であり、またバルク状のSiは
耐食性に優れているために、表面処理等が不要であると
いう利点がある。
The thermoelectric conversion material according to the present invention comprises
Si is excellent in terms of global environment, global resources and safety, and it is very convenient as a thermoelectric conversion element for automobiles due to its small specific gravity and light weight.Since bulk Si has excellent corrosion resistance Another advantage is that no surface treatment or the like is required.

【0052】この発明による熱電変換材料は、Siを主体に用
いることから、高価なGeを多量に含んだSi-Ge系材料よ
りも安価であり、Fe-Si系よりも高い性能指数が得られ
る。さらに、この発明に用いるSiは、半導体デバイス用
に比べてはるかに純度が低いために原料は比較的安価に
入手でき、生産性が良く、品質が安定した安価な熱電変
換材料が得られる。
Since the thermoelectric conversion material according to the present invention mainly uses Si, it is less expensive than a Si-Ge material containing a large amount of expensive Ge, and a higher figure of merit can be obtained than an Fe-Si material. . Further, since Si used in the present invention has much lower purity than semiconductor devices, the raw material can be obtained relatively inexpensively, and an inexpensive thermoelectric conversion material with good productivity and stable quality can be obtained.

【0053】この発明による熱電変換材料は、キャリヤー濃
度の大きいところでゼーベック係数が大きく、電気抵抗
も小さいSiの特徴を活かし、且つ熱伝導率の大きい欠点
を大幅に低下させて、性能指数の大きな材料を得るのに
有効な方法である。また、添加元素の種類や量によりそ
の物性値を制御できる利点がある。
The thermoelectric conversion material according to the present invention makes use of the characteristics of Si having a large Seebeck coefficient and a small electric resistance where the carrier concentration is high, and significantly reduces defects having a large thermal conductivity, and has a large figure of merit. Is an effective way to get Further, there is an advantage that the physical property value can be controlled by the type and amount of the added element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による熱電変換材料の結晶組織をEPMA
で観察した写真であり、Aは添加元素Geの偏折、Bは添加
元素Pの偏折を示す。
FIG. 1 shows the EPMA crystal structure of the thermoelectric conversion material according to the present invention.
In the photograph observed by A, A shows the deflection of the additional element Ge, and B shows the deflection of the additional element P.

