JPH01140773A - Insulated-gate transistor - Google Patents

Insulated-gate transistor

Info

Publication number
JPH01140773A
JPH01140773A JP62297558A JP29755887A JPH01140773A JP H01140773 A JPH01140773 A JP H01140773A JP 62297558 A JP62297558 A JP 62297558A JP 29755887 A JP29755887 A JP 29755887A JP H01140773 A JPH01140773 A JP H01140773A
Authority
JP
Japan
Prior art keywords
region
source
gate
base
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62297558A
Other languages
Japanese (ja)
Inventor
Isao Yoshida
功 吉田
Masatoshi Morikawa
正敏 森川
Takeaki Okabe
岡部 健明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297558A priority Critical patent/JPH01140773A/en
Publication of JPH01140773A publication Critical patent/JPH01140773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To miniaturize an element and to perform a reduction in its ON resistance by disposing a source region in a base region surrounded by gate electrodes in a connecting shape for connecting between the opposite gate electrodes, and so disposing a base contact region as to be disposed adjacently to the source region. CONSTITUTION:A source region 4 surrounded by the gate electrodes 5 of a MOSFET is disposed in a connecting shape for connecting between the opposite electrodes 5. Accordingly, a source contact region disposed to perpendicularly cross the region 4 is effectively connected, even if its contact area is. reduced, to the region 4 and a base surface region 3'. Thus, the contact area can be reduced, the active region of the MOSFET can be increased, thereby performing a reduction in its ON resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は電力用絶縁ゲート形トランジスタに係り、特に
微細化によるオン抵抗の低減と耐圧、破壊強度とが両立
することに好適な構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to an insulated gate transistor for power use, and particularly to a structure suitable for reducing on-resistance through miniaturization and achieving both high breakdown voltage and breakdown strength.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭60−254658号に記載のよ
う國、縦形構造のMOSFETのソース電極と接続ちれ
るソース領域およびベース領域が周期的に形成され、該
ソース領域が島状になるように配置でれていた。
In the conventional device, as described in Japanese Unexamined Patent Publication No. 60-254658, a source region and a base region connected to the source electrode of a vertical MOSFET are formed periodically, and the source region is shaped like an island. It was placed in.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、ソース電極とソース領域およびベース
領域とのコンタクト面積の縮小について配慮されておら
ず、MOSFETの低オン抵抗化に関して問題があった
The above-mentioned conventional technology does not take into consideration the reduction of the contact area between the source electrode and the source region and the base region, and there is a problem in reducing the on-resistance of the MOSFET.

本発明の目的は、MOSFETの耐圧と破壊強度を維持
し之ままで、素子の微細化を図ジ、オン抵抗の低減を達
成することKある。
An object of the present invention is to achieve miniaturization of elements and reduction of on-resistance while maintaining the breakdown voltage and breakdown strength of MOSFETs.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ソース電極とソース領域およびベース領域
とのコンタクト面積が縮小できるように、ゲート電極で
囲まれたベース領域内のソース領域を対向するゲート電
極間をつなぐ形で配置し、そのソース領域に隣接するよ
うにベースコンタクト唄域を配置することにより、達成
される。
The above purpose is to arrange the source region in the base region surrounded by the gate electrodes so as to connect the opposing gate electrodes, so that the contact area between the source electrode and the source region and base region can be reduced. This is achieved by arranging the base contact singing area adjacent to.

〔作用〕[Effect]

MOSFETのゲート電極で回置れたソース領域は、対
向するゲート成極間をつなぐ形で配置さnるので、その
ソース領域に直交するように配置されたソースコンタク
ト領域は、コンタクト面積が数μm以下に縮小さルても
確実にノース領域およびベース表面領域と接続される。
The source region, which is rotated by the gate electrode of the MOSFET, is arranged to connect the opposing gate electrodes, so the source contact region, which is arranged orthogonally to the source region, has a contact area of several μm. Even if the area is reduced below, it is reliably connected to the north area and the base surface area.

