JPH01144977A - Novel recombinant plasmid ptpgif2 - Google Patents

Novel recombinant plasmid ptpgif2

Info

Publication number
JPH01144977A
JPH01144977A JP30215487A JP30215487A JPH01144977A JP H01144977 A JPH01144977 A JP H01144977A JP 30215487 A JP30215487 A JP 30215487A JP 30215487 A JP30215487 A JP 30215487A JP H01144977 A JPH01144977 A JP H01144977A
Authority
JP
Japan
Prior art keywords
ptpgif2
coli
gif
dhfr
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30215487A
Other languages
Japanese (ja)
Other versions
JPH0371112B2 (en
Inventor
Masahiro Iwakura
正寛 巖倉
Tomokuni Kokubu
国分 友邦
Kiyotaka Furusawa
古澤 清孝
Shinichi Ohashi
信一 大箸
Tsukasa Sakai
坂井 士
Yoshio Tanaka
芳雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP30215487A priority Critical patent/JPH01144977A/en
Publication of JPH01144977A publication Critical patent/JPH01144977A/en
Publication of JPH0371112B2 publication Critical patent/JPH0371112B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

NEW MATERIAL:Recombinant plasmid pTPGIF2 having a size of 4,660 base pairs and a structure obtained by inserting a DNA having a size of 52 base pairs and containing a sequence coding somatostatin into a BamHI incision site of a plasmid vector pTP70-1 capable of fusing a heteropeptide to a carboxy- terminal of a dihydrofolic acid reductase gene of E.coli. USE:Production of fused protein containing somatostatin. PREPARATION:A somatostatin gene is integrated into a plasmid vector pTP70-1. pTPGIF2 is kept in stable state when introduced into E.coli. C600 strain. The E.coli. C600 strain containing pTPGIF2 is deposited in Fermentation Research Institute as FERM BP-1577.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、成長ホルモン分泌制御因子であるソマトスタ
チン(Ala−Gly−Cys−Lys−Asn−Ph
e−Phe−Trp−Lys−Thr−Phe−Thr
−5er−Cysの14個のアミノ酸配列よりなるペプ
チド、以下、GIFと略す。)を含む融合タンパク質を
生産可能とする新規組換えプラスミドに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to somatostatin (Ala-Gly-Cys-Lys-Asn-Ph), which is a growth hormone secretion regulator.
e-Phe-Trp-Lys-Thr-Phe-Thr
A peptide consisting of a 14-amino acid sequence of -5er-Cys, hereinafter abbreviated as GIF. This invention relates to a novel recombinant plasmid that makes it possible to produce a fusion protein containing the following:

GIFは、視床下部ペプチドの一種であり、成長ホルモ
ンなど下垂体前葉ホルモンおよびインシュリン、グルカ
ゴンなどの消化管で生産される多くのペプチドホルモン
の分泌を抑制する。このよう作用を有することから、G
IFは、小人症、糖尿病等の治療薬としての利用が期待
されている。
GIF is a type of hypothalamic peptide and suppresses the secretion of many peptide hormones produced in the gastrointestinal tract, such as anterior pituitary hormones such as growth hormone, and insulin and glucagon. Because it has such an effect, G
IF is expected to be used as a therapeutic agent for dwarfism, diabetes, and the like.

本発明の新規組換えプラスミドpTPGIF2は、第1
図に示されるDNA配列を有する。pTPG IF2お
よびpTPGIF2を含有する大腸菌は2発酵工業、医
薬品工業等の分野に好適である。
The novel recombinant plasmid pTPGIF2 of the present invention has the first
It has the DNA sequence shown in the figure. pTPG IF2 and Escherichia coli containing pTPGIF2 are suitable for fields such as fermentation industry and pharmaceutical industry.

従来の技術 本発明M’、’+i術的背景としては、いわゆる遺伝子
操作技術がある。GIF遺伝子を組み込んだプラスミド
およびその大腸菌での発現に関しては、板倉らの成果が
公知である (に、Itakura et al。
BACKGROUND OF THE INVENTION The technical background of the present invention M','+i is the so-called gene manipulation technology. Regarding the plasmid incorporating the GIF gene and its expression in E. coli, the results of Itakura et al. are known.

5cience、 vol、198.p1056(19
77))。
5science, vol, 198. p1056(19
77)).

一般に9分子量1万以下のポリペプチドは、大腸菌など
の宿主中で生産させても菌体中のプロテアーゼなどによ
って分解されるため安定に細胞内に蓄積されない。これ
は2分子として小さいため安定なコンホメーションをと
れないためであると考えられている。従って、遺伝子操
作を利用してGIFなどの短いポリペプチドを生産しよ
うとした場合、融合遺伝子を作成し、融合タンパク質と
して発現させることが必要である。そのため、板倉らは
、GIFを暗号化する遺伝子を化学合成いこれをβ−ガ
ラクトシダーゼ遺伝子に融合し、多コピープラスミドに
組み込み得られた組換えプラスミドを大腸菌に導入し、
融合タンパク質として発現させた。融合タンパク質は、
β−ガラクトシダーゼとGIFとをメチオニン(Met
)残基を介して結合させている。タンパク質をブロムシ
アンで処理することにより、タンパク質中のメチオニン
残基のカルボキシ末端側の結合を特異的に切断すること
ができる。この方法を利用することにより。
Generally, polypeptides with a molecular weight of 10,000 or less cannot be stably accumulated in cells even if they are produced in a host such as E. coli because they are degraded by proteases in the bacterial cells. This is thought to be because the two molecules are so small that they cannot maintain a stable conformation. Therefore, when attempting to produce a short polypeptide such as GIF using genetic manipulation, it is necessary to create a fusion gene and express it as a fusion protein. Therefore, Itakura et al. chemically synthesized the gene encoding GIF, fused it to the β-galactosidase gene, integrated it into a multicopy plasmid, and introduced the resulting recombinant plasmid into E. coli.
It was expressed as a fusion protein. The fusion protein is
β-galactosidase and GIF are combined with methionine (Met).
) residues. By treating a protein with bromic cyanide, the carboxy-terminal bonds of methionine residues in the protein can be specifically cleaved. By using this method.

β−ガラクトシダーゼ−GIFの融合タンパク質からG
IFを特異的に切り出すことができる。
G from β-galactosidase-GIF fusion protein
IF can be specifically excised.

しかしながら、上記の板倉らの方法は、 (1)大腸菌
で発現した融合タンパク質が不溶化していること、 (
2)β−ガラクトシダーゼがGIFと融合することによ
りその酵素活性を失うこと。などから、iii!I!合
タンパク質の分離精製に関して問題があった。
However, the method of Itakura et al. described above requires that (1) the fusion protein expressed in E. coli is insolubilized;
2) β-galactosidase loses its enzymatic activity by fusing with GIF. From etc., iii! I! There was a problem with the separation and purification of the combined protein.

本発明者らは、この問題を解消するために、枯草菌のジ
ヒドロ葉酸還元酵素遺伝子を利用して。
In order to solve this problem, the present inventors utilized the dihydrofolate reductase gene of Bacillus subtilis.

融合タンパク質(以下、 D HF Rbs  G I
 Fと略す。)として発現させることに成功した(特願
昭62−079378,62−092881)。
fusion protein (hereinafter referred to as DHF Rbs GI
Abbreviated as F. ) (Japanese Patent Application No. 62-079378, 62-092881).

その結果に従うと2作られるDHFRb−−−GIFは
、可溶性の状態で大腸菌面体内に生産され、かつGIF
と融合してもDHFRの活性が保持され問題点 しかしながら、上記の本発明者らの方法は2作られるD
HFRb−−GIFの菌体内蓄積量が、菌体タンパク質
のせいぜい数パーセントであり、融合タンパク質を多量
に利用しようと考えた場合。
According to the results, DHFRb---GIF produced by 2 is produced in the E. coli hedron in a soluble state, and GIF
However, the above method of the present inventors maintains the activity of DHFR even when fused with
When considering that the amount of HFRb--GIF accumulated in the bacterial body is at most a few percent of the bacterial cell protein, and a large amount of the fusion protein is to be utilized.