【図2】この発明による熱電変換材料の結晶組織を示す
模式説明図である。
FIG. 2 is a schematic explanatory view showing a crystal structure of a thermoelectric conversion material according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西郷 恒和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 能見 正夫 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuneka Saigo 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Masao Nomi Egawa, Shimamoto-cho, Mishima-gun, Osaka 2-15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Siに、P型半導体又はN型半導体となすた
めの添加元素を、単独又は複合にて0.001原子%〜20原子
%含有し、Siが主体となるSiリッチ相の粒界に前記添加
元素のリッチ相が形成された組織を有する熱電変換材
料。
Claims 1. An additive element for forming a P-type semiconductor or an N-type semiconductor into Si, alone or in a combination of 0.001 atom% to 20 atom
%. A thermoelectric conversion material having a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly containing Si.
【請求項2】 請求項1において、P型半導体となすため
の添加元素(添加元素αという)とN型半導体となすため
の添加元素(添加元素βという)を、各群より少なくとも
1種ずつ総量で0.002原子%〜20原子%含有し、添加元素α
またはβの総量が相対する添加元素βまたはαのそれを
超えてP型半導体又はN型半導体となすために必要量だけ
含有した熱電変換材料。
2. The method according to claim 1, wherein the additional element for forming a P-type semiconductor (referred to as an additional element α) and the additional element for forming an N-type semiconductor (referred to as an additional element β) are at least one of each group.
0.002 atomic% to 20 atomic% in total in each case, and additional element α
Or a thermoelectric conversion material containing only a necessary amount of β to form a P-type semiconductor or an N-type semiconductor exceeding that of the corresponding additive element β or α.
【請求項3】 請求項1または請求項2において、P型半導
体となすための添加元素(添加元素α)は、添加元素A(B
e,Mg,Ca,Sr,Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)、遷移金属元
素M1(M1;Y,Mo,Zr)の各群から選択する1種又は2種以上で
あり、N型半導体となすための添加元素(添加元素β)
は、添加元素B(N,P,As,Sb,Bi,O,S,Se,Te)、遷移金属元
素M2(M2;Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,T
a,W,Re,Os,Ir,Pt,Au、但しFeは10原子%以下)、希土類元
素RE(RE;La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)
の各群から選択する1種又は2種以上である熱電変換材
料。
3. The additive element (additive element α) for forming a P-type semiconductor according to claim 1 or 2,
e, Mg, Ca, Sr, Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), the transition metal element M 1 (M 1; Y, Mo, 1 kind selected from the group of Zr) Or two or more, an additional element for forming an N-type semiconductor (additive element β)
The additive element B (N, P, As, Sb, Bi, O, S, Se, Te), transition metal elements M 2 (M 2; Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, T
a, W, Re, Os, Ir, Pt, Au, where Fe is 10 atomic% or less), rare earth element RE (RE; La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Yb, Lu)
A thermoelectric conversion material selected from one or more of the above groups.
【請求項4】 請求項1において、3‐5族化合物半導体あ
るいは2‐6族化合物半導体を1〜10原子%、さらに添加元
素A(Be,Mg,Ca,Sr,Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)または添
加元素B(N,P,As,Sb,Bi,O,S,Se,Te)の少なくとも1種を1
〜10原子%含有した熱電変換材料。
4. The semiconductor device according to claim 1, wherein the 3-5 group compound semiconductor or the 2-6 group compound semiconductor is contained in an amount of 1 to 10 atomic%, and an additional element A (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg , B, Al, Ga, In, Tl) or additional element B (N, P, As, Sb, Bi, O, S, Se, Te)
Thermoelectric conversion material containing up to 10 atomic%.
【請求項5】 請求項1において、Ge,C,Snの少なくとも1
種を0.1〜5原子%と、添加元素A(Be,Mg,Ca,Sr,Ba,Zn,Cd,
Hg,B,Al,Ga,In,Tl)または添加元素B(N,P,As,Sb,Bi,O,S,
Se,Te)の各添加元素群から単独又は複合して含有した熱
電変換材料。
5. The method according to claim 1, wherein at least one of Ge, C, and Sn is selected.
0.1 to 5 atomic% of the seed and the additive element A (Be, Mg, Ca, Sr, Ba, Zn, Cd,
Hg, B, Al, Ga, In, Tl) or additive element B (N, P, As, Sb, Bi, O, S,
A thermoelectric conversion material that is contained singly or in combination from the respective additive element groups of (Se, Te).
【請求項6】 Siに、P型又はN型半導体となすための添
加元素を単独又は複合にて0.001原子%〜20原子%含有す
るように溶解し、溶融物を急冷して、Siが主体となるSi
リッチ相の粒界に前記添加元素のリッチ相が形成された
組織を得る熱電変換材料の製造方法。
6. An additive element for forming a P-type or N-type semiconductor is dissolved in Si alone or in a composite so as to contain 0.001 at% to 20 at%, and the melt is quenched so that Si is mainly contained. Si
A method for producing a thermoelectric conversion material for obtaining a structure in which a rich phase of the additive element is formed at a grain boundary of the rich phase.
【請求項7】 請求項6において、溶解法がアーク溶解又
は高周波溶解である熱電変換材料の製造方法。
7. The method for producing a thermoelectric conversion material according to claim 6, wherein the melting method is arc melting or high-frequency melting.
【請求項8】 請求項6において、溶解と冷却方法がCZ
法、FZ法、ZL法のいずれかである熱電変換材料の製造方
法。
8. The method according to claim 6, wherein the melting and cooling method is CZ.
A method for producing a thermoelectric conversion material, which is any of the FZ method, the FZ method, and the ZL method.
JP11063074A 1999-03-10 1999-03-10 Thermoelectric conversion material and its manufacture Pending JP2000261043A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP11063074A JP2000261043A (en) 1999-03-10 1999-03-10 Thermoelectric conversion material and its manufacture
AU29415/00A AU752619B2 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
EP00908000A EP1083610A4 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
CNB008005028A CN100385694C (en) 1999-03-10 2000-03-10 thermoelectric conversion material and method of producing same
US09/674,978 US7002071B1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
CA002331533A CA2331533A1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
PCT/JP2000/001469 WO2000054343A1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
KR10-2000-7012611A KR100419488B1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11063074A JP2000261043A (en) 1999-03-10 1999-03-10 Thermoelectric conversion material and its manufacture