このことは、本発明の構造を採用することにより、コン
タクト面、  積の縮小が図れることになる。従ってM
OSFETのアクティブ領域を増大させることができ、
オン抵抗の低減が達成できる。
This means that by employing the structure of the present invention, the contact surface and area can be reduced. Therefore M
The active area of the OSFET can be increased,
A reduction in on-resistance can be achieved.

〔実施例〕 以下、本発明の一実施例を第1図によシ説明する。第1
図は縦形パワーMO8FETの主要部の平面図であり、
第2図はそのA−A’線の断面構造図であるう1は高濃
度n形半導体基板、2はn形エピタキシャル層で抵抗率
が0,8Ω・鋸、4嘔が10μm、3はp形ベース領域
で表面不純物濃度がI X 10 ”cm−”r深さが
1.5μm、4はn形ノース領域で表面不純物濃度がI
 X 10”tm−3,深さが0.5μm、5は多結晶
シリコンのゲート電極。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a plan view of the main parts of a vertical power MO8FET,
Figure 2 is a cross-sectional structural diagram taken along line A-A'. 1 is a high-concentration n-type semiconductor substrate, 2 is an n-type epitaxial layer with a resistivity of 0.8Ω, 4 is 10 μm, and 3 is a p-type semiconductor substrate. 4 is an n-type north region with a surface impurity concentration of I x 10 "cm-" r depth of 1.5 μm, and a surface impurity concentration of I in the n-type base region.
X 10"tm-3, depth 0.5 μm, 5 is a polycrystalline silicon gate electrode.

6はゲート酸化膜で厚さが351m、7は保護用絶縁膜
、8はアルミニウムのソース電極、9は金属のドレイン
wt極である。ここで、ゲート電極は、平面形状がスト
ライプ形であり、その長さLnが6μm、−f:の間隔
Lsが2μmである。本実施例では3のベース領域内に
配fillnる4のソース領域の平面パターンが第1図
に示すごとく、対向するゲート電極間をつなぐ形で配置
ちれ、3′のベース領域の表面部値域が、上記ソース領
域に隣接して配置され、これらの領域が交互に繰り返さ
れた配置となっている。また、これらの領域とソース電
極とは、図のごとく接続δれ、オーミックコンタクトが
とられている。ゲート’を種下に存在するベース領域と
ソース領域との表面部での長さの差がチャネル長であり
、この場合1μmである。
6 is a gate oxide film with a thickness of 351 m, 7 is a protective insulating film, 8 is an aluminum source electrode, and 9 is a metal drain wt electrode. Here, the gate electrode has a striped planar shape, a length Ln of 6 μm, and an interval Ls of −f: of 2 μm. In this embodiment, the planar pattern of the source region 4 filled in the base region 3 is arranged so as to connect the opposing gate electrodes, as shown in FIG. are arranged adjacent to the source region, and these regions are arranged alternately. Further, these regions and the source electrode are connected δ as shown in the figure, and ohmic contact is established. The difference in length at the surface portion of the base region and the source region which exist under the gate' is the channel length, and in this case is 1 μm.

本実施例によれば+Lsのゲート電極間隔が2μmと狭
いにもかかわらず、3’、4のベース領域、ソース領域
と8のソース電極とのオーミックコンタクトが歩留シ艮
く形成された。その結果、4酎角のバ’7−M08FE
T の特性は、耐圧70Vにおいて、オン抵抗が15m
Ω、安全動作領域が50Vで5A以上となった。従来の
ゲート電極間隔が6μmの同一チップサイズの素子に比
べて。
According to this example, although the distance between the +Ls gate electrodes was as narrow as 2 μm, ohmic contacts between the base and source regions 3' and 4 and the source electrode 8 were formed with excellent yield. As a result, 4 chuukaku bar'7-M08FE
The characteristics of T are that the on-resistance is 15m at a withstand voltage of 70V.
Ω, the safe operating area was 50V and 5A or more. Compared to a conventional device of the same chip size with a gate electrode spacing of 6 μm.

本実施例の素子は、耐圧、安全動作領域(破壊強度)を
維持したままで、オン抵抗が約30%低減できた。
The device of this example was able to reduce the on-resistance by about 30% while maintaining the withstand voltage and safe operating range (breaking strength).

