JPH01146362A - Manufacture of hetero junction bipolar transistor - Google Patents

Manufacture of hetero junction bipolar transistor

Info

Publication number
JPH01146362A
JPH01146362A JP30655587A JP30655587A JPH01146362A JP H01146362 A JPH01146362 A JP H01146362A JP 30655587 A JP30655587 A JP 30655587A JP 30655587 A JP30655587 A JP 30655587A JP H01146362 A JPH01146362 A JP H01146362A
Authority
JP
Japan
Prior art keywords
layer
base
collector
conductivity type
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30655587A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hayama
信幸 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30655587A priority Critical patent/JPH01146362A/en
Publication of JPH01146362A publication Critical patent/JPH01146362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the increase of base resistance and the decrease of emitter injection efficiency, and obtain excellent characteristics, by a method wherein a semiinsulating semiconductor layer and a first base layer are formed on a collector layer, a window is made in the first base layer, an active region linking in the collector layer is formed under the window, and then a second base layer and an emitter layer are formed. CONSTITUTION:On a collector layer 2 of first conductivity type, are formed in order a semiinsulating semiconductor layer 3 lattice-matched to the collector layer 2, and a first base layer 4a of second conductivity type lattice-matched to the semiconductor layer 3. A window is made at a specified position of the first base layer 4a, and an active region 2a of first conductivity type linking in the collector layer 2 is formed under the window. On the active region 2a and the first base layer 4a, are formed in order a second base layer 4 and an emitter layer 6 of first conductivity type lattice- matched to them. Between the collector layer 2 and the base layers 4a, 4, is formed an isolation region composed of the semiinsulating semiconductor layer 3. After that, for example, by etching in order the emitter layer 6, the base layers 4, 4a, and the semiinsulating layer 3, a specified part is exposed, and electrodes 7-9 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はへテロ接合バイポーラトラジスタの製造方法に
関し、特に化合物半導体等のへテロ接合を利用したヘテ
ロ接合バイポーラトランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a heterojunction bipolar transistor, and more particularly to a method for manufacturing a heterojunction bipolar transistor using a heterojunction such as a compound semiconductor.

〔従来の技術〕[Conventional technology]

近年、半導体装置は高積化・高速化に向けて精力的な研
究開発が進められている。特に、化合物半導体等のへテ
ロ接合を利用したヘテロ接合バイポーラトランジスタ(
以降HBTと称す)は、エミッタ注入効率が高く、高利
得でかつ高速化が期待され、次世代の半導体素子として
注目されている。このHBTは分子線エピタキシャル成
長法、有機金属熱分解気相成長法等による化合物半導体
の薄膜多層結晶成長技術の進展に伴い、その実現が可能
となった。
In recent years, vigorous research and development has been carried out on semiconductor devices to increase their density and speed. In particular, we focus on heterojunction bipolar transistors that utilize heterojunctions such as compound semiconductors (
HBTs (hereinafter referred to as HBTs) are expected to have high emitter injection efficiency, high gain, and high speed, and are attracting attention as next-generation semiconductor devices. This HBT has become possible with the advancement of compound semiconductor thin film multilayer crystal growth technology using molecular beam epitaxial growth, organometallic pyrolysis vapor phase epitaxy, and the like.

HB Tにおいて高速・高周波特性を表わす一つの指標
である最大発振周波数f ff1axは次式で示される
The maximum oscillation frequency fff1ax, which is one index representing high-speed/high-frequency characteristics in HBT, is expressed by the following equation.