生産効率上で問題が考えられた。There was a problem with production efficiency.

発明の目的 本発明の目的は、上記の問題点を解決するために、GI
Fの大量生産を可能にする組換えプラスミドを開発する
ことにある。また2本発明は、遺伝子操作の手法を用い
てGIFを大量に生産する方法の開発の一環として行わ
れたものである。
OBJECT OF THE INVENTION An object of the present invention is to solve the above problems by
The objective is to develop a recombinant plasmid that enables mass production of F. Furthermore, the present invention was carried out as part of the development of a method for producing GIF in large quantities using genetic engineering techniques.

既に2本発明者らは(1)大腸菌のDHFRを大量に発
現する発現プラスミドを構築していること(特願 昭6
0−210813)、(2)大腸菌のDHFRのカルボ
キシ末端側の配列を変化させても、枯草菌のDHFR同
様酵素活性が失われないこと、(3)大腸菌のDHFR
のカルボキシ末端側に異種ペプチドを融合させることを
可能とするプラスミドベクターpTP70−1を構築し
ていること(特願 昭62−312838)、(4)p
TP70−1上の改変DHFRは、大腸菌で効率良く発
現すること、を明らかにしている。
The present inventors have already (1) constructed an expression plasmid that expresses a large amount of DHFR in E. coli (patent application 1983).
0-210813), (2) Even if the carboxy-terminal sequence of E. coli DHFR is changed, the enzymatic activity is not lost like Bacillus subtilis DHFR, (3) E. coli DHFR
A plasmid vector pTP70-1 has been constructed that enables the fusion of a heterologous peptide to the carboxy-terminal side of
It has been revealed that the modified DHFR on TP70-1 is efficiently expressed in E. coli.

このことを利用し、鋭意研究の結果、pTP70−1を
用いて、GIF遺伝子をDHFRと融合させて発現する
ことにより、上記問題点を解消できることを見いだし、
その知見に従って、pTP70−1にGIF遺伝子を組
み込んだ組換えプラスミドpTPGIF2を作成し2本
発明を完成させた。
Taking advantage of this fact, as a result of intensive research, we discovered that the above problems could be solved by expressing the GIF gene in a fused form with DHFR using pTP70-1.
Based on this knowledge, the present invention was completed by creating a recombinant plasmid pTPGIF2 in which the GIF gene was integrated into pTP70-1.

発明の構成 第1図は2本発明の組換えプラスミドpTPGIF2の
全塩基配列を示している。本発明のpTPGIF2は、
4660塩基対の大きさであり。
Structure of the Invention FIG. 1 shows the entire base sequence of the recombinant plasmid pTPGIF2 of the present invention. The pTPGIF2 of the present invention is
It has a size of 4660 base pairs.

宿主である大腸菌にトリメトプリムおよびアシビシリン
耐性m、’2i与することができる。pTPGIとε− F2は、 E、coli C600株に導入されて安定
状態に保たれ、pTPGIF2を含有するE、 col
i C600株は、微工研にFERM8P−1577と
して寄託されている。
It can confer trimethoprim and acivicillin resistance m,'2i to host E. coli. pTPGI and ε-F2 were introduced into E. coli strain C600 and kept stable, and E. coli containing pTPGIF2
The i C600 strain has been deposited with the Microtech Institute as FERM8P-1577.

pTPGIF2は、pTP70−1のBamHI切断部
位に、GIFを暗号化する配列を含む52塩基対のD 
N Aが挿入した構造である。第1図において、533
番目から584番目迄の配列が挿入された配列であり、
それ以外の配列がpTP70−1の配列と全く同一であ
る。第1図の57番目から581番目の配列は、pTP
70−1の改変DHFHのカルボキシ末端側にGrFが
メチオニンを介して結合したDHFR−GIFを暗号化
する。
pTPGIF2 contains a 52 base pair D containing a sequence encoding GIF at the BamHI cleavage site of pTP70-1.
This is the structure inserted by NA. In Figure 1, 533
The array from the th to the 584th is the inserted array,
The rest of the sequence is completely identical to that of pTP70-1. The sequence from 57th to 581st in Figure 1 is pTP
GrF is bound to the carboxy terminal side of modified DHFH of 70-1 via methionine to encode DHFR-GIF.

第2図は、  DHFR−GIFを暗号化する部分のD
NA配列とそれから作られると予想されるタンパク質の
アミノ酸配列を示している。DHFR−GIFは、17
5アミノ酸よりなるタンパク質であり、このうちアミノ
末端側から数えて、1から159番目までの配列が、大
腸菌の野生型DHFRに1箇所アミノ酸置換置換が起こ
った(Cys−152(wild type) + G
lu−152)配列であり、162番目から175番目
までがGIFの配列である。GIFの配列の直前のアミ
ノ酸はメチオニン(Net)である。このことにより、
DHPR−GIFをブロムシアン処理することにより、
GIFを特異的に切り出すことができる。160番目の
イソロイシン(lle)は、pTP70−1のBamH
I部位にGIFを暗号化するDNAを導入する際に、遺
伝暗号の読み取り枠を合わせるために生じた配列である
。pTP70−1が作る改変DHFRは、162個のア
ミノ酸よりなり、第2図のDHFR−GIFのアミノ酸
配列のうち、アミノ末端側から数えて、1から160番
目までの配列に、 Gln−11eの2個のアミノ酸配
列が結合した配列をしている。
Figure 2 shows the part D that encrypts DHFR-GIF.
The NA sequence and the amino acid sequence of the protein predicted to be produced from it are shown. DHFR-GIF is 17
It is a protein consisting of 5 amino acids, and the sequence from positions 1 to 159 counting from the amino terminal side has one amino acid substitution in the wild type DHFR of E. coli (Cys-152 (wild type) + G
lu-152) array, and the 162nd to 175th are GIF arrays. The amino acid immediately preceding the GIF sequence is methionine (Net). Due to this,
By subjecting DHPR-GIF to Bromcyan processing,
GIF can be specifically excised. Isoleucine (lle) at position 160 is BamH of pTP70-1.
This sequence was created to match the reading frame of the genetic code when introducing DNA encoding GIF into the I site. The modified DHFR produced by pTP70-1 consists of 162 amino acids, and in the amino acid sequence of DHFR-GIF shown in FIG. It has a sequence in which several amino acid sequences are combined.

DHFR−GIFは、pTP70−1の改変DHFRの
カルボキシ末端側に、GIFが融合した構造をしている
にもかかわらず、DHFR酵素活性を有する。このため
、大腸菌がDHFR−(、IFを多量につくると、DH
FRの阻害剤であり。
DHFR-GIF has a structure in which GIF is fused to the carboxy terminal side of the modified DHFR of pTP70-1, but has DHFR enzyme activity. For this reason, when E. coli produces large amounts of DHFR-(, IF, DHFR-(, IF)
It is an inhibitor of FR.

抗細菌剤でゃJるトリメトプリムに対して、耐性を示す
ようになる。
It becomes resistant to the antibacterial drug trimethoprim.

DHPR−GIFを暗号化する配列の上流には。Upstream of the sequence encoding DHPR-GIF.

pTP70−1の改変DHFR遺伝子の発現を効率良く
行わせる配列が存在する(特願 昭6l−312836
)。即ち、43番目から50番目までの配列がSD配列
と呼ばれるもので、効率の良い翻訳に、また、4618
番目から4646番目までが、コンセンサス転写プロモ
ーターであり。
There is a sequence that allows efficient expression of the modified DHFR gene of pTP70-1 (Patent application No. 61-312836).
). In other words, the sequence from the 43rd to the 50th is called the SD sequence, and is useful for efficient translation.
The sequence from position 4646 to position 4646 is the consensus transcription promoter.