Publications (1)

Publication Number Publication Date
JP2000261043A true JP2000261043A (en) 2000-09-22

Family

ID=13218845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063074A Pending JP2000261043A (en) 1999-03-10 1999-03-10 Thermoelectric conversion material and its manufacture

Country Status (1)

Country Link
JP (1) JP2000261043A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147261A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp P-type thermoelectric material, and its manufacturing method
KR101128304B1 (en) * 2008-08-29 2012-03-23 주식회사 엘지화학 New thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
JP2012533185A (en) * 2009-07-15 2012-12-20 コンソルティオ デルタ ティアイ リサーチ Thermal-electrical conversion device using the Savebeck / Pelty effect using processed layers made of semiconductor material without the need for nanostructures
JP2017530563A (en) * 2014-09-22 2017-10-12 コンソルツィオ デルタ ティ リサーチ Silicon integrated out-of-plane heat flux thermoelectric generator
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
JP2018142564A (en) * 2017-02-27 2018-09-13 株式会社日立製作所 Thermoelectric conversion material and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147261A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp P-type thermoelectric material, and its manufacturing method
KR101128304B1 (en) * 2008-08-29 2012-03-23 주식회사 엘지화학 New thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
JP2012533185A (en) * 2009-07-15 2012-12-20 コンソルティオ デルタ ティアイ リサーチ Thermal-electrical conversion device using the Savebeck / Pelty effect using processed layers made of semiconductor material without the need for nanostructures
JP2017530563A (en) * 2014-09-22 2017-10-12 コンソルツィオ デルタ ティ リサーチ Silicon integrated out-of-plane heat flux thermoelectric generator
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
JP2018142564A (en) * 2017-02-27 2018-09-13 株式会社日立製作所 Thermoelectric conversion material and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4399757B2 (en) Thermoelectric conversion material and manufacturing method thereof
KR100419488B1 (en) Thermoelectric conversion material and method of producing the same
US6525260B2 (en) Thermoelectric conversion material, and method for manufacturing same
KR101087355B1 (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
Su et al. Microstructure and thermoelectric properties of CoSb2. 75Ge0. 25− xTex prepared by rapid solidification
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
EP1616358A2 (en) Pb-ge-te-compounds for thermoelectric generators or peltier arrangements
EP1039557A1 (en) Silicon based conductive material and process for production thereof
US9115420B2 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
Yamashita et al. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit
CN106986315B (en) A kind of p-type bismuth telluride thermoelectric material and preparation method suitable for low-temperature electricity-generating
JP2004076046A (en) Filled skutterudite alloy, manufacturing method therefor and thermoelectric transducer
JP4504523B2 (en) Thermoelectric material and manufacturing method thereof
JP5352860B2 (en) Thermoelectric material and manufacturing method thereof
JP2000261043A (en) Thermoelectric conversion material and its manufacture
JP2000261044A (en) Thermoelectric conversion material and its manufacture
US20220077375A1 (en) Thermoelectric material manufacturing method
Parse et al. Enhancing thermoelectric properties of higher manganese silicide (HMS) by partial Ta substitution
JPH06144825A (en) Production of thermoelectric element
Ye et al. Strong Anisotropic Effects of p-Type Bi 2 Te 3 Element on the Bi 2 Te 3/Sn Interfacial Reactions
EP0948061B1 (en) P-type thermoelectric converting substance and method of manufacturing the same
JPH0856020A (en) Thermoelectric material and thermionic element
Zhou et al. Transport properties of SnTe–Bi2Te3 alloys
JP2000261046A (en) Thermoelectric converting material and manufacture or the same
JP2004014804A (en) Thermoelectric material and thermoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080410