fmax=μゴ/8πRa  (Cac+ Cbe) 
−(1)ここで、それぞれfTは電流利得遮断周波数、
R8はベース抵抗、CBCはトランジスタの能動領域に
おけるベース・コレクタ接合容量、cbcはトランジス
タの外部領域におけるベース・コレクタ寄生接合容量で
ある。(1)式で明らかなように、HBTめ高速動作を
実現する一つの手段として、ベース・コレクタ寄生容量
cbcあるいはベース抵抗R8を極力小さくする必要が
ある。これを実現するために、従来はトランジスタが構
成される半絶縁性基板に対し、基板の表面側から外部ベ
ース領域に選択的に高エネルギーで酸素イオン注入し、
ベース・コレクタ接合部を半絶縁化することによりベー
ス・コレクタ寄生接合容量Cbcを低減するとともに、
更に外部ベース領域に、該ベースと同じ導電型を形成す
るドーパントをイオン注入し、その後の熱処理により該
ドーパントを活性化して、外部ベース層のシート抵抗の
低減と、その後に形成されるベース電極とのコンタクト
抵抗の低減とをはかることによりベース抵抗RBを低減
していた。
fmax=μgo/8πRa (Cac+Cbe)
-(1) where fT is the current gain cutoff frequency,
R8 is the base resistance, CBC is the base-collector junction capacitance in the active region of the transistor, and cbc is the base-collector parasitic junction capacitance in the external region of the transistor. As is clear from equation (1), as a means of realizing high-speed operation of the HBT, it is necessary to minimize the base-collector parasitic capacitance cbc or the base resistance R8. To achieve this, conventionally, oxygen ions were selectively implanted at high energy into the external base region from the surface side of the substrate into the semi-insulating substrate on which the transistor was constructed.
By making the base-collector junction semi-insulating, the base-collector parasitic junction capacitance Cbc is reduced, and
Furthermore, a dopant forming the same conductivity type as the base is ion-implanted into the external base region, and the dopant is activated by subsequent heat treatment to reduce the sheet resistance of the external base layer and to form a base electrode that is subsequently formed. The base resistance RB was reduced by reducing the contact resistance.

第2図はへテロ接合としてG a A s / A j
7G aAsを用いた従来のHBTの一例の断面図であ
る。
Figure 2 shows G a A s / A j as a heterojunction.
1 is a cross-sectional view of an example of a conventional HBT using 7G aAs.

半絶縁性基板、1上にn型GaAsから成るコレクタ層
2、p型GaAsから成るベース層4′、n型AfGa
Asから成るエミッタ層6′が形成されている。このエ
ミッタ層6′及びこの直下のベース層4′及びコレクタ
層2は、トランジスタの能動領域を構成し、この部分で
実際のトランジスタ動作を呈する。更に、この能動領域
の外部領域では、基板の表面側から選択的に、酸素イオ
ン及びp型の導電性を示すドーパント(例えばMg)を
順次イオン注入し熱処理することにより、イオン注入絶
縁層3′及びp型GaAsから成るコンタクト用のベー
ス層4a’が形成されている。かかる構成により、能動
領域の外部領域におけるベース・コレクタ寄生接合容1
cbcを低減するとともに、コンタクト用のベースNi
 4 a ’のシート抵抗の低減とベース電極8とのコ
ンタクト抵抗を下げてベース抵抗Raを低減していた。
A semi-insulating substrate 1 has a collector layer 2 made of n-type GaAs, a base layer 4' made of p-type GaAs, and an n-type AfGa
An emitter layer 6' made of As is formed. This emitter layer 6' and the base layer 4' and collector layer 2 immediately below it constitute the active region of the transistor, and this portion exhibits actual transistor operation. Further, in a region outside the active region, oxygen ions and a dopant exhibiting p-type conductivity (for example, Mg) are sequentially implanted selectively from the surface side of the substrate and heat-treated to form an ion-implanted insulating layer 3'. A contact base layer 4a' made of p-type GaAs is formed. With such a configuration, the base-collector parasitic junction capacitance 1 in the region outside the active region is
In addition to reducing cbc, base Ni for contact
The base resistance Ra was reduced by reducing the sheet resistance of 4a' and the contact resistance with the base electrode 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の従来のHBTにおいて、コレクタ層2とコンタク
ト用のベース層4a’との間に注入される酸素イオン及
びベース層4a’の形成を目的として注入されるp型の
ドーパントはベース層4a′内に結晶欠陥を誘起する。
In the conventional HBT described above, the oxygen ions implanted between the collector layer 2 and the contact base layer 4a' and the p-type dopant implanted for the purpose of forming the base layer 4a' are in the base layer 4a'. induces crystal defects.

