JPH01139130A - Method for desalting and concentrating surface active agent solution - Google Patents

Method for desalting and concentrating surface active agent solution

Info

Publication number
JPH01139130A
JPH01139130A JP62294267A JP29426787A JPH01139130A JP H01139130 A JPH01139130 A JP H01139130A JP 62294267 A JP62294267 A JP 62294267A JP 29426787 A JP29426787 A JP 29426787A JP H01139130 A JPH01139130 A JP H01139130A
Authority
JP
Japan
Prior art keywords
surfactant
active agent
surface active
reverse osmosis
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62294267A
Other languages
Japanese (ja)
Inventor
Fumiaki Tada
多田 文昭
Motoo Koyama
小山 基雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP62294267A priority Critical patent/JPH01139130A/en
Publication of JPH01139130A publication Critical patent/JPH01139130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PURPOSE:To efficiently remove inorg. salts without diluting an effective component, by treating a surface active agent soln. contg. inorg. salts with loose reverse osmosis membrane having the constant coefficient of elimination for sodium chloride. CONSTITUTION:The inorg. salts of long chain alcohol, etc., are by-produced in the production of surface active agent. The surface active agent soln. contg. the inorg. salts and >=1wt.% the surface active agent having >=250mol.wt., is treated with the loose reverse osmosis membrane having 90-50% coefficient of elimination for sodium chloride, by a reverse osmosis method. Thereby, the surface active agent soln. can be concentrated to high concn., because the inorg. salts can be efficiently removed from the surface active agent soln. and furthermore, the viscosity of the surface active agent soln. is decreased. In this manner, concentrating together with desalting are efficiently carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は界面活性剤溶液の脱塩濃縮法に関し、詳しくは
界面活性剤の製造に際して生成する無機塩類を含有する
界面活性剤溶液から逆浸透法によって無機塩類を水と共
に除去する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for desalting and concentrating a surfactant solution, and more specifically, a method for reverse osmosis from a surfactant solution containing inorganic salts produced during the production of a surfactant. The present invention relates to a method for removing inorganic salts together with water by a method.

〔従来の技術〕[Conventional technology]

界面活性剤を製造する際に目的とする界面活性剤と共に
無機塩類を副生ずる場合が多く、また未反応原料として
無機塩類が含まれる場合も多い。
When producing surfactants, inorganic salts are often produced as by-products along with the target surfactant, and inorganic salts are often included as unreacted raw materials.

例えば、アニオン界面活性剤に含まれる無機塩類として
長鎖アルコールまたはこれのエチレンオキシド付加物と
クロルスルホン酸、スルファミンチル塩を得る場合の硫
酸ナトリウムや塩化ナトリウム、アルキルベンゼンと硫
酸または無水(Ii!酸との反応によりアルキルベンゼ
ンスルホン酸塩を得つリン虐ナトリウムを得る場合の塩
化ナトリウムなどがあげられ、また、両性界面活性剤と
してアルキルベタインまたはイミダゾリニウムペタイン
を高級アミンまたはアルキルイミダシリンとモノクロル
酢酸ナトリウムとの反応により得る場合の塩化ナトリウ
ム、さらに、カチオン界面活性剤としてアルキルトリメ
チルアンモニウムクロリドを高級アルキルアミンと塩化
メチルとの反応で得る場合の塩化ナトリウム、などがあ
げられる。
For example, as inorganic salts contained in anionic surfactants, long-chain alcohols or their ethylene oxide adducts and chlorosulfonic acid, sodium sulfate or sodium chloride in the case of obtaining sulfamine chill salts, alkylbenzenes and sulfuric acid or anhydrous (Ii! acids) Sodium chloride is used to obtain an alkylbenzene sulfonate and sodium phosphate by reaction, and as an amphoteric surfactant, alkyl betaine or imidazolinium petaine is used with a higher amine or alkylimidacillin and sodium monochloroacetate. Examples include sodium chloride when obtained by reacting with a cationic surfactant, and sodium chloride when an alkyltrimethylammonium chloride is obtained as a cationic surfactant by reacting a higher alkylamine with methyl chloride.