上記実施例では、1の牛導体基板が、n形高濃度層であ
ったが、これをp形高濃度層とすることによシ絶縁ゲー
ト形バイポーラトランジスタとして動作することもでき
た。
In the above embodiment, the first conductor substrate was an n-type high concentration layer, but by making it a p-type high concentration layer, it could also operate as an insulated gate type bipolar transistor.

第3図は本発明の実施例を示す縦形パワーMO8FET
の主要な製造工程図である。
Figure 3 is a vertical power MO8FET showing an embodiment of the present invention.
This is a diagram of the main manufacturing process.

(a)  n形エピタキシャル層上にゲート酸化膜6を
35nmの厚δで形成し、多結晶シリコン5t−厚さ0
.4μm堆積し、高濃度のりん不純物をドープし、表面
不純物濃度を約lXl0”tlll−3とする。
(a) A gate oxide film 6 is formed on the n-type epitaxial layer to a thickness δ of 35 nm, and a polycrystalline silicon 5t-thickness 0 is formed.
.. It is deposited to a thickness of 4 .mu.m and doped with a high concentration of phosphorus impurity to give a surface impurity concentration of about 1X10''tll-3.

しかる後、ジんガラス絶縁膜7を厚さ5 Q Q nm
を堆積する。
After that, the resin glass insulating film 7 is formed to a thickness of 5 Q Q nm.
Deposit.

Φ)ゲート心極部を選択的に残し、絶縁膜7をマスクと
して、はう素イオン打込みを行う。このとき、多結晶シ
リコン5のゲートはオーバエッチし、絶縁PA7の端部
がひさしとなるように処理する。
Φ) Boron ion implantation is performed using the insulating film 7 as a mask, leaving the gate core portion selectively. At this time, the gate of the polycrystalline silicon 5 is over-etched so that the end of the insulation PA 7 becomes an eaves.

イオン打込み条件は、エネルギ130KeV 、打込み
量5 X 1013cm−3である。これによりベース
領域3が形成できる。矢に、ホトレジスト膜10をマス
クとして、ひ素イオン11をイオン打込みする。そのイ
オン打込み条件は、エネルギ50KeV。
The ion implantation conditions were an energy of 130 KeV and an implantation amount of 5×10 13 cm −3 . This allows the base region 3 to be formed. Arsenic ions 11 are implanted into the arrows using the photoresist film 10 as a mask. The ion implantation conditions were an energy of 50 KeV.

打込み量5 X 1016cm−3である。これにより
、ソース領域4が選択的に形成できる。
The implantation amount is 5 x 1016 cm-3. Thereby, the source region 4 can be selectively formed.

(C)  多結晶シリコンのゲート電極端部12に層目
して水蒸気醸化を行う。12の酸化膜の形成は、高濃度
のシん不純物がドーグ石れた多結晶シリコン膜が露出し
ている部分の酸化により行われる。
(C) A layer of water vapor is added to the end portion 12 of the polycrystalline silicon gate electrode. The oxide film No. 12 is formed by oxidizing the exposed portion of the polycrystalline silicon film containing a high concentration of phosphorus impurities.

この酸化工程により、4や3′の領域表面も酸化さnる
が、その膜厚は、12の部分の膜厚よりも薄い。
This oxidation process also oxidizes the surfaces of regions 4 and 3', but the film thickness thereof is thinner than that of the region 12.

(d)  次に、全面ドライエツチング処理を行い、ソ
ース、ベースコンタクト上の酸化膜を除去する。
(d) Next, dry etching is performed on the entire surface to remove the oxide film on the source and base contacts.

この時、ゲートを電極のひさし部分13が残されて。At this time, the eaves part 13 of the gate electrode is left behind.

スペーサとなる。It becomes a spacer.

しかる後、ソース電極、ゲート取り出し電極ざらに裏面
にトンイン電極などを形成する。
After that, a tunnel-in electrode and the like are formed on the back surface of the source electrode and the gate lead-out electrode.

本製造方法の特徴は、高濃度に不純物をドープした多結
晶シリコンの選択酸化と方向性を有するドライエツチン
グ処理と金組み合わせた点にある。
The feature of this manufacturing method is that it combines selective oxidation of polycrystalline silicon doped with impurities at a high concentration, directional dry etching treatment, and gold.