効率の良い転写に貢献する。また、pTP70−1は、
抗菌剤であるアンピシリンに対して耐性を付与する遺伝
子を有しており、その遺伝子の発現は、pTP70−1
のBamHI部位に異種DNAが挿入されても影響を受
けない。このことから。
Contributes to efficient transcription. In addition, pTP70-1 is
It has a gene that confers resistance to the antibacterial agent ampicillin, and the expression of this gene is controlled by pTP70-1.
Even if foreign DNA is inserted into the BamHI site of , it will not be affected. From this.

pTP70−1のBamHI部位に、GIFを暗号化す
るDNA配列が挿入した構造をしているpTPGIF2
は、大腸菌に導入された場合、多量のDHFR−GI 
Fを作る。作られたDHFR−GIFは、菌体内に可溶
性の状態で、菌体タンパク質の15〜20%にいたるま
で蓄積する。このことによって、pTPGIF2を有す
る大腸菌はトリメトプリム耐性を示すようになる。また
、pTPGIF2は、pTP70−1由来のアンピシリ
ン耐性を付与する遺伝子を有することから、pTPGI
F2が導入された大腸菌は、アンピシリン耐性をも示す
pTPGIF2 has a structure in which a DNA sequence encoding GIF is inserted into the BamHI site of pTP70-1.
When introduced into E. coli, a large amount of DHFR-GI
Make F. The produced DHFR-GIF accumulates in the bacterial body in a soluble state up to 15 to 20% of the bacterial cell protein. As a result, E. coli having pTPGIF2 becomes resistant to trimethoprim. Furthermore, since pTPGIF2 has a gene that confers ampicillin resistance derived from pTP70-1, pTPGI
E. coli into which F2 has been introduced also exhibits resistance to ampicillin.

このような特長を有するpTPGIF2は、実施例に従
って作成することができるが1組換えプラスミドの作成
方法によって本発明が制限されるものではない。
pTPGIF2 having such features can be constructed according to the Examples, but the present invention is not limited to the method for constructing a single recombinant plasmid.

次に本発明の実施例および参考例を示す。Next, examples and reference examples of the present invention will be shown.

実施例 pTPGIF2の作成 GIFを暗号化するDNAとしては。Example Creation of pTPGIF2 As for the DNA that encodes GIF.

1、5’−GATCATGGCTGGCTGTAAAA
ACTTCTTCTGGAAAACCTTCACTTC
ATGCTAA−3’ 2、5’−GATCTTAGCATGAAGTGAAG
GTTTTCCAGAAGAAGTTTTTACAGC
CAGCCAT−3’ ホアミダイト法に従って化学合成し、精製後、ポリヌク
レオチドキナーゼを用いて、各DNAの5′末端をリン
酸化した。  リン酸化したDNAを約0.1m1(約
0.1dgのDNAを含んでいる。)ずつ取り、これを
60’Cでインキュベートすることによって両DNAを
アニールさせた(これをDNAIと呼ぶ)。
1,5'-GATCATGGCTGGCTGTAAAA
ACTTCTTCTGGAAAACCCTTCACTTC
ATGCTAA-3'2,5'-GATCTTAGCATGAAGTGAAG
GTTTTCCAGAAGAAGTTTTTACAGC
CAGCCAT-3' was chemically synthesized according to the phoamidite method, and after purification, the 5' end of each DNA was phosphorylated using polynucleotide kinase. Approximately 0.1 ml (containing approximately 0.1 dg of DNA) of the phosphorylated DNA was taken and incubated at 60'C to anneal both DNAs (this is referred to as DNAI).

GIFを暗号化したDNAを組み込むベクターとしては
、pTP70−1を用いた(特願 昭6l−31283
6)。  約1μgのpTP70−1を、BamHIで
切断した後、アルカリホスファターゼ処理をした。アル
カリホスファターゼ処理したDNAをフェノール処理す
ることにより、共存する酵素タンパク質を変性除去し、
その後エタノールでDNAを沈澱させた。沈澱したDN
Aを70%エタノールで洗った後、エタノールを除き。
pTP70-1 was used as a vector to incorporate the GIF-encoded DNA (patent application Sho 6l-31283).
6). Approximately 1 μg of pTP70-1 was cleaved with BamHI and then treated with alkaline phosphatase. By treating the alkaline phosphatase-treated DNA with phenol, the coexisting enzyme protein is denatured and removed.
The DNA was then precipitated with ethanol. precipitated DN
After washing A with 70% ethanol, remove the ethanol.

減圧下に沈澱を乾燥させた。BamHIによるDNAの
切断、アルカリホスファターゼ処理、フェノール処理、
およびエタノール沈澱の各操作は。
The precipitate was dried under reduced pressure. DNA cleavage with BamHI, alkaline phosphatase treatment, phenol treatment,
and each operation of ethanol precipitation.

いずれも、 ”Mo1ecular Cloning 
A LoboratoryManua l”(T、Ma
niatis、  E、F、Fr1tsch、J、Sa
mbrook。
In both cases, “Mo1ecular Cloning”
A Laboratory Manual” (T, Ma
niatis, E.F., Frltsch, J.Sa.
mbrook.

eds、 Co1d Spring )larbor 
Laboratory (1982)、以下2文献1と
呼ぶ。)に記載している方法に従って行った。乾燥させ
たDNAを50μmのリガーゼ用反応液(10mM T
ris−HcI、pH7,4,5mM MgCl2.1
0mMジチオトレイトール、5 mM ATP)に溶解
後、5μmのDNAIを加え、これに1ユニツトの74
−DNAリガーゼを加えて、15°Cで、4時間DNA
の連結反応を行わせた。この反応物を、形質転換法(t
ransformation method、上記文献
1に記載)に従って、大腸菌に取り込ませた。この処理
をした菌体を、50mg/lのアンピシリンナトリウム
および10mg/Iのトリメトプリムを含む栄養寒天培
地(培地li中に、2gのグルコース+  Igのリン
酸2カリウム、5gのイーストエキスt 5 gのポリ
ペプトン、15gの寒天を含む。)上に塗布し、37°
Cで24時間培養することにより、約500のコロニー
を得ることができた。これらのコロニーから適当に8個
選び、1.5mlのYT+Ap培地(培8gのトリプト
ン、50mgのアンピシリンナトリウムを含む。)で、
37°C,1晩、菌体を培養した。培養液を、各々エッ
ペンドルフ遠心管にとり。
eds, Co1d Spring) labor
Laboratory (1982), hereinafter referred to as Reference 2. ) according to the method described. The dried DNA was mixed with a 50μm ligase reaction solution (10mM T
ris-HcI, pH 7, 4, 5mM MgCl2.1
After dissolving in 0mM dithiothreitol, 5mM ATP), 5μm of DNAI was added and 1 unit of 74
- Add DNA ligase and incubate the DNA at 15°C for 4 hours.
A ligation reaction was performed. This reaction product was transformed using the transformation method (t
transformation method, described in Document 1 above). The treated bacterial cells were transferred to a nutrient agar medium containing 50 mg/l ampicillin sodium and 10 mg/l trimethoprim (in medium li, 2 g glucose + Ig dipotassium phosphate, 5 g yeast extract, 5 g polypeptone, containing 15 g of agar) and 37°
Approximately 500 colonies could be obtained by culturing in C for 24 hours. Appropriately select 8 colonies from these colonies and incubate them in 1.5 ml of YT+Ap medium (containing 8 g of tryptone and 50 mg of ampicillin sodium).
The bacterial cells were cultured at 37°C overnight. Transfer each culture solution to an Eppendorf centrifuge tube.