これらの無機塩類は従来の製造法では製品中に1〜15
重1%含まれるので、界面活性剤を使用する際に好まし
からざる影響を与えている。例えば、粘度の増大や有効
成分の塩析が生じるために有効成分の高濃度化が妨げら
れている。また、界面活性剤を各種用途に用いる場合に
配合系の安定性を低下させたり、多量に使用することを
困難にしている。
In conventional manufacturing methods, these inorganic salts are contained in the product at a concentration of 1 to 15
Since it contains 1% by weight, it has an undesirable effect on the use of surfactants. For example, increases in viscosity and salting out of the active ingredient prevent the concentration of the active ingredient from becoming high. Moreover, when surfactants are used for various purposes, they reduce the stability of blended systems and make it difficult to use them in large amounts.

これらの無機塩類を実用上問題のない含量にまで効率よ
く除去することが出来れば、界面活性剤の用途を大きく
拡大することが期待される。そこで、無機塩類の除去に
ついて従来から各種方法によって検討されているが、い
まだ有効な方法は知られていない。
If these inorganic salts can be efficiently removed to a level that does not cause any practical problems, it is expected that the uses of surfactants will be greatly expanded. Therefore, although various methods have been studied for the removal of inorganic salts, no effective method is known yet.

界面活性剤はその性質から、極性および非極性溶媒双方
に親和性をもち、乳化を起こすので、再結晶などの溶解
度の差を利用するf#製法の対象となり得る界面活性剤
は限られている。また、溶媒抽出法による分離精製は、
溶媒の除去操作、溶媒の残存、有効成分の損失などとい
った問題があり実用的でない。さらに、蒸留などによる
精製は界面活性剤そのものが高沸点物であるために熱劣
化を避けることが難かしい。
Due to their nature, surfactants have an affinity for both polar and non-polar solvents and cause emulsification, so there are a limited number of surfactants that can be used in f# manufacturing methods that utilize differences in solubility such as recrystallization. . In addition, separation and purification by solvent extraction method is
It is not practical due to problems such as removal of the solvent, residual solvent, and loss of active ingredients. Furthermore, when purifying by distillation or the like, it is difficult to avoid thermal deterioration because the surfactant itself has a high boiling point.

近年、吸着剤やイオン交換樹脂を用いるカラムクロマト
グラフィーなどによる脱塩M製法も検討されているが、
無機塩類含量を低下した界面活性剤を効率良く大量に生
産することは工i的見地において問題がある。
In recent years, desalting M production methods using column chromatography using adsorbents and ion exchange resins have also been considered.
From an engineering standpoint, it is problematic to efficiently produce in large quantities a surfactant with a reduced content of inorganic salts.

透析法および電気透析法を利用する無機塩類の効率的な
除去方法についても検討されている。透析法については
、特開昭55−62996号公報、特1jF11j86
0−193954号公報、特開昭61−33222号公
報などに開示されている。いずれの場合においても、水
あるいは低濃度塩溶液が膜を介して界面活性剤溶液側へ
侵入し、有効成分が希釈されてしまっている。界面活性
剤溶液側に圧力をJJOえることによって、侵入する水
を少なくすることは可能であるが、無くすることはでき
ていない。そのために、実用的な濃度とするためには濃
縮操作が必要になっている。電気透析法については特開
昭61−33222号公報に開示されており、界面活性
剤溶液が希釈されることは少なく、ヮA縮を行う必要性
は低いが電力費がかかりコスト的に問題がある。
Efficient methods for removing inorganic salts using dialysis and electrodialysis are also being investigated. Regarding the dialysis method, see Japanese Patent Application Laid-Open No. 55-62996, Special Patent No. 1jF11j86.
It is disclosed in JP-A No. 0-193954, Japanese Unexamined Patent Publication No. 61-33222, and the like. In either case, water or a low concentration salt solution enters the surfactant solution through the membrane, diluting the active ingredient. Although it is possible to reduce the amount of water entering by applying pressure to the surfactant solution side, it has not been possible to eliminate it. Therefore, a concentration operation is required to achieve a practical concentration. The electrodialysis method is disclosed in Japanese Patent Application Laid-Open No. 61-33222, and although the surfactant solution is rarely diluted and there is little need for ヮA contraction, it is expensive due to the electricity cost. be.

