JPH01148490A - Welding process for stress corrosion cracking-resistance ni-cr steel - Google Patents

Welding process for stress corrosion cracking-resistance ni-cr steel

Info

Publication number
JPH01148490A
JPH01148490A JP29435087A JP29435087A JPH01148490A JP H01148490 A JPH01148490 A JP H01148490A JP 29435087 A JP29435087 A JP 29435087A JP 29435087 A JP29435087 A JP 29435087A JP H01148490 A JPH01148490 A JP H01148490A
Authority
JP
Japan
Prior art keywords
welding
corrosion cracking
stress corrosion
heat treatment
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29435087A
Other languages
Japanese (ja)
Inventor
Iwao Kawashima
川嶋 巌
Keiji Sonoya
啓嗣 園家
Kunihiko Shinada
品田 邦彦
Mitsuo Oyama
大山 光男
Yuichi Iguchi
井口 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP29435087A priority Critical patent/JPH01148490A/en
Publication of JPH01148490A publication Critical patent/JPH01148490A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a material resistant to stress corrosion cracking due to hydrogen sulfide by welding an Ni-Cr steel having stress corrosion cracking resistance with the welding material having a specified chemical composition, and then applying soln. heat treatment and aging heat treatment in a specified temp. range. CONSTITUTION:The 25Ni-15Cr steel to be used in the atmosphere contg. hydrogen sulfide having stress corrosion cracking resistance is welded with a welding material contg., by weight, <=0.020% C, <=1.00% Si, <=2.00% Mn, <=0.010% P, <=0.010% S, 24.00-27.00% Ni, 13.50-16.00% Cr, 1.00-1.50% Mo, 0.10-0.50% V, <=0.35% Al, 1.90-2.35% Ti, 0.001-0.010% B, and the balance Fe. The soln. heat treatment at 950-1,050 deg.C and the aging heat treatment at 650-800 deg.C are applied after welding. By this method, a welded joint having <=35 Rockwell C hardness and >=70kgf/mm<2> 0.2% yield strength and having excellent resistance to the stress corrosion cracking due to hydrogen sulfide can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は硫化水素を含む環境下で使用される25N!
−15Cr系鋼の0.2%耐力が太き(、かつ耐応力腐
食割れ性の良好な溶接継手を得る溶接方法に係る。
Detailed Description of the Invention (Industrial Application Field) This invention applies to 25N!
-15Cr steel with a large 0.2% yield strength (and relates to a welding method for obtaining a welded joint with good stress corrosion cracking resistance).

(従来技術と解決すべき問題点) 硫化水素を含む環境下で使用する材料は強度が太き(な
るほど応力腐食割れが発生し易くなることが知られてい
る。従ってこのような環境下で使用され応力を受ける強
度メンバー、例えば遠心圧縮機用インペラの材料に対し
ては必要な機械的性質或いは物理的性質の上限数値を規
定することによって応力腐食割れの発生を防止すること
が通例行われており、例えば米国石油協会(API)規
格では使用できる材料としてロックウェルC硬さ(HR
C)22以下、0.2%耐力63kgf/−以下として
いる。
(Prior art and problems to be solved) It is known that materials used in environments containing hydrogen sulfide have a high strength (indeed, stress corrosion cracking is more likely to occur). It is customary to prevent the occurrence of stress corrosion cracking by specifying upper limit values for the necessary mechanical or physical properties for strength members that are subjected to stress, such as materials for impellers for centrifugal compressors. For example, according to the American Petroleum Institute (API) standards, Rockwell C hardness (HR) is the material that can be used.
C) 22 or less, 0.2% yield strength 63 kgf/- or less.

しかしながら構造物としては出来るだけ高強度の材料を
使用する方が性能或いはコストの点で有利になる。
However, it is advantageous in terms of performance and cost to use materials with as high strength as possible for the structure.

ところで国際腐食学会(NACE)規格では上記と同様
な環境下で使用するASTM  A638Grade6
60材(以下Gr660材という)に対して硬さHRC
35以下を満たせば硫化水素雰囲気中でも応力腐食割れ
に対する安全性が保証されている。
By the way, the International Association for the Study of Corrosion (NACE) standard specifies ASTM A638 Grade 6, which is used in the same environment as above.
Hardness HRC for 60 material (hereinafter referred to as Gr660 material)
If 35 or less is satisfied, safety against stress corrosion cracking is guaranteed even in a hydrogen sulfide atmosphere.