この結晶欠陥は、熱処理によって完全に除去するのが困
難であるので、この欠陥よってベース層4a′のキャリ
ヤがトラップされて、ベース抵抗Raの充分に低減する
ことが困難であった。しかも、前述の熱処理工程は、能
動領域におけるエミッタ、ベース及びコレクタ層6’ 
、4’及び2のそれぞれの不純物並びにコンタクト用の
ベース層4a’にイオン注入された不純物を隣接する層
に拡散させ、不純物の濃度分布を変化させていた。特に
、ベース層4′及び4a’の不純物がエミッタ層6′に
拡散することにより、再結合電流が増加しエミッタ注入
効率を大幅に低下させていた。
Since this crystal defect is difficult to completely remove by heat treatment, carriers in the base layer 4a' are trapped by the defect, making it difficult to sufficiently reduce the base resistance Ra. Moreover, the above-mentioned heat treatment process is performed on the emitter, base and collector layers 6' in the active region.
, 4' and 2 as well as the impurities ion-implanted into the contact base layer 4a' are diffused into adjacent layers to change the impurity concentration distribution. In particular, when the impurities in the base layers 4' and 4a' diffuse into the emitter layer 6', recombination current increases and emitter injection efficiency is significantly reduced.

本発明の目的は、ベース抵抗の増加とエミッタ注入効率
の低下とを防止した特性の優れたベテロ接合バイポーラ
トランジスタの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a betajunction bipolar transistor with excellent characteristics that prevents an increase in base resistance and a decrease in emitter injection efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のへテロ接合バイポーラトランジスタの製造方法
は、第1導電型のコレクタ層上に該コレクタ層と格子整
合した半絶縁性の半導体層及び該半導体層と格子整合し
た第2導電型の第1ベース層を順次形成する工程、前記
第1ベース層の所定の位置に窓を開口し語意の下に前記
コレクタ層に連らなる第1導電型の能動領域を形成する
工程並びに該能動領域及び前記第1ベース層上にこれら
と格子整合した第2導電型の第2ベース層及び第1導電
型のエミッタ層を順次形成する工程を含み、前記コレク
タ層と前記第1及び第2ベース層との間に半絶縁性の前
記半導体層からなる分離領域を形成する。
The method for manufacturing a heterojunction bipolar transistor of the present invention includes a semi-insulating semiconductor layer on a collector layer of a first conductivity type, which is lattice-matched to the collector layer, and a first semiconductor layer of a second conductivity type, which is lattice-matched to the semiconductor layer. a step of sequentially forming a base layer, a step of opening a window at a predetermined position of the first base layer and forming an active region of a first conductivity type connected to the collector layer; The step of sequentially forming a second base layer of a second conductivity type and an emitter layer of a first conductivity type that are lattice-matched on the first base layer; An isolation region made of the semi-insulating semiconductor layer is formed therebetween.

〔作用〕[Effect]

本発明においては、コンタクト用のベース層とコンタク
ト層の間に、これらの各層と格子整合した半絶縁性半導
体材料からなる半絶縁層を設けているため、能動領域以
外のベース・コレクタ寄生接合容量が、該半絶縁層が厚
くなるに応じて大幅に低減できる。更に、能動領域のベ
ース層に接続したコンタクト用のベース層は、その不純
物濃度と厚みをコントロールすることによって抵抗値を
大幅に低減することができる。しかも、コレクタ層の能
動領域の部分を形成した後にエピタキシャル成長法で、
ベース層を形成しているため、イオン注入及びそれにと
もなう熱処理工程が不要となりベース層内の結晶欠陥の
発生やHBTの特性を劣化させる不純物の拡散を防止す
ることができる。
In the present invention, a semi-insulating layer made of a semi-insulating semiconductor material that is lattice-matched to each of these layers is provided between the contact base layer and the contact layer, so that the base-collector parasitic junction capacitance outside the active area is reduced. However, this can be significantly reduced as the thickness of the semi-insulating layer increases. Furthermore, the resistance value of the contact base layer connected to the base layer of the active region can be significantly reduced by controlling its impurity concentration and thickness. Furthermore, after forming the active region portion of the collector layer, epitaxial growth is performed.
Since the base layer is formed, ion implantation and the accompanying heat treatment process are unnecessary, and generation of crystal defects in the base layer and diffusion of impurities that degrade the characteristics of the HBT can be prevented.