〔発明が1弄決しようとする問題点〕 無機塩類を含む界面活性剤溶液から、有効成分の希釈を
起こすことなく、効率良く無機塩類を除去する方法の開
発が望まれている。そして、界面活性剤溶液から無機塩
類を除去すると、その界面活性剤溶液の粘度が低下する
ので、界面活性剤溶液の高濃度化をはかることが可能と
なる。したがって、脱塩と同時に濃縮を効率的に行う方
法の開発が期待されている。
[Problems to be solved by the invention] It is desired to develop a method for efficiently removing inorganic salts from a surfactant solution containing inorganic salts without diluting the active ingredients. When inorganic salts are removed from the surfactant solution, the viscosity of the surfactant solution decreases, making it possible to increase the concentration of the surfactant solution. Therefore, it is expected to develop a method for efficiently concentrating at the same time as desalting.

本発明は、無機塩類を含有する界面活性剤溶液の脱塩と
濃縮とを同時に行なう方法を提供することを目的とする
ものである。
An object of the present invention is to provide a method for simultaneously desalting and concentrating a surfactant solution containing inorganic salts.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、無機塩類含有界面活性剤溶液について塩化す
l−IJウム排排除率9御〜50に行うことを特徴とす
る界面活性剤溶液の脱塩濃縮法である。
The present invention is a method for desalting and concentrating a surfactant solution, which is characterized in that it is carried out to achieve an exclusion rate of l-IJ chloride of 9 to 50 for a surfactant solution containing inorganic salts.

本発明における塩化ナトリウム排除率90〜50チのル
ーズ逆浸透膜を用いる逆浸透法(以下、ルーズ逆浸透法
と称す)は、通常の逆浸透法より低い圧力(5〜50#
/crl)において高い透過流束が得られる方法である
。膜分離法の中では操作条件、分画分子量などから従来
の逆浸透法と限外濾過法の中間に位置する方法である。
In the present invention, the reverse osmosis method using a loose reverse osmosis membrane with a sodium chloride rejection rate of 90 to 50 cm (hereinafter referred to as loose reverse osmosis method) uses a lower pressure (5 to 50 cm) than the normal reverse osmosis method.
/crl) is a method that can obtain a high permeation flux. Among membrane separation methods, this method is located between the conventional reverse osmosis method and ultrafiltration method in terms of operating conditions, molecular weight cutoff, etc.

なお、塩化ナトリウム排除率は塩化ナトリウム含量50
0ppmの水溶液を7,5辞/cd1 25℃の条件で
処理したときに排除される塩化ナトリウムの係を示すも
のである。
Note that the sodium chloride exclusion rate is based on a sodium chloride content of 50
This shows the amount of sodium chloride that is eliminated when a 0 ppm aqueous solution is treated at 7.5 g/cd1 at 25°C.

本発明においては塩化ナトリウム排除率90〜50チの
ルーズ逆浸透膜を用いる。塩化ナトリウム排除率が90
%より高い膜を用いると、塩化ナトリウムが透過しにく
いために脱塩の効率が悪いだけでなく、高い透過流束を
得にくい、運転に高圧を反する、などの不利な点が多い
。また、塩化ナトリウム排除率が50%より低い膜を用
いると、低圧下の運転、高透過流束および高説基準を得
ることが可能であるが、界面活性剤の損失が多く不適当
である。
In the present invention, a loose reverse osmosis membrane with a sodium chloride rejection rate of 90 to 50 inches is used. Sodium chloride rejection rate is 90
If a membrane with a temperature higher than 20% is used, not only is the efficiency of desalination poor because it is difficult for sodium chloride to permeate, but there are many disadvantages such as difficulty in obtaining a high permeation flux and the need for high pressure operation. Furthermore, using a membrane with a sodium chloride rejection rate lower than 50% allows operation under low pressure, high permeation flux, and high standards, but the loss of surfactant is large and unsuitable.

本発明において用いる膜としては、ポリアミド系、ポリ
エーテル系、セルロースアセテート系などの膜があり、
例えば、東し■製UTC−20HF(塩化ナトリウム排
除率70%)、UTC−40HF(同 90チ)、日東
電気工業■製NTR−7250(同 70%)、フィル
ムチック■展NF−40(同 55チ)、東洋紡績■製
HR5330(同 90チ)などがあげられる。
The membranes used in the present invention include polyamide-based, polyether-based, cellulose acetate-based films, etc.
For example, UTC-20HF (70% sodium chloride rejection rate) manufactured by Toshi, UTC-40HF (90% sodium chloride), NTR-7250 (70% sodium chloride) manufactured by Nitto Electric, and NF-40 (sodium rejection rate 70%) manufactured by Nitto Electric Industries, Ltd. Examples include HR5330 (90 inches) manufactured by Toyobo Co., Ltd.