このGr660材は高強度ステンレス鋼として知られて
いるので、NACE規格のHRC35以下を満足して、
なお0.2%耐力がAPI規格の上限の63krf/−
を超える、好ましくは70 k、f/mm2以上である
溶接継手強度が得られれば設計上きわめて有利であると
考えられる。
This Gr660 material is known as high strength stainless steel, so it satisfies the NACE standard HRC35 or less,
Note that the 0.2% yield strength is the upper limit of the API standard of 63 krf/-
It would be extremely advantageous in terms of design if a welded joint strength of more than 70 k, f/mm2 could be obtained.

しかしながらQr660材に対してこのような性能を満
たす市販の溶接材料が見当たらない、従来はGr660
材に対する溶接材料としてハステロイWが用いられてい
るが、この溶接金属では0.2%耐力は60krf/−
に達しない。
However, there is no commercially available welding material that meets this performance for Qr660 material.
Hastelloy W is used as a welding material for this weld metal, and the 0.2% yield strength of this weld metal is 60krf/-
does not reach.

従って発明者はまず、Gr660材共金の溶接材料に着
目し共金ワイヤを試作して実験したが、溶接金属の衝撃
値が低くてASMESec、■。
Therefore, the inventor first focused on a welding material made of Gr660 material and made a prototype of a co-metallic wire, but the impact value of the weld metal was low and the ASMESec.

Div、2に定める4、 4 kgf−m7cm”に達
せず、衝撃応力を受ける強度メンバーには不適当である
ことが判明し、また溶接割れ感受性が高くて実用上問題
があると判断された。
4.4 kgf-m7 cm" specified in Div. 2, it was found to be unsuitable for a strength member that is subject to impact stress, and it was judged to be highly susceptible to weld cracking, causing a practical problem.

発明者は強度、衝撃値、溶接割れ等の問題を解決するた
め種々研究の結果、所望の性能が得られる溶接材料を開
発し、併せて熱処理条件を規定することによって耐応力
腐食割れ性に対するNACE規格を満足し、かつ所望の
高強度を得ることができる溶接方法の開発に成功し、上
記の問題点を解決した。
As a result of various studies to solve problems such as strength, impact value, and weld cracking, the inventor developed a welding material that can provide the desired performance, and by specifying heat treatment conditions, NACE for stress corrosion cracking resistance was developed. We have succeeded in developing a welding method that satisfies the standards and can obtain the desired high strength, thus solving the above problems.

(問題点を解決するための手段) この発明は、 硫化水素を含む環境下で使用する耐応力
腐食割れ性を有する25Ni−15Cr系鋼の溶接方法
において、 化学成分組成が重量%で C≦0.020%、   St≦1.00%、Mn≦2
.00%、    P≦0.010%、S≦0.010
%、 Ni   24.00〜27.00%、Cr   13
.50〜16.00%、Mo   1.00〜1.50
%、 V   0.10〜0.50%、  Al≦0.35%
、Ti   1.90〜2.35%、 B  0.001〜0.010%、 残部 Feの溶接
材料を用いて溶接したのち、 950〜1050℃の溶体化熱処理と、650〜800
℃の時効熱処理とを 施すことを特徴とするロックウェルC硬さ35以下で、
0.2%耐力が70krf/mm2以上の強度を有する
硫化水素に対する耐応力腐食割れ性の良好な溶接継手を
得る溶接方法に係る。
(Means for Solving the Problems) The present invention provides a welding method for 25Ni-15Cr steel having stress corrosion cracking resistance used in an environment containing hydrogen sulfide, in which the chemical composition is C≦0 in weight%. .020%, St≦1.00%, Mn≦2
.. 00%, P≦0.010%, S≦0.010
%, Ni 24.00-27.00%, Cr 13
.. 50-16.00%, Mo 1.00-1.50
%, V 0.10-0.50%, Al≦0.35%
, Ti 1.90 to 2.35%, B 0.001 to 0.010%, and the balance Fe. After welding, solution heat treatment at 950 to 1050 °C and 650 to 800 °C
Rockwell C hardness of 35 or less, characterized by subjecting to aging heat treatment at ℃,
The present invention relates to a welding method for obtaining a welded joint with a 0.2% yield strength of 70 krf/mm2 or more and good resistance to stress corrosion cracking against hydrogen sulfide.