〔実施例〕〔Example〕

以下、本発明の実施例をA e G a A s / 
G aAsのnpn型HBTを例に取り図面を参照して
説明する。
Hereinafter, examples of the present invention will be described as A e Ga As /
A GaAs npn-type HBT will be taken as an example and explained with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を製造工程順
に説明する断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views illustrating an embodiment of the present invention in the order of manufacturing steps.

この実施例では、まず、第1図(a)に示すように、G
aAsから成る半絶縁性基板1上に、ドナー(例えばS
i)をドープしたn型GaAsから成る厚さ0.5〜1
.0μmのコレクタ層2、コレクタ層2と同じ材料でし
かもドナーもしくはアクセプタ等の不純物をドープして
いない半絶縁性のGaAsから成る厚さ0.2〜0.5
μmの半絶縁層3、更に、アクセプタ(例えばBe)を
高濃度にドープしたn型GaAsから成る厚さ数百〜数
千人程度の接続用のベース層4aを分子線エピタキシャ
ル成長法あるいは有機金属熱分解気相成長法等を用いて
順次成長する。
In this example, first, as shown in FIG.
A donor (for example, S) is placed on a semi-insulating substrate 1 made of aAs.
i) consisting of n-type GaAs doped with a thickness of 0.5 to 1
.. 0 μm collector layer 2, made of semi-insulating GaAs made of the same material as the collector layer 2 but not doped with impurities such as donors or acceptors, with a thickness of 0.2 to 0.5
A semi-insulating layer 3 with a thickness of μm, and a base layer 4a for connection several hundred to several thousand thick made of n-type GaAs doped with a high concentration of acceptor (e.g. Be) are formed by molecular beam epitaxial growth or organometallic heat treatment. Growth is performed sequentially using a decomposition vapor phase growth method or the like.

次に、第1図(b)に示すように、S i 02やSi
3N4等の絶縁物からなる所定のパターンの開口部を備
えたマスク層5を形成した後マスク層5を用いて、ベー
ス層4aの露出部分をウェットエツチングあるいはドラ
イエツチング等の周知の方法で選択的に除去し半絶縁層
3を露出し、更に基板の表面上部から半絶縁層3の露出
部に例えばSiをイオン注入すると共にその後の熱処理
によってこの不純物を活性化して、コレクタM2に至る
コレクタ層2と同じ導電型のn型能動領域2aを形成す
る。ここで、イオン注入の条件としては、例えば半絶縁
層3の厚みが0.5μmであれば、Siイオンをドーズ
量2X1012cm−2、加速エネルギー280keV
で注入し、その後800℃、5秒間の熱処理を行う。そ
の結果、約5X1016cm−’のキャリア濃度を有す
るn型の能動領域2aが形成され、この能動領域2aが
トランジスタのコレクタの能動領域として機能する。
Next, as shown in FIG. 1(b), Si 02 and Si
After forming a mask layer 5 with openings in a predetermined pattern made of an insulator such as 3N4, the exposed portions of the base layer 4a are selectively etched using a well-known method such as wet etching or dry etching using the mask layer 5. The semi-insulating layer 3 is removed to expose the semi-insulating layer 3, and ions of, for example, Si are implanted into the exposed portion of the semi-insulating layer 3 from the upper surface of the substrate, and the impurities are activated by subsequent heat treatment to form the collector layer 2 leading to the collector M2. An n-type active region 2a of the same conductivity type is formed. Here, the conditions for ion implantation are, for example, if the thickness of the semi-insulating layer 3 is 0.5 μm, Si ions are implanted at a dose of 2×10 12 cm −2 and an acceleration energy of 280 keV.
After that, heat treatment is performed at 800° C. for 5 seconds. As a result, an n-type active region 2a having a carrier concentration of about 5.times.10.sup.16 cm-' is formed, and this active region 2a functions as the active region of the collector of the transistor.