また、用いる膜の形態はスパイラル型、フォローファイ
バー型などがあるが、いずれの形態のものでも用いるこ
とができる。
Further, the membrane used may have a spiral type, a followed fiber type, etc., but any type can be used.

本発明におけるルーズ逆浸透法は、界面活性剤溶液が界
面活性剤を臨界ミセル濃度(CMC)以上に含んでいる
ことが好ましい。CMCより低い場合には膜分離により
界面活性剤をかなり大きく損失することがあるので、好
ましくない。その理由として、CMCより低いときには
界面活性剤が単分子的に存在しておシ、逆にCMC以上
のときには界面活性剤分子が会合またはミセルを形成し
て、膜分離に対する見掛けの分子量が増大しているた′
めと考えられる。したがって、なるべく高濃度の界面活
性剤溶液についてルーズ逆浸透法を行うことが望まれる
。通常の界面活性剤のCMCは0.01〜0.1%であ
るので、十分にミセルを形成させて膜分離における損失
を少なくする点から、本発明におけるルーズ逆浸透法は
界面活性剤を1重1%以上含む溶液について行うことが
好ましい。
In the loose reverse osmosis method of the present invention, it is preferable that the surfactant solution contains surfactant at a critical micelle concentration (CMC) or higher. If it is lower than the CMC, the surfactant may be considerably lost due to membrane separation, which is not preferable. The reason for this is that when it is lower than the CMC, the surfactant exists as a single molecule, whereas when it is higher than the CMC, the surfactant molecules associate or form micelles, increasing the apparent molecular weight for membrane separation. It was
It is thought that Therefore, it is desirable to perform the loose reverse osmosis method on a surfactant solution with as high a concentration as possible. Since the CMC of a normal surfactant is 0.01 to 0.1%, the loose reverse osmosis method of the present invention uses a surfactant of 1% in order to sufficiently form micelles and reduce loss during membrane separation. It is preferable to use a solution containing 1% or more by weight.

本発明における界面活性剤としてはほとんど全ての界面
活性剤をあげることができ、特に限定されるものではな
い。界面活性剤のHLBおよびCMCにより異なるが、
ルーズ逆浸透膜の分画分子量が数百のオーダーであるた
め、分子量が250よシ小さい界面活性剤の場合には損
失が多くなり適当でない。
The surfactant in the present invention can include almost all surfactants, and is not particularly limited. Although it varies depending on the HLB and CMC of the surfactant,
Since the molecular weight cutoff of loose reverse osmosis membranes is on the order of several hundred, surfactants with molecular weights smaller than 250 are not suitable because they cause a large amount of loss.

本発明のルーズ逆浸透法を行う温度としては、損失を低
くおさえるためには低温の方が望ましいが、温度の低下
に伴なって透過流束が低下し、また界面活性剤溶液が結
晶析出、固化などの支障を生ずる危険性があるので、こ
れらの問題の生じない範囲および膜の耐熱性を考慮して
決められる0また、ルーズ逆浸透法を行う操作圧力は5
〜50 H/ cnlが好ましく、5#/肩より低い圧
力では処理液の浸透圧との差が小さいために十分な透過
流束が得られず、処理時間が長くなったり、十分な濃度
まで濃縮ができないことがあり好ましくない。50 k
g/ triより高い圧力では高透過流束が得られ、高
濃度までの濃縮が可能であるが、膜の寿命や装置全体の
耐圧性などの点から好ましくない。
As for the temperature at which the loose reverse osmosis method of the present invention is carried out, a lower temperature is preferable in order to keep losses low, but as the temperature decreases, the permeation flux decreases, and the surfactant solution crystallizes out. Since there is a risk of problems such as solidification, the operating pressure for loose reverse osmosis is determined by considering the range where these problems do not occur and the heat resistance of the membrane.
~50 H/cnl is preferable, and if the pressure is lower than 5#/shoulder, the difference with the osmotic pressure of the treatment solution is small, so sufficient permeation flux cannot be obtained, the treatment time becomes longer, or the treatment solution cannot be concentrated to a sufficient concentration. This is not desirable as it may not be possible to do so. 50k
At a pressure higher than g/tri, a high permeation flux is obtained and concentration to a high concentration is possible, but it is not preferable from the viewpoint of the life of the membrane and the pressure resistance of the entire device.