発明者は溶接材料の基本としてGr660材の共金を選
び、Gr660材規格ではc、p、s含有量がそれぞれ
0.08%、0.04%、0.03%であるのに対し、
本発明の溶接材料ではCを0.02%以下、P、Sはそ
れぞれ0.01%以下とし、その他のSi、Mn、Ni
、Cr、M0.V、Al。
The inventor chose the Gr660 material as the basis of the welding material, and the Gr660 material standard has c, p, and s contents of 0.08%, 0.04%, and 0.03%, respectively.
In the welding material of the present invention, C is 0.02% or less, P and S are each 0.01% or less, and other Si, Mn, and Ni
, Cr, M0. V, Al.

Ti、Bの各含有量についてはそれぞれGr660材と
同じとした(以下Gr660改ということとする)。
The contents of Ti and B were the same as those of the Gr660 material (hereinafter referred to as Gr660 modified).

C含有量を低くしたのは降伏比(0,2%耐力を引張り
強さで割つた比)を上げると共に、衝撃特性を改善する
ためであり、P、S含有量を低くしたのは溶接割れ感受
性を小さくするためである。
The reason for lowering the C content was to increase the yield ratio (ratio of 0.2% proof stress divided by tensile strength) and to improve impact properties, and the reason for lowering P and S contents was to prevent weld cracking. This is to reduce sensitivity.

その他の成分組成についてはGr660材の強度および
耐食性と同等の性能を有する溶接金属が得られるように
、Gr660の規格に合わせて定めた。
The other component compositions were determined in accordance with the Gr660 standard so that a weld metal with performance equivalent to the strength and corrosion resistance of the Gr660 material could be obtained.

溶接方法は溶着金属のC含有量の上昇を押さえるためシ
ールドガス溶接とするのが適当である。
As the welding method, it is appropriate to use shield gas welding in order to suppress the increase in C content of the weld metal.

熱処理は通例のとおり溶体化処理(標準950〜105
0℃)を施したのち650〜800℃で時効熱処理を行
う0時効熱処理は一段でもよいが二段に行った方が時間
の短縮ができると共に、強度を上げることができる。実
際作業では試験片についてテストして上記温度範囲内で
温度と時間を決めればよい。
Heat treatment is as usual solution treatment (standard 950-105
0° C.) and then aging heat treatment at 650 to 800° C. The 0-aging heat treatment may be performed in one stage, but it is better to perform the 0-aging heat treatment in two stages to shorten the time and increase the strength. In actual work, it is sufficient to test a test piece and determine the temperature and time within the above temperature range.

(実施例) 次ぎに実施例について述べる。(Example) Next, examples will be described.

溶接ワイヤ素材としてGr660に対してC1P及びS
の各含有量を低くして、Cを0.02%以下゛、P、S
をそれぞれ0.01%以下とした化学成分組成を有する
材料(Gr660改)を溶製、鋳造して圧延し、その一
部を切断、線引きして1.2II11丸のワイヤとした
C1P and S for Gr660 as welding wire materials
By lowering the respective contents of C, P, and S to 0.02% or less,
A material (Gr660 modified) having a chemical composition in which each of

同様に対比材として市販のQr660材を用いて1.2
mmmmビワイヤ、また従来の溶接材料として市販のハ
ステロイWを用いた。
Similarly, using commercially available Qr660 material as a contrast material, 1.2
mmmm bi-wire, and commercially available Hastelloy W was used as a conventional welding material.

これらの化学成分組成の一例を第1表に示す。An example of these chemical compositions is shown in Table 1.

第1表(重量%) 次にGr660材(母材)の熱処理試験を行うと共に、
第1表の溶接材料を用いGr660材を母材として継手
部の溶接試験を行った。
Table 1 (wt%) Next, a heat treatment test was performed on the Gr660 material (base material), and
Welding tests were conducted on joints using the welding materials shown in Table 1 and using Gr660 as a base material.