その結果、ソース電極のノース及びベースコンタクト領
域がゲート電極の窓部と自己整合で形成でき1従来約3
μmは必要であったコンタクトとゲート′電極端部との
合わせ寸法を0.5μm以下にすることができた。
As a result, the north and base contact regions of the source electrode can be formed in self-alignment with the window of the gate electrode.
With regard to .mu.m, it was possible to reduce the required alignment dimension between the contact and the end of the gate electrode to 0.5 .mu.m or less.

次に本発明の他の実施例を第4図、第5図を用いて説明
するつ第4図は、横形高耐圧MO8FETの主要部平面
図、第5図は、そのA−A’線の断面図である。2はn
形エピタキシャル層、3はp形ベース領域、4はソース
領域、5はゲート電極。
Next, another embodiment of the present invention will be explained using FIGS. 4 and 5. FIG. 4 is a plan view of the main part of a horizontal high voltage MO8FET, and FIG. FIG. 2 is n
3 is a p-type base region, 4 is a source region, and 5 is a gate electrode.

6はゲート酸化膜、7は絶縁膜、8はソース電極である
。嘔らに、14はn形低#に波層でイオン打込みにより
形成した。そのりんイオン打込み条件は、エネルギ50
KeV、  ドーズ量I X 10”cm−”で必る。
6 is a gate oxide film, 7 is an insulating film, and 8 is a source electrode. Additionally, No. 14 was formed by ion implantation in an n-type low # wave layer. The phosphorus ion implantation conditions are energy 50
KeV, required at a dose of I x 10"cm-".

15はn形高濃度不純物を有するドレイン領域である。15 is a drain region having n-type high concentration impurity.

16はトンイン電極である。本実施例では、ベース領域
に形成されソース領域を有する構造で、それらの領域と
ソース電極とのコンタクトをとるために、図に示すよう
に、40ソース領域と3′のベース領域を交互に配置し
、コンタクト面積の縮小化を図った。
16 is a tunnel electrode. In this example, the structure has a source region formed in the base region, and in order to make contact between these regions and the source electrode, 40 source regions and 3' base regions are arranged alternately as shown in the figure. The contact area was also reduced.

また、第5図の高濃度ドレイン領域15をp形とするこ
とにより、絶縁ゲート形バイポーラトランジスタとして
動作させ、良好な特性を得た。
Furthermore, by making the heavily doped drain region 15 of FIG. 5 p-type, it was operated as an insulated gate bipolar transistor and good characteristics were obtained.

さらに本発明の他の実施例を第6図を用いて説明する。Furthermore, another embodiment of the present invention will be described using FIG. 6.