ルーズ逆浸透法にかける界面活性剤溶液のpHは界面活
性剤の性質や目的と同時にルーズ逆浸透膜の耐久性など
を考慮して決められるが、pH7近くが女子ましい。
The pH of the surfactant solution to be applied to the loose reverse osmosis method is determined by taking into consideration the properties and purpose of the surfactant as well as the durability of the loose reverse osmosis membrane, but a pH close to 7 is desirable.

本発明のルーズ逆浸透法は回分式、循1式、いずれの方
式でも行うことができる。
The loose reverse osmosis method of the present invention can be carried out by either a batch method or a circulation method.

ルーズ逆浸透法によって界面活性剤!8液のa縮が進む
と、溶液の浸透圧が増大してくるので、ルーズ逆浸透膜
と界面活性剤溶液の組合せで生ずる浸透圧と操作圧力が
つり合う点までa棒することができる。また、濃縮によ
って界面活性剤溶液の粘[yが増大してくるので、操作
不可能な粘度になるまで濃縮することができる。操作不
可能な粘度となる界面活性剤の濃度は界面活性剤の種類
によって異なるが、例えば、ラウリルベタインでは42
チ、ヤシアルキロイルメチルタウリン酸ナトリウムでは
39%まで操作可能でめった。
Surfactant by loose reverse osmosis! As the a-condensation of the liquid progresses, the osmotic pressure of the solution increases, so it is possible to increase the osmotic pressure to the point where the operating pressure is balanced with the osmotic pressure generated by the combination of the loose reverse osmosis membrane and the surfactant solution. Furthermore, since the viscosity [y] of the surfactant solution increases due to concentration, it is possible to concentrate the surfactant solution until it reaches an inoperable viscosity. The concentration of surfactant that results in an unmanageable viscosity varies depending on the type of surfactant, but for example, lauryl betaine has a concentration of 42
H. With sodium coconut alkylmethyl taurate, it was possible to operate up to 39%, but rarely.

界面活性剤溶液の無機塩類含量はルーズ逆浸透法を繰り
返す程低下し、はぼ無しとすることができるが、界面活
性剤の損失との関係から使用目的に合った含量にまで脱
塩するようにする。
The content of inorganic salts in the surfactant solution decreases as the loose reverse osmosis method is repeated, and it can be completely eliminated, but from the perspective of loss of surfactant, it is recommended to desalinate the solution to a level that suits the purpose of use. Make it.

これらの条件を満たす形でルーズ逆浸透法を行うことが
できるが、ルーズ逆浸透膜の寿猪を長く保たせるために
、低温、低圧、中性(pH7位)で実施することが望ま
しい。
Although loose reverse osmosis can be carried out in a form that satisfies these conditions, in order to maintain the longevity of the loose reverse osmosis membrane for a long time, it is desirable to carry out the process at low temperature, low pressure, and neutrality (pH around 7).

〔発明の効果〕〔Effect of the invention〕

本発明によって界面活性剤溶液の脱塩と濃縮を比較的容
易に行うことができ、無機塩類含量が低くてしかも有効
成分濃度が高い界面活性剤溶液を得ることができる。
According to the present invention, a surfactant solution can be desalted and concentrated relatively easily, and a surfactant solution with a low content of inorganic salts and a high concentration of active ingredients can be obtained.

界面活性剤溶液の高濃度化によシ取扱いが簡便になるだ
けでなく、配合利用する範囲の拡大が期待される。また
、低塩化によって、低温保存時の塩類の析出がなくなり
保存安定性が改良されるだけでなく、シャンプー、ボデ
ィーシャンプーなどへの配合の際に、塩類含量が高いた
めにみられろ過度の増粘、粘度のバラツキ、成分の析出
、配合系の安定性の悪さなどといった問題がなくなり、
より巾広い用途で、またより多い配合率で界面活性剤を
用いることが期待できる。
Increasing the concentration of the surfactant solution not only makes it easier to handle, but is also expected to expand the scope of its use. In addition, low chloride not only improves storage stability by eliminating the precipitation of salts during low-temperature storage, but also prevents excessive increase in salt content when compounded into shampoos, body shampoos, etc. Problems such as viscosity, variation in viscosity, precipitation of ingredients, and poor stability of the compounding system are eliminated.
It is expected that surfactants will be used in a wider range of applications and at higher compounding ratios.