Gr660材は長時間時効処理を施すとイータ(η)相
が析出して靭性が低下するので、760℃では時効時間
を5時間以内、740℃では20時間以内として、真空
炉内の時効を1回または2回繰り返す場合を検討した。
When Gr660 material is aged for a long time, the eta (η) phase precipitates and the toughness decreases, so the aging time in the vacuum furnace is set to 5 hours or less at 760℃ and 20 hours or less at 740℃. We investigated cases in which the test was repeated once or twice.

その結果は次の通りである。The results are as follows.

(a)母材ニー 980’Cx2H,油冷の溶体化処理後、第2表に示す
時効処理を施して、それぞれ表に示す耐力を得た。
(a) Base material knee 980'Cx2H, after oil cooling solution treatment, the aging treatment shown in Table 2 was performed to obtain the yield strength shown in the table.

これよりも長時間処理すると過時効となり強度が逆に低
下するようになった。
When treated for a longer time than this, the strength deteriorated due to overaging.

また、700℃で200H時効処理を施すと硬さHRC
≦35の範囲内で0.2%耐力を77〜78kgf/−
とすることが出来たが、実用的には時間が長すぎるので
二段時効の試験を行った結果は第3表に示す通りである
In addition, when subjected to 200H aging treatment at 700℃, the hardness HRC
0.2% proof stress within the range of ≦35 77~78kgf/-
However, since the time was too long for practical use, a two-stage aging test was conducted, and the results are shown in Table 3.

第3表 面して760℃x4H,680℃x12Hの二段時効処
理によって硬さHRC34,20℃シャルビ衝撃値は5
.1 kgf−ta/alとなり、充分規格を満足する
値が得られた。
The third surface is subjected to two-stage aging treatment at 760℃ x 4H and 680℃ x 12H, resulting in a hardness of HRC 34 and a Charvi impact value of 5 at 20℃.
.. 1 kgf-ta/al, a value that fully satisfies the standards.

(b)溶接金IiI!: − 市販Gr660材を母材とする継手の開先を前記第1表
に示す溶接ワイヤで下記の条件でティグ溶接し、溶接金
属部から試験片を採取し、溶接金属の時効処理試験を行
った。
(b) Weld metal IiI! : - TIG welding the groove of a joint whose base material is commercially available Gr660 material using the welding wire shown in Table 1 above under the following conditions, taking a test piece from the weld metal part, and conducting an aging treatment test on the weld metal. Ta.

溶接条件は次の通りである。The welding conditions are as follows.

電流      150〜200A。Current: 150-200A.

溶接速度    40〜1ooIllII/分、ワイヤ
送給速度   1〜6g/分、 シールドガス、Ar     101/分熱処理条件は
母材試験で最良の結果が得られた第1図に示す線図に従
って行った。
Welding speed: 40-10IllII/min, wire feed rate: 1-6 g/min, shielding gas, Ar: 101/min The heat treatment conditions were performed according to the diagram shown in FIG. 1, which gave the best results in the base metal test.

試験結果を第4表に示す。The test results are shown in Table 4.

注:傘1:(1)本発明に係る試作ワイヤ(2)市販母
材の共金ワイヤ (3)ハステロイWワイヤ 傘2:NACE規格、 *3:ASME規格−4:0,
2χ耐力上記の通り本発明に係る試作ワイヤ(1)を用
いた場合は硬さHRC≦35の範囲内で0.2%耐力が
81 kgf/ad、シャルビ衝撃値が10 kgf−
m/ai(20℃)であったが、市販母材の共金ワイヤ
(2)の場合には硬さは高く、衝撃値は低く、ともに目
標値が得られなかった。従来品のハステロイW(3)を
用いた場合は硬さ、0.2%耐力、衝撃値のいずれもが
目標値を這かに下回った。
Note: Umbrella 1: (1) Prototype wire according to the present invention (2) Compatible wire of commercially available base material (3) Hastelloy W wire Umbrella 2: NACE standard, *3: ASME standard -4: 0,
2χ proof stress As mentioned above, when using the prototype wire (1) according to the present invention, the 0.2% proof stress is 81 kgf/ad and the Charby impact value is 10 kgf- within the range of hardness HRC≦35.
m/ai (20° C.), but in the case of the commercially available base metal alloy wire (2), the hardness was high and the impact value was low, and the target values could not be obtained for both. When the conventional Hastelloy W (3) was used, the hardness, 0.2% yield strength, and impact value were all slightly below the target values.