12.000回転/分で10分間遠心分離し、菌体を沈
澱として集めた。これに、0.1mlの電気泳動用サン
プル調製液(0,0625MのTris−HCI、 p
t(6,8,2χのラウリル硫酸ナトリウム(SDS)
The mixture was centrifuged at 12,000 rpm for 10 minutes, and the bacterial cells were collected as a precipitate. To this, add 0.1 ml of electrophoresis sample preparation solution (0,0625 M Tris-HCI, p
t(6,8,2χ Sodium Lauryl Sulfate (SDS)
.

10%のグリセリン、5χの2−メルカプトエタノール
10% glycerin, 5x 2-mercaptoethanol.

0.001%のブロムフェノールブルーを含む。)を加
え2面体を懸濁し、これを沸騰水中に5分間保ち2面体
を溶かした。この処理をしたサンプルを5DS−ポリア
クリルアミドゲル電気泳動法(U、K。
Contains 0.001% bromophenol blue. ) was added to suspend the dihedron, and this was kept in boiling water for 5 minutes to dissolve the dihedron. The treated samples were subjected to 5DS-polyacrylamide gel electrophoresis (U, K).

Lamm1i; Nature、 vol、227. 
p、680(1970))に従って分析した。標準サン
プルとしてpTP70−1を含有する大腸菌に同様な処
理をしたもの、および分子量マーカーとしてラクトアル
ブミン(分子量14.200)、  )リブシンインヒ
ビター(分子量20、too) 、 )リブシノーアン
(分子量24,000) 、カルボニックアンヒドラー
ゼ(分子ff129,000) 、グリ七〇アルデヒド
3−リン酸デヒドロゲナーゼ(分子量36,000) 
、卵アルブミン(分子量45,000) 。
Lammli; Nature, vol, 227.
p., 680 (1970)). As a standard sample, Escherichia coli containing pTP70-1 was treated in the same way, and as molecular weight markers, lactalbumin (molecular weight 14.200), ) ribsin inhibitor (molecular weight 20, too), ) ribsinoan (molecular weight 24,000) , Carbonic anhydrase (molecular weight 129,000), Glyseptaldehyde 3-phosphate dehydrogenase (molecular weight 36,000)
, egg albumin (molecular weight 45,000).

および牛血清アルブミン(分子ff166.000)を
含むサンプルをポリアクリルアミド濃度の10から20
%濃度勾配ゲルで泳動した。その結果、8個のコロニー
のうち、3個ではpTP70−1のDHFRのバンドが
消失し、それより明らかに分子量が大きくなったタンパ
ク質(分子量的23 、000と推定される。)を新た
に生産していること、残りの5個のコロニーは、pTP
70−1のDHFRとほぼ同じ大きさのタンパク質を生
産すること、pTP70−1のDHFR(分子量18,
379)は、この条件で分子量的21 、000のタン
パク質として泳動することが明らかになった。分子量の
大きい新たなタンパク質を生産するコロニーのうちから
適当に一つ選び、これをYT+Ap培地で培養し、Ta
nakaとWeisblumの方法(T、Tanaka
、 B、Weisblum; J。
and bovine serum albumin (molecule ff 166.000) with a polyacrylamide concentration of 10 to 20.
% gradient gel. As a result, in three of the eight colonies, the DHFR band of pTP70-1 disappeared, and a new protein with a clearly larger molecular weight (estimated to have a molecular weight of 23,000) was produced. The remaining 5 colonies are pTP
DHFR of pTP70-1 (molecular weight 18,
379) was found to migrate as a protein with a molecular weight of 21,000 under these conditions. Select one of the colonies that produce a new protein with a large molecular weight and culture it in YT+Ap medium.
naka and Weisblum's method (T, Tanaka
, B. Weisblum; J.

Bacteriology、 vol、121.p、3
54(1975))に従って。
Bacteriology, vol, 121. p, 3
54 (1975)).

プラスミドを調製した。得られたプラスミドをpTPG
 IF2と名づけだ。pTPGIF2は、pT P 7
0−1籍B amHI部位に合成りNAが挿□□i− 人された構造をしているはずであるので、p’rpGI
F2をEcoRIと5alIによる切断によって得られ
る約400ヌクレオチド長のDNAについて9M13フ
アージを用いたジデオキシ法(J。
A plasmid was prepared. The obtained plasmid was transformed into pTPG.
It is named IF2. pTPGIF2 is pTP7
Since it should have a structure in which a synthetic NA is inserted at the amHI site, p'rpGI
Dideoxy method using 9M13 phage (J.

Messing; Mehtods in Enzym
ology、 vol、101.p、20(1983)
)に従って塩基配列を決定した。その結果。
Messing; Methods in Enzym
ology, vol, 101. p, 20 (1983)
) The base sequence was determined according to the following method. the result.

第1図に示すpTPGIF2の全塩基配列の471番目
から882番目の配列が明らかにされた。
The 471st to 882nd sequences of the entire base sequence of pTPGIF2 shown in FIG. 1 were revealed.

pTP70−1の塩基配列は9本発明者らによりて明ら
かにされている(特願 昭6l−312836)。pT
PGIF2のEcoRI−SalIの配列は、pTP7
0−1のEcoRI−SalIの配列に間にあるBam
HI部位に、52ヌクレオチドのDNA(GIFを暗号
化する配列として設計・合成した配列)が結合した配列
であった。
The nucleotide sequence of pTP70-1 has been revealed by the present inventors (Japanese Patent Application No. 61-312836). pT
The EcoRI-SalI sequence of PGIF2 is pTP7
Bam between the EcoRI-SalI sequence of 0-1
It was a sequence in which 52 nucleotides of DNA (a sequence designed and synthesized as a sequence encoding GIF) was bound to the HI site.

また、pTPGIF2のEcORl−5a l I切断
によって得られる約4.2キロ塩基対のDNAは、Ps
tI、HindIII、Hpal、AatI I、 P
vu I I、 Bgl I I、およびC1aIを用
いた制限酵素による切断実験の結果、p’rp70−1
のEcoRI−5all切断によって得られる約4.2
キロ塩基対のDNAと全く同一であることが示された。
In addition, approximately 4.2 kilobase pairs of DNA obtained by EcORl-5a l I cleavage of pTPGIF2 is Ps
tI, HindIII, Hpal, AatII, P
As a result of restriction enzyme cleavage experiments using vuII, BglII, and C1aI, p'rp70-1
4.2 obtained by EcoRI-5all cleavage of
It was shown to be completely identical to kilobase pair DNA.

以上の結果から、pTPGIF2の全塩基配列が第1図
に示した配列であることが明らかである。
From the above results, it is clear that the entire base sequence of pTPGIF2 is the sequence shown in FIG.

参考例 pTPGIF2を有する大腸菌の作るDHFR−GIF
融合タンパク質の精製 pTPGIF2を有する大腸菌を1.51のYT+Ap
培地で37°Cで一晩培養後、菌体を遠心分離により集
めた。湿重量約6gの菌体が得られた。
Reference example DHFR-GIF produced by E. coli having pTPGIF2
Purification of fusion protein Escherichia coli harboring pTPGIF2 was incubated with 1.51 YT+Ap.
After culturing in medium at 37°C overnight, the bacterial cells were collected by centrifugation. Bacterial cells with a wet weight of about 6 g were obtained.

菌体を20m1の1mMのジチオトレイトール(DTT
)および0.1mMのエチレンジアミン4酢酸2ナトリ
ウム(EDTA)を含む10mMリン酸緩衝液pH7,
0(以下、緩衝液1)に懸濁し。
The bacterial cells were mixed with 20ml of 1mM dithiothreitol (DTT).
) and 10 mM phosphate buffer pH 7 containing 0.1 mM disodium ethylenediaminetetraacetate (EDTA),
0 (hereinafter referred to as buffer 1).