続いて、第1図(c)に示すように、マスク層5を除去
した後、アクセプタ(例えばBe)をドープしたn型G
aAsから成る厚さ数百人〜数千人程度のベース層4、
ドナー(例えばSi)をドープしたn型のAI!GaA
sからなる数千人の厚さのエミッタ層6を順次エピタキ
シャル成長法で形成する。
Subsequently, as shown in FIG. 1(c), after removing the mask layer 5, an n-type G doped with an acceptor (for example, Be) is formed.
A base layer 4 made of aAs and having a thickness of several hundred to several thousand layers,
n-type AI doped with a donor (e.g. Si)! GaA
An emitter layer 6 having a thickness of several thousand layers made of S is sequentially formed by epitaxial growth.

最後に、第1図(d)に示すように、周知の方法でエミ
ッタ層6、ベース層4及び4a並びに半絶縁層3を順次
エツチングして所定部分を露出し、n型GaAsに対し
てオーミーツク接触する金属(例えばAuGe/Ni)
がら成るエミッタ電極9及びコレクタ電極7、更にn型
GaAsに対しオーミック接触する金属(例えばAuZ
n。
Finally, as shown in FIG. 1(d), the emitter layer 6, base layers 4 and 4a, and semi-insulating layer 3 are sequentially etched using a well-known method to expose predetermined portions and create an ohm-like structure for the n-type GaAs. Metal in contact (e.g. AuGe/Ni)
Emitter electrode 9 and collector electrode 7 consisting of
n.

AuCr、AuMn等)から成るベース電極8を形成し
て本発明の一実施例によるHBTが完成する。
A base electrode 8 made of (AuCr, AuMn, etc.) is formed to complete an HBT according to an embodiment of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、コレクタ層と接続用ベ
ース層との間に半絶縁性半導体材料からなる半絶縁層を
設けてこれによって絶縁分漏するため、ベース・コレク
タ寄生容量を大幅に低減でき、しかもすくなくとも従来
方法のようなイオン注入及びその後の熱処理工程に伴う
、ベース層中の結晶欠陥の発生及び不純物の不必要な拡
散によるベース抵抗の増加及びエミッタ注入効率の低下
も防止できるので、高速・高周波特性の非常に良好なH
′BTを実現することができるという効果がある。
As explained above, in the present invention, a semi-insulating layer made of a semi-insulating semiconductor material is provided between the collector layer and the connection base layer, and this causes insulation leakage, thereby significantly reducing the base-collector parasitic capacitance. Moreover, at least it is possible to prevent an increase in base resistance and a decrease in emitter implantation efficiency due to the generation of crystal defects in the base layer and unnecessary diffusion of impurities, which are caused by ion implantation and subsequent heat treatment steps as in conventional methods. H with very good high speed and high frequency characteristics
'BT can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの断面図、第2図は従来のHBTの一例の断面図であ
る。 1・・・半絶縁性基板、2・・・コレクタ層、2a・・
・能動領域、3・・・半絶縁層、3′・・・絶縁層、4
゜4a、4a’・・・ベース層、5・・・マスク層、6
゜6′・・・エミッタ層、7・・・コレクタ電極、8・
・・ベース電極、9・・・エミッタ電極。
FIGS. 1(a) to 1(d) are cross-sectional views for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an example of a conventional HBT. 1... Semi-insulating substrate, 2... Collector layer, 2a...
- Active region, 3... Semi-insulating layer, 3'... Insulating layer, 4
゜4a, 4a'...Base layer, 5...Mask layer, 6
゜6'... Emitter layer, 7... Collector electrode, 8...
...Base electrode, 9...Emitter electrode.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型のコレクタ層上に該コレクタ層と格子整合
した半絶縁性の半導体層及び該半導体層と格子整合した
第2導電型の第1ベース層を順次形成する工程、前記第
1ベース層の所定の位置に窓を開口し該窓の下に前記コ
レクタ層に連らなる第1導電型の能動領域を形成する工
程並びに該能動領域及び前記第1ベース層上にこれらと
格子整合した第2導電型の第2ベース層及び第1導電型
のエミッタ層を順次形成する工程を含み、前記コレクタ
層と前記第1及び第2ベース層との間に半絶縁性の前記
半導体層からなる分離領域を形成することを特徴とする
ヘテロ接合バイポーラトランジスタの製造方法。
a step of sequentially forming, on a collector layer of a first conductivity type, a semi-insulating semiconductor layer lattice-matched with the collector layer and a first base layer of a second conductivity type lattice-matched with the semiconductor layer; a step of opening a window at a predetermined position of the window and forming an active region of a first conductivity type connected to the collector layer under the window; a step of sequentially forming a second conductivity type second base layer and a first conductivity type emitter layer, and separating the collector layer and the first and second base layers by the semi-insulating semiconductor layer; A method for manufacturing a heterojunction bipolar transistor, comprising forming a region.
JP30655587A 1987-12-02 1987-12-02 Manufacture of hetero junction bipolar transistor Pending JPH01146362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30655587A JPH01146362A (en) 1987-12-02 1987-12-02 Manufacture of hetero junction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30655587A JPH01146362A (en) 1987-12-02 1987-12-02 Manufacture of hetero junction bipolar transistor