溶体化温度は通例の温度で充分であり、時効温度もこれ
より低くては不十分であり、また高すぎては過時効とな
るから、実用上は指定温度±15℃の範囲内とすれば良
い。
The usual solution temperature is sufficient, and the aging temperature is insufficient if it is lower than this, and if it is too high, it will result in overaging, so in practice it should be within the specified temperature range of ±15°C. good.

(e)溶接継手部の腐食強度試験ニー 市販母材を用いた継手を本発明に係る溶接ワイヤで溶接
した試験片をNACEStandardTM−01−7
7に従って試験をして破断の有無を調べたが、破断せず
、硫化水素中で充分な強度を有していることが示された
。試験条件は下記のとおりである。
(e) Corrosion strength test of welded joints A test piece was prepared by welding a joint using a commercially available base metal with the welding wire according to the present invention using NACE Standard TM-01-7.
No. 7 was conducted to check for breakage, but no breakage occurred, indicating that the material had sufficient strength in hydrogen sulfide. The test conditions are as follows.

試験液 5%NaC1+0.5χ酢酸+飽和H,S 。Test solution: 5% NaCl + 0.5χ acetic acid + saturated H, S.

試験温度 25℃、 付加応力 75kgf/−1 付加時間 720H (効果) 以上述べたとおり本発明によればASTM  A638
Gr 660材を母材として溶接して、硬さHRC35
以下を満足しながら0.2%耐カフ0kg4/mm2以
上の溶接金属及び母材を得ることができるので、硫化水
素応力腐食割れに対して強い材料が得られ、更に20℃
シャルビ衝撃値も高<10kgf・−/−の値を示すの
で、衝撃応力を受ける強度メンバーに好適な溶接構造物
とすることができることになり、その実用上の効果はき
わめて大きい。
Test temperature: 25°C, added stress: 75 kgf/-1, applied time: 720 H (Effect) As described above, according to the present invention, ASTM A638
Gr 660 material is welded as the base material, hardness HRC35
It is possible to obtain a weld metal and base metal with a resistance of 0.2% cuff of 0 kg4/mm2 or higher while satisfying the following requirements, so a material that is resistant to hydrogen sulfide stress corrosion cracking can be obtained, and furthermore, at 20°C
Since the Charby impact value also shows a value of high<10 kgf·-/-, it is possible to make a welded structure suitable for a strength member that is subjected to impact stress, and its practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱処理方法を示す線図である。 出願人代理人 弁理士 鴨志1)次男 系1 図 FIG. 1 is a diagram showing a heat treatment method according to the present invention. Applicant's agent Patent attorney Kamoshi 1) Second son System 1 diagram

Claims (1)