フレンチプレスを用いて面体を破砕した。菌体破砕液を
、20,000回転/分、1時間の遠心分はとんど全て
が上清中に回収された。このことからDHFR−GIF
は、可溶性の状態で菌体中に蓄積していると考えられる
。得られた上清中のDHFR活性は、1520ユニツト
であった。上清なあらかじめ緩衝液1で平衡化したDE
AE−)コパール650Mカラム(2,500mm x
 1,500.mm、、約750TI+3)に吸着させ
、O,IMのKCIを含む緩衝液1で洗った後、緩衝液
1中で、0.1Mから0゜3MのKCIの濃度勾配をか
け、タンパク質を溶出させた。約6mlずつのフラクシ
ョンを、フラクションコレクターで集め、各フラクショ
ンについて、DHFRの酵素活性を調べ、活性を有する
フラクションを集めた。約40m1の酵素液が得られた
。回収されたDHFR酵素活性は、1,065ユニツト
(約70%)であった。回収酵素液を。
The face piece was crushed using a French press. Almost all of the cell suspension obtained by centrifugation at 20,000 rpm for 1 hour was recovered in the supernatant. From this, DHFR-GIF
is thought to accumulate in the bacterial cells in a soluble state. The DHFR activity in the obtained supernatant was 1520 units. Supernatant DE equilibrated in advance with buffer 1
AE-) Copal 650M column (2,500mm x
1,500. After washing with buffer 1 containing KCI of O, IM, a concentration gradient of KCI from 0.1 M to 0.3 M was applied in buffer 1 to elute the protein. Ta. Fractions of approximately 6 ml each were collected using a fraction collector, each fraction was examined for DHFR enzyme activity, and fractions with activity were collected. Approximately 40 ml of enzyme solution was obtained. The DHFR enzyme activity recovered was 1,065 units (approximately 70%). recovered enzyme solution.

アミコン限外ろ過装置を用いて約1mlにまで濃縮し、
これをトヨパールHW55カラムクロマトグラフィーに
より分画した。約2.5mlずつのフラクションを、フ
ラクションコレクターで集め。
Concentrate to approximately 1 ml using an Amicon ultrafiltration device,
This was fractionated by Toyopearl HW55 column chromatography. Collect fractions of approximately 2.5 ml each using a fraction collector.

各フラクションについて、DHFRの酵素活性と280
 nmの吸光度を調べた。各フラクションについて、D
HFRの酵素活性を280nmの吸光度で割った値を計
算し、一定の値(約30)を示すフラクションを集めた
。410ユニツト(約27%)、約23 m gの酵素
が回収された。
For each fraction, the enzymatic activity of DHFR and 280
The absorbance at nm was examined. For each fraction, D
The value of the HFR enzyme activity divided by the absorbance at 280 nm was calculated, and fractions showing a constant value (approximately 30) were collected. 410 units (about 27%), about 23 mg of enzyme were recovered.

得られた酵素タンパク質をSDS電気泳動法(上記実施
例に記載の方法)により分析したところ。
The obtained enzyme protein was analyzed by SDS electrophoresis (method described in the above example).

約23 、000の単一なタンパク質バンドが示され、
得られた酵素標品が均一であることが示された。
Approximately 23,000 single protein bands are shown;
It was shown that the obtained enzyme preparation was homogeneous.

精製したDHFR活性を示すタンパク質をエンザイムイ
ムノアッセイにより検討したところ、GIFに対する抗
体と反応することが示された。即ち、精製して得られた
タンパク質は免疫学的にGIFと同等の構造を有するこ
とが明らかとなった。
When the purified protein exhibiting DHFR activity was examined by enzyme immunoassay, it was shown to react with an antibody against GIF. That is, it was revealed that the purified protein had a structure immunologically equivalent to GIF.

精製して得られたタンパク質のカルボキシ末端側のアミ
ノ酸配列を明らかにするために、カルボキシペプチダー
ゼYを、精製タンパク質に時間を変化させて作用させ、
遊離してくるアミノ酸を定量した(カルボキシペプチダ
ーゼ法によるカルボ−−Trp−Lys−Thr−Ph
e−Thr−5er−(カルボキシ末端)であることが
予想された。DHFR−G IFのカルボキシ末端のア
ミノ酸はCys (システィン)であるが、このアミノ
酸は上記方法では検出できない。
In order to clarify the amino acid sequence of the carboxy-terminal side of the purified protein, carboxypeptidase Y was applied to the purified protein at varying times.
The released amino acids were quantified (carbo-Trp-Lys-Thr-Ph by carboxypeptidase method).
It was expected to be e-Thr-5er- (carboxy terminal). The carboxy-terminal amino acid of DHFR-G IF is Cys (cystine), but this amino acid cannot be detected by the above method.

Ellmanの方法を用いて、5,5ξジチオビス2−
ニトロ安息香酸(DTNB)を用いて、精製タンパク質
中のチオール(SH基)の含料を測定したところ、2.
6〜2.9残基/酵素分子という値が得られた。pTP
70−IDHFRについて同様に測定したところ、0.
8〜1.0残基/酵素分子という値であった。
Using the method of Ellman, 5,5ξdithiobis2-
When the content of thiol (SH group) in purified protein was measured using nitrobenzoic acid (DTNB), 2.
Values of 6-2.9 residues/enzyme molecule were obtained. pTP
70-IDHFR was similarly measured and found to be 0.
The value was 8 to 1.0 residues/enzyme molecule.

以上の結果は、pTPGIF2を有する大腸菌から精製
して得られたDHFR活性を有するタンパク質が、DH
FR−GIFであることを示している。
The above results indicate that the protein with DHFR activity obtained by purification from E. coli harboring pTPGIF2 is
This indicates that it is FR-GIF.

発明の効果 上記のように、新規組換えプラスミドpTPGIF2は
、DHFR−GIFを暗号化しており。
Effects of the Invention As described above, the novel recombinant plasmid pTPGIF2 encodes DHFR-GIF.

つp’rpclF2を有する大腸菌は、DHFR−GI
Fを可溶性の状態で大量に蓄積生産する。さらに、生成
したDHFR−G IFは、DHFR酵素活性を示し、
精製を容易に行うことができる。
Escherichia coli with p'rpclF2 has DHFR-GI
Accumulates and produces large amounts of F in a soluble state. Furthermore, the generated DHFR-G IF exhibits DHFR enzyme activity,
Purification can be easily performed.