第6図は縦形パワーMO8FETの主要部の平面図であ
る。本実施例は、第1図に示したソース及びベース領域
の平面配置を変更したもので、ベース表面領域3′を島
状となるように、ソース領域4をゲート電極5の端部に
てりなげたものである。これにより、第1図で示したパ
ワーMO8FETに比べて、実効チャネル+[を増大す
ることができた。
FIG. 6 is a plan view of the main parts of the vertical power MO8FET. In this embodiment, the planar arrangement of the source and base regions shown in FIG. It's a great thing. This made it possible to increase the effective channel +[ compared to the power MO8FET shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Mdゲート形トランジスタのソース電
極のコンタクト面積が縮小できるので、低オン抵抗化に
関して効果が大きい。特に1本発明の製造方法は、従来
のゲート電極端とコンタクト領域とのマスク会わせ間隔
を115以下に縮小する自己整合の方法を提供するもの
であるユ
According to the present invention, since the contact area of the source electrode of the Md gate type transistor can be reduced, the effect of lowering the on-resistance is significant. In particular, the manufacturing method of the present invention provides a self-alignment method for reducing the conventional mask alignment distance between the gate electrode end and the contact region to 115 mm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一笑流例の縦形パワーMO8FETの
平面図、第2図は第1図のA−A’線断面図、第3図は
第2図に関連した製造工程図、第4図は本発明の他の実
施例の横形高耐圧MO8FETの平面図、第5図は第4
図のA−A’線断面図、第6図は本発明の他の実施例の
成形パワーMOSFETの平面図である。 1・・・半導体基板、2・・・エピタキシャル層、3・
・・ベース領域、4・・・ノース領域、5・・・ゲート
電極、6・・・ゲート絶縁膜、8・・・ノース電極、9
,16・・・ドレイン電極、10・・・ホトレジスト膜
、11・・・イオンビーム、12・・・酸化膜、13・
・・酸化膜スペーサ、14・・・低濃度ドレイン層、1
5・・・高濃度ドレイン揮S図
FIG. 1 is a plan view of a vertical power MO8FET as an example of the present invention, FIG. 2 is a sectional view taken along the line AA' in FIG. 1, FIG. 3 is a manufacturing process diagram related to FIG. 2, and FIG. The figure is a plan view of a horizontal high voltage MO8FET according to another embodiment of the present invention, and FIG.
A cross-sectional view taken along the line AA' in the figure, and FIG. 6 is a plan view of a shaped power MOSFET according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Epitaxial layer, 3...
...Base region, 4... North region, 5... Gate electrode, 6... Gate insulating film, 8... North electrode, 9
, 16... Drain electrode, 10... Photoresist film, 11... Ion beam, 12... Oxide film, 13...
...Oxide film spacer, 14...Low concentration drain layer, 1
5...High concentration drain volatilization diagram

Claims (1)

【特許請求の範囲】 1、第1導電形の半導体基板上の一部に、第2導電形の
ベース領域を有し、該ベース領域中に第1導電形のソー
ス領域を有し、上記ベース領域の周辺表面部分に存在す
る絶縁膜を介してゲート電極を有する絶縁ゲート形トラ
ンジスタにおいて、上記ゲート電極で囲まれたベース領
域内のソース領域が対向するゲート電極間をつなぐ形で
配置され、該ソース領域とそれに隣接した上記ベース領
域の表面部領域とが交互に配置されてソース電極と接続
されていることを特徴とする絶縁ゲート形トランジスタ
。 2、ゲート電極間の間隔がゲート電極の長さに比べて小
さいことを特徴とする特許請求の範囲第1項記載の絶縁
ゲート形トランジスタ。
[Claims] 1. A base region of a second conductivity type is provided in a portion of a semiconductor substrate of a first conductivity type, a source region of a first conductivity type is provided in the base region, and a source region of a first conductivity type is provided in the base region; In an insulated gate type transistor having a gate electrode via an insulating film existing on a peripheral surface portion of the region, a source region in a base region surrounded by the gate electrode is arranged to connect opposing gate electrodes, and An insulated gate transistor characterized in that source regions and surface regions of the base region adjacent thereto are alternately arranged and connected to a source electrode. 2. The insulated gate transistor according to claim 1, wherein the distance between the gate electrodes is smaller than the length of the gate electrodes.
JP62297558A 1987-11-27 1987-11-27 Insulated-gate transistor Pending JPH01140773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297558A JPH01140773A (en) 1987-11-27 1987-11-27 Insulated-gate transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297558A JPH01140773A (en) 1987-11-27 1987-11-27 Insulated-gate transistor

Publications (1)

Publication Number Publication Date
JPH01140773A true JPH01140773A (en) 1989-06-01

Family

ID=17848104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297558A Pending JPH01140773A (en) 1987-11-27 1987-11-27 Insulated-gate transistor

Country Status (1)