〔実施例〕〔Example〕

本発明を実施例により詳細に説明する。 The present invention will be explained in detail by examples.

実施例1 ヤシアルキロイルメチルタウリン酸ナトリウム溶液(有
効成分含量26.8%、塩化ナトリウム含fts、9%
)80#にイオン交換水100kgを加えて希釈原液と
した。この希釈原液を、塩化ナトリウム排除率70チの
ルーズ逆浸透膜(東し@製UTC−20HF)のスパイ
ラル型モジュールを備えた東しエンジニアリング■製R
Oパイロット装置(膜面積15i)にて脱塩、濃縮した
。入口圧力20館/c!G、温度25℃、濃縮液を10
t/馴の流速で原液側に戻す条件で、透過液が125〜
になるまで70分間処理を行った。
Example 1 Sodium coconut alkylmethyl taurate solution (active ingredient content 26.8%, sodium chloride content, 9%
) 80# and 100 kg of ion exchange water was added to prepare a diluted stock solution. This diluted stock solution was mixed with R manufactured by Toshi Engineering Corporation, which is equipped with a spiral type module of a loose reverse osmosis membrane (UTC-20HF manufactured by Toshi @) with a sodium chloride rejection rate of 70%.
Desalting and concentration were performed using an O pilot device (membrane area: 15 i). Inlet pressure 20/c! G, temperature 25℃, concentrate 10
Under the condition that the permeate is returned to the stock solution side at a flow rate of 125~
The treatment was carried out for 70 minutes until the

界面活性剤原液(希釈前)の性状を第1表に、また、ル
ーズ逆浸透性処理の結果を第2表に示した。
The properties of the surfactant stock solution (before dilution) are shown in Table 1, and the results of the loose reverse osmosis treatment are shown in Table 2.

実施例2 ルーズ逆浸透膜として塩化ナトリウム排除率90%の東
し@!!!UTC−40HFを用いる以外は実施例1と
同様に処理を行った。
Example 2 A loose reverse osmosis membrane with a sodium chloride rejection rate of 90%! ! ! The treatment was carried out in the same manner as in Example 1 except that UTC-40HF was used.

得られた結果を第2表にまとめて示した。The results obtained are summarized in Table 2.

実施例3 ルーズ逆浸透膜として塩化ナトリウム排除率55係のフ
ィルムチック■製NF−40を用いる以外は実施例1と
同様に処理を行った。
Example 3 The treatment was carried out in the same manner as in Example 1, except that NF-40 manufactured by Filmtic ■ with a sodium chloride rejection rate of 55 was used as the loose reverse osmosis membrane.

得られた結果を第2表にまとめて示した。The results obtained are summarized in Table 2.

実施例4および5 界面活性剤原液の希釈度合を変える以外は実施例1と同
様に処理を行った。
Examples 4 and 5 The treatment was carried out in the same manner as in Example 1 except that the degree of dilution of the surfactant stock solution was changed.

得られた結果を第2表にまとめて示した。The results obtained are summarized in Table 2.

実施例6〜9 界面活性剤の種類を変える以外は実施例1と同様に処理
を行った。
Examples 6 to 9 The treatment was carried out in the same manner as in Example 1 except that the type of surfactant was changed.

得られた結果を第2表にまとめて示した。The results obtained are summarized in Table 2.

なお、第2表の生産能力(t/M)は、1ケ月25日稼
動で1日24時間運転の場合に有効成分30%の溶液を
生産する能力を示している。
The production capacity (t/M) in Table 2 indicates the ability to produce a solution containing 30% of the active ingredient when operating 25 days a month and 24 hours a day.

第2表の結果から、本発明により界面活性剤溶特許出願
人  日本油脂株式会社
From the results in Table 2, it can be concluded that the surfactant-solubilized patent applicant of the present invention is Nippon Oil & Fats Corporation.