このような性質を有することから2本発明の新規組換え
プラスミドpTPGIF2およびそれを有する大腸菌は
、DHFR−GIFの生産、およびそれを利用したGI
Fの生産に有益である。
Because of these properties, the novel recombinant plasmid pTPGIF2 of the present invention and E. coli containing it are suitable for the production of DHFR-GIF and for GI using it.
It is beneficial for the production of F.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、pTPGIF2の全塩基配列を示した図であ
り、2本鎖DNAのうち片方のDNA鎖配列だけを、5
′末端から3′末端の方向に記述している。図中符号は
、核酸塩基を表し、Aはアデニンを、Cはシトシンを、
Gはグアニンを、Tはチミンを示している。図中番号は
、p’rpcrF2に2箇所存在する制限酵素C1al
切断認識部位のうち制限酵素HindIII切断部位に
近い方のC1al切断認識部位の、5’ −ATCGA
T−3’ 、の最初の”A”を1番として数えたR−G
 I Fを暗号化する部分の塩基配列およびタンパク質
のアミノ酸配列を示す図である。図中符号は、核酸塩基
およびアミノ酸を表し、Aはアデニンを、Cはシトシン
を、Gはグアニンを、Tはチミンを、Alaはアラニン
を、Argはアルギニンを、Asnはアスパラギンを、
Aspはアスパラギン酸を、Cysはシスティンを、G
lnはグルタミンを、Gluはグルタミン酸を、Gly
はグリシンを、Hisはヒスチジンを、Ileはイソロ
イシンを、Leuはロイシンを、Lysはリジンを、M
etはメチオニンを、Pheはフェニルアラニンを、P
roはプロリンを、Serはセリンを、Thrはトレオ
ニンを、Trpはトリプトファンを、Tyrはチロシン
を、Valはバリンを示している。図中番号は、1番目
のアミノ酸であるメチオニンを暗号化するATGコドン
の”A”を1番として数えた番号を示している。 ATCGATGTTA ACAGATCTAAACTT
CCATGA TCAGTCTGATllo     
  120 CATGGAAAACGCCATGCCGTAACGC
AACACCTTAAATAAATCAATCGGTC
GTCCGTTGCCACCGGGTACG GACG
ATCGCGTCGCGGCGTG TGGTGACG
TAGTTTATGAACAGTTCTTGCCGCT
TAACTAA CTAACTCCGG AAAAGG
AGGATGCGGCGTTA GCGGTAGATC
GCGTTATCGGGGAACCTGCCTGCCG
ATCTCGCCTGGTTTACCCGTGATTA
 TGGGCCGCCA TACCTGGGAAAGG
ACGCAAA AATATTATCCTCAGCAG
TCACGACGCAGAA GTGGAAGGCGA
CTGGGAATCGGTATTCAGCCACAGC
TATG AGTTCGAAATAAACTTCTTC
TGGAAAACCTATGATCCTCT ACGC
CGGACG660      67C TGCGGTTGCT  GGCGCCTATハフ10
      72C CTCGCCACTT CGGGCTCAT(1第 1  図  の   1 CTTGCGGCGG CGGTGCTCAA CGG
CCTCAACAATGCAGGAG TCGCATA
AGG GAGAGCGTCGTCAACCCAGT 
CAGCTCCTTCCGGTGGGCGCGCACT
TATGA CTGTCTTCTT TATCATGC
AAlolo      1020     1030
AGCGCTCTGG GTCATTTTCG GCG
AGGACCGTGATCGGCCT GTCGCTT
GCG GTATTCGGAAlllo      1
120     1130GCCTTCGTCA CT
GGTCCCGCCACCAAACGTTATCGCC
GGCATGGCGGCCG ACGCGCTGGGC
TACTACTGG GCTGCTTCCTACCGA
TGCCCTTGAGAGCCTGGGGCATGAC
TATCGTCGCCCTCGTAGGACAGGTG
CCGGCCTTTCGCTGG AGCGCGACG
ATCTTGCACGCCCTCGCTCAATTCG
GCGAGA AGCAGGCCATCTACGTCT
TG CTGGCGTTCGCGACGCGAGG C
TGGATGGCCTTCCCCATTAGGCATC
GGGA TGCCCGCGTT GCAGGCCAT
GCGACCATCAG GGACAGCTTCAAG
GATCGCTCTTCGATCACTGGACCGC
TG ATCGTCACGGAGCACATGGA A
CGGGTTGGCATGGATTGTA 1CTGC
CTCCCCGCGTTGCGTCGCGGTGCAT
G・GAATGGAAGCCGGCGGCACCTCG
CTAACGG。 第  1  図 TGATTCTTCT CGCTTCCGGCCTGT
CCAGGCAGGTAGATGACGCGGCTCT
T ACCAGCCTAACGATTTATGCCGC
CTCGGCGGGCGCCGCCCTATACCTT
GTGAGCCGGGCCACCTCGACCTATT
CACCACT CCAAGAATTGの   2 CAGAACATAT CCATCGCGTCCGCC
ATCTCCCTCGGGCAGCGTTGGGTCC
T GGCCACGGGTCGTTGAGGACCCG
GCTAGGCTGGCGGGGTTGAATCACC
GA TACGCGAGCG AACGTGAAGCT
GCGACCTGA GCAACAACAT GAAT
GGTCTTGTCTGGAAACGCGGAAGTC
A GCGCCCTGCAATCGCAGGAT GC
TGCTGGCT ACCCTGTGGAGAAGCG
CTGG CATTGACCCT GAGTGATTT
TAGCAGCCGCA CGCGGCGCATGCG
CATGATCGTGCTCCTGTGCCTTACT
GG TTAGCAGAATGACTGCTGCT G
CAAAACGTCCGGTTTCCGT GTTTC
GTAAACCATTATGTT CCGGATCTG
CACACCTACAT CTGTATTAACTCT
CTGGTCCCGCCGCATCCCAGGGCGC
GT CAGCGGGTGT・GTCACGTAGCG
ATAGCGGAGGCAGATTGTA CTGAG
AGTGCGCGTAAGGAG AAAATACCG
CGACTCGCTGCGCTCGGTCGTAAAG
GCGGTA ATACGGTTATACATGTGA
GCAAAAGGCCAGTTGCTGGCGT TT
TTCCATAGTCGACGCTCA AGTCAG
AGGT 1TGGCGGGTGT CGGGGCGC
AG CCATGACCCATGTATACTGG C
TTAACTATG CGGCATCAGAACCAT
ATGCG GTGTGAAATA CCGCACAG
ATATCAGGCGCT CTTCCGCTTCCT
CGCTCACTTCGGCTGCGG CGAGCG
GTAT CAGCTCACTCCCACAGAATC
AGGGGATAACGCAGGAAAGACAAAA
GGCCA GGAACCGTAA AAAGGCCG
CGGCTCCGCCCCCCTGACGAGCATC
ACAAAAAGGCGAAACCCGACAGGAC
TA TAAAGATACCすOn^       つ
On八      〇nn凸toou−−totu CCGCTTACCG GATACCTGTC+TTC
TCAATGCTCACGCTGTA +CCAAGC
TGGG CTGTGTGCAC+TTATCCGGT
A ACTATCGTCT゛GCCACTGGCA G
CAGCCACTG 1第 乙OOυ       乙o’tu        乙
ブVすCGCCTTTCTCCCTTCGGGAA G
CGTGGCGCTGGTATCTCAG TTCGG
TGTAG GTCGTTCGCTGAACCCCCC
G TTCAGCCCGA CCGCTGCGCC丁G
AGTCCAACCCGGTAAGACACGACTT
ATCGTAACAGGAT TAGCAGAGCG 
AGGTATGTAGAAGTGGTGGCCTAAC
TACGG CTACACTAGAl   図  の 
  4 386一 AGGACAGTAT TTGGTATCTG CGC
TCTGCTGAAGAGTTGGT AGCTCTT
GAT CCGGCAAACAGTTT丁TTTGT 
 TTGCAAGCAG  CAGAI″TACGCA
AGCCAGTTA CCTTCGGAAAAACCA
CCGCT GGTAGCGGTGGCAGAAAAA
A AGGATCTCAAGACGCTCAGT GG
AACGAAAAATCAAAAAGG ATCTTC
ACCTAATCAATCTA AAGTATATAT
TTAATCAGTG AGGCACCTATAGTT
GCCTGA CTCCCCGTCGCATGGTTA
TG GCAGCACTGCrGATGCTTTTCT
GTGACTGGT 1TGTATGCGGCGACC
GAGTTG +CGCGCCACAT AGCAGA
ACTT“CGGGGCGAAA ACTCTCAAG
GノTAACCCACTCGTGCACCCAA 1C
GTTTCTGGG TGAGCAAAAA +TAA
GGGCGACACGGAAATGT −AA1八  
    AAり八 へTAATTCTCT  TACTGTCATG  C
CATCCGTAAEAGTACTCAA CCAAG
TCATT CTGAGAATAGCTCTTGCCC
G GCGTCAACACGGGATAATACrAA
AAGTGCT CATCATTGGA AAACGT
TCTTへTCTTACCGCTGTTGAGATCC
AGTTCGATG:TGATCTTCA GCATC
TTTTA CTTTCACCAG:AGGAAGGC
A AAATGCCGCA AAAAAGGGAArG
AATACTCA TACTCTTCCT TTTTC
AATATAA″)(I         AAArI
         AAr:、n(+LIト晶%JL+
礪・1ト一一二、υTATTGAAGCA TTTAT
CAGGG ”ATGTATTTAG AAAAATA
AAC7AAGTGCCACCTGACGTCTAA 
1AAAAATAGGCGTATCACGAG (CC
GCTCACAA TTAATTCTTG 7TCAT
AAGCTT 第  1
Figure 1 is a diagram showing the entire base sequence of pTPGIF2, in which only one DNA strand sequence of the double-stranded DNA is