Country Link
JP (1) JPH01140773A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848430A2 (en) * 1996-12-12 1998-06-17 Westinghouse Brake And Signal Holdings Limited Insulated gate bipolar transistor
FR2784231A1 (en) * 1998-06-26 2000-04-07 Bosch Gmbh Robert MOSFET COMPONENT
US6215138B1 (en) 1998-04-16 2001-04-10 Nec Corporation Semiconductor device and its fabrication method
US6452222B1 (en) 1998-12-11 2002-09-17 Nec Corporation MIS type semiconductor device and method for manufacturing the same
WO2005045938A3 (en) * 2003-11-11 2005-08-25 Koninkl Philips Electronics Nv Insulated gate field-effect transistor
JP2007250780A (en) * 2006-03-15 2007-09-27 Sharp Corp Semiconductor device
WO2011013380A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
JP2011181541A (en) * 2010-02-26 2011-09-15 Honda Motor Co Ltd Semiconductor device
CN108962988A (en) * 2017-05-19 2018-12-07 立锜科技股份有限公司 High-voltage metal oxide semiconductor element and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688363A (en) * 1979-12-20 1981-07-17 Nec Corp Field effect transistor
JPS61164263A (en) * 1985-01-17 1986-07-24 Toshiba Corp Conductive modulation type mosfet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688363A (en) * 1979-12-20 1981-07-17 Nec Corp Field effect transistor
JPS61164263A (en) * 1985-01-17 1986-07-24 Toshiba Corp Conductive modulation type mosfet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848430A2 (en) * 1996-12-12 1998-06-17 Westinghouse Brake And Signal Holdings Limited Insulated gate bipolar transistor
EP0848430A3 (en) * 1996-12-12 1999-01-13 Westinghouse Brake And Signal Holdings Limited Insulated gate bipolar transistor
US6147382A (en) * 1996-12-12 2000-11-14 Westcode Semiconductors Limited Semiconductor switching device with segmented sources
US6215138B1 (en) 1998-04-16 2001-04-10 Nec Corporation Semiconductor device and its fabrication method
FR2784231A1 (en) * 1998-06-26 2000-04-07 Bosch Gmbh Robert MOSFET COMPONENT
US6281549B1 (en) 1998-06-26 2001-08-28 Robert Bosch Gmbh MOSFET component
US6452222B1 (en) 1998-12-11 2002-09-17 Nec Corporation MIS type semiconductor device and method for manufacturing the same
WO2005045938A3 (en) * 2003-11-11 2005-08-25 Koninkl Philips Electronics Nv Insulated gate field-effect transistor
JP2007250780A (en) * 2006-03-15 2007-09-27 Sharp Corp Semiconductor device
WO2011013380A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
JP2012527114A (en) * 2009-07-31 2012-11-01 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
US9136352B2 (en) 2009-07-31 2015-09-15 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
US9312379B2 (en) 2009-07-31 2016-04-12 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
US9496370B2 (en) 2009-07-31 2016-11-15 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
JP2011181541A (en) * 2010-02-26 2011-09-15 Honda Motor Co Ltd Semiconductor device
CN108962988A (en) * 2017-05-19 2018-12-07 立锜科技股份有限公司 High-voltage metal oxide semiconductor element and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JP3280383B2 (en) MOS transistor and method of manufacturing the same
US7663186B2 (en) Semiconductor device
TW437066B (en) Mosgated device with trench structure and remote contact and process for its manufacture
CN101371343B (en) Self-aligned trench MOSFET structure and method of manufacture
US8035112B1 (en) SIC power DMOSFET with self-aligned source contact
JPH0744272B2 (en) Transistor manufacturing method
JP3114069B2 (en) Power element having double field plate structure
JPH01140773A (en) Insulated-gate transistor
JP2941823B2 (en) Semiconductor device and manufacturing method thereof
JP2003174167A (en) Semiconductor device and its manufacturing method
JPH04256367A (en) Semiconductor element
JP3489362B2 (en) Semiconductor device and manufacturing method thereof
JPH0823096A (en) Semiconductor device
JP2723868B2 (en) Semiconductor device
JP3646343B2 (en) Manufacturing method of semiconductor device
JP4246334B2 (en) Field effect transistor
JP3301271B2 (en) Horizontal power MOSFET
JP3904725B2 (en) Semiconductor device and manufacturing method thereof
TW200305286A (en) Trench DMOS transistor having improved trench structure
JPH02198174A (en) Lateral dsa-mosfet
WO1999033119A2 (en) Power semiconductor devices
JP3498415B2 (en) Semiconductor device and manufacturing method thereof
JPS6226859A (en) Vertical semiconductor device and manufacture thereof
JPS62169369A (en) Manufacture of vertical semiconductor device