【特許請求の範囲】 硫化水素を含む環境下で使用する耐応力腐食割れ性を有
する25Ni−15Cr系鋼の溶接方法において、化学
成分組成が重量%で C≦0.020%、Si≦1.00%、 Mn≦2.00%、P≦0.010%、 S≦0.010%、 Ni24.00〜27.00%、 Cr13.50〜16.00%、 Mo1.00〜1.50%、 V0.10〜0.50%、Al≦0.35%、Ti1.
90〜2.35%、 B0.001〜0.010%、残部Fe の溶接材料を用いて溶接したのち、 950〜1050℃の溶体化熱処理と、 650〜800℃の時効熱処理とを 施すことを特徴とするロックウェルC硬さ35以下で、
0.2%耐力が70kgf/mm^2以上の強度を有す
る硫化水素に対する耐応力腐食割れ性の良好な溶接継手
を得る溶接方法
[Scope of Claim] A method for welding 25Ni-15Cr steel having stress corrosion cracking resistance used in an environment containing hydrogen sulfide, the chemical composition of which is C≦0.020% by weight, Si≦1. 00%, Mn≦2.00%, P≦0.010%, S≦0.010%, Ni24.00-27.00%, Cr13.50-16.00%, Mo1.00-1.50% , V0.10-0.50%, Al≦0.35%, Ti1.
After welding using a welding material containing 90-2.35% B, 0.001-0.010% B, and the balance Fe, it is recommended to perform solution heat treatment at 950-1050°C and aging heat treatment at 650-800°C. Features a Rockwell C hardness of 35 or less,
A welding method for obtaining a welded joint with a 0.2% yield strength of 70 kgf/mm^2 or more and good stress corrosion cracking resistance against hydrogen sulfide
JP29435087A 1987-11-21 1987-11-21 Welding process for stress corrosion cracking-resistance ni-cr steel Pending JPH01148490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29435087A JPH01148490A (en) 1987-11-21 1987-11-21 Welding process for stress corrosion cracking-resistance ni-cr steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29435087A JPH01148490A (en) 1987-11-21 1987-11-21 Welding process for stress corrosion cracking-resistance ni-cr steel

Publications (1)

Publication Number Publication Date
JPH01148490A true JPH01148490A (en) 1989-06-09

Family

ID=17806572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29435087A Pending JPH01148490A (en) 1987-11-21 1987-11-21 Welding process for stress corrosion cracking-resistance ni-cr steel

Country Status (1)

Country Link
JP (1) JPH01148490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012023164A1 (en) * 2012-11-28 2014-05-28 Rosswag Gmbh Manufacturing cap ring comprising austenitic steel, comprises providing and heating malleable cap ring blank from austenitic steel, rolling heated cap ring blank under cooling, quenching cap ring blank, and outsourcing cap ring blank
CN105081604A (en) * 2015-05-26 2015-11-25 山东索力得焊材股份有限公司 700 MPa high-toughness and high-strength automatic submerged arc welding wire and use method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012023164A1 (en) * 2012-11-28 2014-05-28 Rosswag Gmbh Manufacturing cap ring comprising austenitic steel, comprises providing and heating malleable cap ring blank from austenitic steel, rolling heated cap ring blank under cooling, quenching cap ring blank, and outsourcing cap ring blank
DE102012023164B4 (en) * 2012-11-28 2014-10-09 Rosswag Gmbh Cap ring and manufacturing process
CN105081604A (en) * 2015-05-26 2015-11-25 山东索力得焊材股份有限公司 700 MPa high-toughness and high-strength automatic submerged arc welding wire and use method

Similar Documents

Publication Publication Date Title
US3160500A (en) Matrix-stiffened alloy
RU2418880C2 (en) High strength corrosion resistant alloy for oil industry
EP1270755A1 (en) Aging treatment for Ni-Cr-Mo alloys
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
US4371394A (en) Corrosion resistant austenitic alloy
EP0075416B1 (en) Heat treatment of controlled expansion alloys
US3094414A (en) Nickel-chromium alloy
JPH01148490A (en) Welding process for stress corrosion cracking-resistance ni-cr steel
CA1043591A (en) Precipitation hardenable stainless steel
JPH02217445A (en) Improved austenite fe-cr-ni alloy for oil well field tube products
US6579388B2 (en) Aging treatment for Ni-Cr-Mo alloys
JPS61186446A (en) Heat resistant alloy
JP3281685B2 (en) Hot bolt material for steam turbine
JPS63105950A (en) Structural steel
JPS631387B2 (en)
JPS6254176B2 (en)
JPS6341974B2 (en)
SU747664A1 (en) Welding wire electrode composition
Logsdon et al. Cryogenic fracture toughness and fatigue crack-growth rate properties of Inconel 706 base material and gas tungsten-arc weldments
JP2934089B2 (en) Manufacturing method of maraging steel
JPH04341538A (en) Ni-base heat resisting alloy
JPS6138256B2 (en)
JPH0635065B2 (en) Titanium alloy joining method
JPS5989752A (en) Welded structure of 12cr steel
JPS62297439A (en) Manufacture of nonmagnetic steel excellent in crevice corrosion resistance