It is written in the direction from the 'end to the 3' end. The symbols in the figure represent nucleic acid bases, A is adenine, C is cytosine,
G represents guanine and T represents thymine. The numbers in the figure indicate restriction enzyme C1al, which exists in two places in p'rpcrF2.
5'-ATCGA of the C1al cleavage recognition site that is closer to the restriction enzyme HindIII cleavage recognition site.
T-3', R-G counting the first "A" as number 1
FIG. 2 is a diagram showing the base sequence of the portion encoding IF and the amino acid sequence of the protein. The symbols in the figure represent nucleobases and amino acids, A for adenine, C for cytosine, G for guanine, T for thymine, Ala for alanine, Arg for arginine, Asn for asparagine,
Asp stands for aspartic acid, Cys stands for cysteine, G
ln is glutamine, Glu is glutamic acid, Gly
is glycine, His is histidine, Ile is isoleucine, Leu is leucine, Lys is lysine, M
et is methionine, Phe is phenylalanine, P
ro represents proline, Ser represents serine, Thr represents threonine, Trp represents tryptophan, Tyr represents tyrosine, and Val represents valine. The numbers in the figure indicate the numbers starting from "A" of the ATG codon that encodes the first amino acid, methionine. ATCGATGTTA ACAGATCTAAAACTT
CCATGA TCAGTCTGATllo
120 CATGGAAAACGCCATGCCGTAACGC
AACACCTTAAATAAATCAAATCGGTC
GTCCGTTGCCACCGGGTACG GACG
ATCGCGTCGCGGCGTGTGGTGACG
TAGTTTATGAACAGTTCTTGCCGCT
TAACTAA CTAACTCCGG AAAAGG
AGGATGCGGCGTTA GCGGTAGATC
GCGTTATCGGGGAACCTGCCTGCCG
ATCTCGCCTGGTTTACCCGTGATTA
TGGGCCGCCA TACCTGGGAAAGG
ACGCAAAAATATTATCCTCAGCAG
TCACGACGCAGAA GTGGAAGGGCGA
CTGGGAATCGGTATTCAGCCACAGC
TATG AGTTCGAAATAAACTTC
TGGAAAACCTATGATCCTCTACGC
CGGACG660 67C TGCGGTTGCT GGCGCCTA T Huff 10
72C CTCGCCACTT CGGGCTCAT (1 Fig. 1) 1 CTTGCGGCGG CGGTGCTCAA CGG
CCTCAACAATGCAGGAGTCGCATA
AGG GAGAGCGTCGTCAACCCAGT
CAGCTCCTTCCGGTGGGCGCACT
TATGA CTGTCTTCTT TATCATGC
AAlolo 1020 1030
AGCGCTCTGG GTCATTTTCG GCG
AGGACCGTGATCGGCCT GTCGCTT
GCG GTATTCGGAAlllo 1
120 1130GCCTTCGTCA CT
GGTCCCGCCACCAAACGTTATCGCC
GGCATGGCGGCCG ACGCGCTGGGGC
TACTACTGG GCTGCTTCCTACCGA
TGCCCTTGAGAGCCTGGGGCATGAC
TATCGTCGCCCTCGTAGGACAGGTG
CCGGCCTTTCGCTGG AGCGCGACG
ATCTTGCACGCCCTCGCTCAATTCG
GCGAGA AGCAGGCCATCTACGTCT
TG CTGGCGTTCGCGACGCGAGG C
TGGATGGCCTTCCCCCATTAGGCATC
GGGA TGCCCGCGTT GCAGGCCAT
GCGACCATCAG GGACAGCTTCAAG
GATCGCTCTTCGATCACTGGACCGC
TG ATCGTCACGGAGCACATGGA A
CGGGTTGGCATGGATTGTA 1CTGC
CTCCCCGCGTTGCGTCGCGGTGCAT
G.GAATGGAAGCCGGCGGCACCTCG
CTAACGG. Figure 1 TGATTCTTCT CGCTTCCGGCCTGT
CCAGGCAGGTAGATGACGCGGCTCT
T ACCAGCCTAACGATTTATGCCGC
CTCGGCGGGGCGCCGCCCTATAACCTT
GTGAGCCGGGCCACCTCGACCTATT
CACCACT CCAAGAATTG 2 CAGAACATAT CCATCGCGTCCGCC
ATCTCCCTCGGGCAGCGTTGGGTCC
T GGCCACGGGTCGTTGAGGACCCG
GCTAGGCTGGCGGGGTTGAATCACC
GA TACGCGAGCG AACGTGAAGCT
GCGACCTGA GCAACAACAT GAAT
GGTCTTGTCTGGAAACGCGGAAGTC
A GCGCCCTGCAATCGCAGGAT GC
TGCTGGCT ACCCTGTGGAGAAGCG
CTGG CATTGACCCT GAGTGATTT
TAGCAGCCGCA CGCGGCGCATGCG
CATGATCGTGCTCCTGTGCCTTACT
GG TTAGCAGAATGACTGCTGCT G
CAAAACGTCCGGTTTCCGT GTTTC
GTAAACCATTATGTT CCGGATCTG
CACACCTACAT CTGTATTAACTCT
CTGGTCCCGCCGCATCCCAGGGCGC
GT CAGCGGGTGT・GTCACGTAGCG
ATAGCGGAGGCAGATTGTACTGAG
AGTGCGCGTAAGGAGAAAATACCG
CGACTCGCTGCGCTCGGTCGTAAAG
GCGGTAATACGGTTACATGTGA
GCAAAAAGGCCAGTTGCTGGCGT TT
TTCCATAGTCGACGCTCAAGTCAG
AGGT 1TGGCGGGTGT CGGGGCGC
AG CCATGACCCATGTATACTGG C
TTAACTATG CGGCATCAGAACCAT
ATGCG GTGTGAAAATA CCGCACAG
ATATCAGGCGCTCTTCCGCTTCCT
CGCTCACTTCGGCTGCGG CGAGCG
GTAT CAGCTCACTCCCACAGAATC
AGGGGATAACGCAGGAAAGACAAA
GGCCA GGAACCGTAA AAAGGCCG
CGGCTCCGCCCCCCTGACGAGCATC
ACAAAAAAGGCGAAAACCCGACAGGAC
TA TAAAGATACC On^ Tsu On eight 〇nn convex toou--totu CCGCTTACCG GATACCTGTC+TTC
TCAATGCTCACGCTGTA +CCAAGC
TGGG CTGTGTGCAC+TTATCCGGT
A ACTATCGTCT゛GCCACTGGCA G
CAGCCACTG 1st OOOυ O'tu O'tu VsuCGCCTTTCTCCCTTCGGGAA G
CGTGGCGCTGGTATCTCAG TTCGG
TGTAG GTCGTTCGCTGAACCCCCC
G TTCAGCCCGA CCGCTGCGCC ding G
AGTCCAAACCCGGTAAGACACGACTT
ATCGTAACAGGAT TAGCAGAGCG
AGGTATGTAGAAGTGGTGGCCTAAAC
TACGG CTACACTAGAL Figure
4 386-AGGACAGTAT TTGGTATCTG CGC
TCTGCTGAAGAGTTGGT AGCTCTT
GAT CCGGCAAACAGTTT
TTGCAAGCAG CAGAI″TACGCA
AGCCAGTTTA CCTTCGGAAAAAACCA
CCGCT GGTAGCGGTGGCAGAAAAAA
A AGGATCTCAAAGACGCTCAGTGG
AACGAAAAATCAAAAAGG ATCTTC
ACCTAATCAATCTAAAGTATAATAT
TTAATCAGTGAGGCACCTATAGTT
GCCTGA CTCCCCGTCGCATGGTTA
TG GCAGCACTGCrGATGCTTTTTCT
GTGACTGGT 1TGTATGCGGCGACC
GAGTTG +CGCGCCACAT AGCAGA
ACTT “CGGGGCGAAA ACTCTCAAG
GNOTAACCCACTCGTGCACCCAA 1C
GTTTCTGGG TGAGCAAAAAA+TAA
GGGCGACACGGAAATGT -AA18
AA Rihachi TAATTCTCT TACTGTCATG C
CATCCGTAAEAGTACTCAA CCAAG
TCATT CTGAGAATAGCTCTTGCCC
G GCGTCAAACACGGGATAATACrAA
AAGTGCT CATCATTGGA AAACGT
To TCTTTCTTACCGCTGTTGAGATCC
AGTTCGATG:TGATCTTCA GCATC
TTTTA CTTTCACCAG:AGGAAGGC
AAAATGCCGCAAAAAAAGGGAArG
AATACTCA TACTCTTCCT TTTTC
AATATAA'') (IAAArI
AAr:,n(+LITocrystal%JL+
礪 1to112, υTATTGAAGCA TTTAT
CAGGG ”ATGTATTTAG AAAATA
AAC7AAGTGCACCTGACGTCTAA
1AAAAATAGGCGTATCACGAG (CC
GCTCACAA TTAATTCTTG 7TCAT
AAGCTT 1st