Claims (1)

【特許請求の範囲】 1 無機塩類含有界面活性剤溶液について塩化ナトリウ
ム排除率90〜50%のルーズ逆浸透膜を用いる逆浸透
法により脱塩と濃縮を同時に行うことを特徴とする界面
活性剤溶液の脱塩濃縮法。 2 界面活性剤溶液が界面活性剤を1重量%以上含む溶
液である特許請求の範囲第1項記載の界面活性剤溶液の
脱塩濃縮法。 3 界面活性剤が分子量250以上の界面活性剤である
特許請求の範囲第1項または第2項に記載の界面活性剤
溶液の脱塩濃縮法。
[Claims] 1. A surfactant solution containing inorganic salts, which is characterized in that desalination and concentration are simultaneously performed by a reverse osmosis method using a loose reverse osmosis membrane with a sodium chloride rejection rate of 90 to 50%. desalination concentration method. 2. The method for desalting and concentrating a surfactant solution according to claim 1, wherein the surfactant solution is a solution containing 1% by weight or more of a surfactant. 3. The method for desalting and concentrating a surfactant solution according to claim 1 or 2, wherein the surfactant has a molecular weight of 250 or more.
JP62294267A 1987-11-26 1987-11-26 Method for desalting and concentrating surface active agent solution Pending JPH01139130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294267A JPH01139130A (en) 1987-11-26 1987-11-26 Method for desalting and concentrating surface active agent solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294267A JPH01139130A (en) 1987-11-26 1987-11-26 Method for desalting and concentrating surface active agent solution

Publications (1)

Publication Number Publication Date
JPH01139130A true JPH01139130A (en) 1989-05-31

Family

ID=17805503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294267A Pending JPH01139130A (en) 1987-11-26 1987-11-26 Method for desalting and concentrating surface active agent solution

Country Status (1)

Country Link
JP (1) JPH01139130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023506213A (en) * 2020-02-28 2023-02-15 ザ プロクター アンド ギャンブル カンパニー How to remove chemical contaminants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156402A (en) * 1983-02-28 1984-09-05 Japan Organo Co Ltd Concentration of organic substance by reverse osmosis membrane
JPS59179188A (en) * 1983-03-31 1984-10-11 Teijin Ltd Membrane separation and treatment of aqueous solution containing nonionic surface active agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156402A (en) * 1983-02-28 1984-09-05 Japan Organo Co Ltd Concentration of organic substance by reverse osmosis membrane
JPS59179188A (en) * 1983-03-31 1984-10-11 Teijin Ltd Membrane separation and treatment of aqueous solution containing nonionic surface active agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023506213A (en) * 2020-02-28 2023-02-15 ザ プロクター アンド ギャンブル カンパニー How to remove chemical contaminants
US11926534B2 (en) 2020-02-28 2024-03-12 The Procter & Gamble Company Method of using nanofiltration and reverse osmosis to remove chemical contaminants

Similar Documents

Publication Publication Date Title
US5484531A (en) Process for the removal of inorganic salts
US5278288A (en) Process for producing κ-casein glycomacropeptides
US5075424A (en) Process for producing κ-casein glycomacropeptides
US5280107A (en) Process for producing K-casein glycomacropeptides
US20170044030A1 (en) Dewatering process through forward osmosis using deep eutectic solvents with or without dispersed magnetic nanoparticles as novel draw solutions
US6506305B2 (en) Methods of isolating urea, urea compositions and methods for producing the same
JPH01139130A (en) Method for desalting and concentrating surface active agent solution
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
US5491259A (en) Process to produce aminocarboxylic acids containing low residual salt
US4919808A (en) Semipermeable membrane compositions
JP2865381B2 (en) Method for producing water-soluble dye
JP3106256B2 (en) Method for producing kappa-casein glycomacropeptide
EP1041065A1 (en) Method for isolating urea using membranes and compositions thereof
JPH0747109B2 (en) Concentration method of amino acid aqueous solution
JPH04271764A (en) Production of soy sauce having reduced salt
JP3207565B2 (en) Method for producing water-soluble dye
JP2639434B2 (en) Process for producing alkanol ammonium salt or ammonium salt of surfactant
JP3920954B2 (en) Manufacturing method of anti-ulcer agent
JPS6019919B2 (en) Purification method of glycyrrhizin
JP2003012807A (en) Method for producing reduction type keratin
KR20210107611A (en) Concentration method of water-soluble organic peroxide
RU2139294C1 (en) Method of preparing hydroxyethylated starch
CA2164502A1 (en) Method of separating a solute from other solutes
JPH05317654A (en) Method for refining surfactant by membrane filtration
JPH0259593A (en) Purification of sucrose fatty acid ester