Publications (1)

Publication Number Publication Date
JPH01146362A true JPH01146362A (en) 1989-06-08

Family

ID=17958457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30655587A Pending JPH01146362A (en) 1987-12-02 1987-12-02 Manufacture of hetero junction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH01146362A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294860A (en) * 1985-06-21 1986-12-25 Matsushita Electric Ind Co Ltd Manufacture of bipolar transistor
JPS6249656A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294860A (en) * 1985-06-21 1986-12-25 Matsushita Electric Ind Co Ltd Manufacture of bipolar transistor
JPS6249656A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof

Similar Documents

Publication Publication Date Title
US4896203A (en) Heterojunction bipolar transistor
JP2582519B2 (en) Bipolar transistor and method of manufacturing the same
US4683487A (en) Heterojunction bipolar transistor
JPS636877A (en) Manufacture of heterojunction type bipolar transistor
JPH05182980A (en) Heterojunction bipolar transistor
JPH05347313A (en) Manufacture of extremely thin active region of high-speed semiconductor device
JP2576828B2 (en) High gain MIS transistor
US5700701A (en) Method for reducing junction capacitance and increasing current gain in collector-up bipolar transistors
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
JP2506074B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPH01146362A (en) Manufacture of hetero junction bipolar transistor
JPS60164358A (en) Manufacture of semiconductor device
JP2504767B2 (en) Method of manufacturing heterojunction bipolar transistor
JPH0529328A (en) Semiconductor device and manufacture thereof
JPH0620075B2 (en) Method for manufacturing heterojunction bipolar transistor
JP2600969B2 (en) Germanium-gallium arsenide junction and heterostructure bipolar transistor
JP2814984B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPH0618207B2 (en) Method for manufacturing heterojunction bipolar transistor
JPS63318778A (en) Heterojunction bipolar transistor and manufacture
JPH07263460A (en) Hbt type compound semiconductor device and its manufacture
JPS62224073A (en) Manufacture of hetero-junction bipolar transistor
JPS63248167A (en) Manufacture of hetero-junction bipolar transistor
JPS62221151A (en) Hetero junction bipolar transistor and manufacture thereof
JPH0618206B2 (en) Method for manufacturing heterojunction bipolar transistor