Claims (1)

【特許請求の範囲】 1、大腸菌において安定に複製され、宿主である大腸菌
にトリメトプリム耐性およびアンピシリン耐性を与える
ことができ、トリメトプリム耐性を付与する遺伝子が大
腸菌のジヒドロ葉酸還元酵素遺伝子の3′末端側の配列
が改変されたことによりジヒドロ葉酸還元酵素−ソマト
スタチン融合タンパク質を暗号化し、4660塩基対の
大きさを有し、第1図において示されるDNA配列を有
する新規組換えプラスミドpTPGIF2。 2、特許請求範囲第1項記載の新規組換えプラスミドp
TPGIF2を含有するE.coliC600株。
[Scope of Claims] 1. The gene that confers trimethoprim resistance and ampicillin resistance can be stably replicated in E. coli and can confer trimethoprim resistance and ampicillin resistance to the host E. coli, and the gene conferring trimethoprim resistance is located at the 3' end of the E. coli dihydrofolate reductase gene. A novel recombinant plasmid pTPGIF2 encodes a dihydrofolate reductase-somatostatin fusion protein by modifying the sequence thereof, has a size of 4660 base pairs, and has the DNA sequence shown in FIG. 2. Novel recombinant plasmid p described in claim 1
E. containing TPGIF2. coli strain C600.
JP30215487A 1987-11-30 1987-11-30 Novel recombinant plasmid ptpgif2 Granted JPH01144977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30215487A JPH01144977A (en) 1987-11-30 1987-11-30 Novel recombinant plasmid ptpgif2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30215487A JPH01144977A (en) 1987-11-30 1987-11-30 Novel recombinant plasmid ptpgif2

Publications (2)

Publication Number Publication Date
JPH01144977A true JPH01144977A (en) 1989-06-07
JPH0371112B2 JPH0371112B2 (en) 1991-11-12

Family

ID=17905561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30215487A Granted JPH01144977A (en) 1987-11-30 1987-11-30 Novel recombinant plasmid ptpgif2

Country Status (1)

Country Link
JP (1) JPH01144977A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645631A2 (en) * 1998-05-01 2006-04-12 Chiron Corporation Neisseria antigens and compositions
US8563006B2 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10512681B2 (en) 2010-09-10 2019-12-24 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10899802B2 (en) 2013-09-08 2021-01-26 Pfizer Inc. Neisseria meningitidis compositions and methods thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249198B2 (en) 1998-05-01 2016-02-02 Glaxosmithkline Biologicals Sa Neisseria meningitidis antigens and compositions
EP1645631B1 (en) * 1998-05-01 2007-10-24 Novartis Vaccines and Diagnostics, Inc. Neisseria antigens and compositions
US7576176B1 (en) 1998-05-01 2009-08-18 Novartis Vaccines And Diagnostics, Inc. Neisseria meningitidis antigens and compositions
US7988979B2 (en) 1998-05-01 2011-08-02 J. Craig Venter Institute, Inc. Neisseria meningitidis antigens and compositions
US8524251B2 (en) 1998-05-01 2013-09-03 J. Craig Venter Institute, Inc. Neisseria meningitidis antigens and compositions
EP1645631A2 (en) * 1998-05-01 2006-04-12 Chiron Corporation Neisseria antigens and compositions
US9266929B2 (en) 1998-05-01 2016-02-23 Glaxosmithkline Biologicals Sa Neisseria meningitidis antigens and compositions
US9249196B2 (en) 1998-05-01 2016-02-02 Glaxosmithkline Biologicals Sa Neisseria meningitidis antigens and compositions
US9139621B2 (en) 1998-05-01 2015-09-22 Glaxosmithkline Biologicals Sa Neisseria meningitidis antigens and compositions
US8563006B2 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US8563007B1 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US11116829B2 (en) 2001-10-11 2021-09-14 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US10300122B2 (en) 2001-10-11 2019-05-28 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US11077180B2 (en) 2010-09-10 2021-08-03 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10512681B2 (en) 2010-09-10 2019-12-24 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10829521B2 (en) 2012-03-09 2020-11-10 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10550159B2 (en) 2012-03-09 2020-02-04 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US11472850B2 (en) 2012-03-09 2022-10-18 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US11680087B2 (en) 2013-09-08 2023-06-20 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10899802B2 (en) 2013-09-08 2021-01-26 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10813989B2 (en) 2017-01-31 2020-10-27 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10543267B2 (en) 2017-01-31 2020-01-28 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US11730800B2 (en) 2017-01-31 2023-08-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof

Also Published As

Publication number Publication date
JPH0371112B2 (en) 1991-11-12

Similar Documents

Publication Publication Date Title
JP2803089B2 (en) Polypeptide and method for producing the same
JP2787585B2 (en) Method for producing human EGF
JPH01144977A (en) Novel recombinant plasmid ptpgif2
JPH1175876A (en) Production of new microbial transglutaminase
CN112105635A (en) Leader sequences for higher expression of recombinant proteins
JP4870574B2 (en) Peptide and protein processing
JPH0371111B2 (en)
JPH0349559B2 (en)
EP0975742A1 (en) Aminopeptidase derived from bacillus licheniformis and process for preparation of natural type proteins
KR100477062B1 (en) Novel aminopeptidase derived from Bacilus licheniformis, gene coding the aminopeptidase, expression vector containing the gene, transformant transfected with the expression vector and manufacturing method thereof
JP2023528996A (en) Insulin Aspart Derivatives and Methods for Producing and Using the Same
JPH04117284A (en) Dihydrofolate reductase-antiallergic pentapeptide fused protein
JPH0371113B2 (en)
JP3007919B2 (en) Fusion protein of dihydrofolate reductase-antiallergic pentapeptide multimer (II)
JPH0355112B2 (en)
JPH0355111B2 (en)
JPS6387981A (en) Novel recombinant plasmid pbsfolek1
JPH01252286A (en) Bradykinin
JPH02142476A (en) Novel recombinant plasmid pgrfm44-6
JP2007037498A (en) Method for producing protein
JPH0355108B2 (en)
JPH0355109B2 (en)
JPH02142481A (en) Novel recombinant plasmid pddm1
JPH0354556B2 (en)
JPH0355110B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term