JPH01138374A - Runaway speed limitter for movable vane waterwheel - Google Patents

Runaway speed limitter for movable vane waterwheel

Info

Publication number
JPH01138374A
JPH01138374A JP62296308A JP29630887A JPH01138374A JP H01138374 A JPH01138374 A JP H01138374A JP 62296308 A JP62296308 A JP 62296308A JP 29630887 A JP29630887 A JP 29630887A JP H01138374 A JPH01138374 A JP H01138374A
Authority
JP
Japan
Prior art keywords
short
circuit
supply pipe
oil supply
pressure oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296308A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62296308A priority Critical patent/JPH01138374A/en
Publication of JPH01138374A publication Critical patent/JPH01138374A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To control the runaway speed by installing a short-circuit valve for short-circuiting the pressurized oil control mechanisms communicating to the opened side and closed side servochambers of a servomotor for driving runner vanes and opening said valve when a waterwheel obtains the speed over a prescribed revolution speed. CONSTITUTION:A servomotor 14 for driving the runner vane of a movable vane waterwheel is prepared by fitting a piston 42 formed integrally with a runner vane operating rod 40 into a cylinder which the upper edge part of a waterwheel shaft 66 in hollow shaft form constitutes. The servomotor 14 is driven by the supply of the pressurized oil into the opening side and closing side servochambers 16 and 18 through the concentric oil feeding pipes 34 and 20 which penetrate through a power generator shaft 32. In this case, a short- circuit valve 22 consisting of a short-circuit interrupting plug 46 urged in the closing direction by an urging mechanism 50 is installed onto the power generator shaft 32. The short-circuit valve 22 is opening-operated by a centrifugal force when the movable vane waterwheel obtains the speed higher than a prescribed revolution speed, and the oil pressure in the both servochambers 16 and 18 is set into equilibrium, and the runner vane is perfectly opened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カブラン水車などの可動羽根水車のランナベ
ーンの開閉機構を駆動する圧油によるうンナペーンサー
ボモータ(以下単にサーボモータと記する)の圧油制御
系統に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a pressurized oil-powered enerpener servo motor (hereinafter simply referred to as servo motor) that drives the opening/closing mechanism of a runner vane of a movable impeller water turbine such as a Kablan water turbine. Regarding the pressure oil control system.

〔従来の技術〕[Conventional technology]

この釉の可動羽根水車は、従来第7図および第8図に示
すものが知られている。第7図は可動羽根水車2(以下
単に水車2と記する)の二点鎖線で示しだランナベーン
4を矢印6方向に駆動して開閉させるサーボモータ14
の圧油制御系統を示し、第8図はこのサーボモータ14
とその周辺の構造を示す断面図である。
This glazed movable impeller water wheel is conventionally known as shown in FIGS. 7 and 8. FIG. 7 shows a movable vane water turbine 2 (hereinafter simply referred to as water turbine 2) indicated by a two-dot chain line.A servo motor 14 drives the runner vane 4 in the direction of arrow 6 to open and close it.
Fig. 8 shows the pressure oil control system of this servo motor 14.
FIG.

第7図に示す従来例の圧油制御系統は、圧油装dloで
作られた圧油12を、制御指令信号によって動くパイロ
ット弁である制御弁8に導入し、この制御弁8を介して
圧油12をサーボモータ14に導入し、ランナベーン操
作ロッド40を矢印44の方向に圧油12によって駆動
し、二点鎖線で示したレバー。
The conventional pressure oil control system shown in FIG. Pressure oil 12 is introduced into the servo motor 14, and the runner vane operating rod 40 is driven by the pressure oil 12 in the direction of arrow 44, and the lever is shown by a two-dot chain line.

リンクなどからなる開閉機構を駆動してランナベーン4
を矢印6の方向に開閉するように構成している。可動羽
根水車2は1図示を省略した発電機が連結され1発電電
力系統の負荷条件や水力的な状態により決まる運転条件
に対応して、ランナベーン4の開度が制御され、定格回
転速度を維持して運転される。
The runner vane 4 is driven by an opening/closing mechanism consisting of links, etc.
It is configured to open and close in the direction of arrow 6. The movable vane water turbine 2 is connected to a generator (not shown), and the opening degree of the runner vane 4 is controlled to maintain the rated rotational speed in response to the operating conditions determined by the load conditions and hydraulic conditions of the generating power system. and is driven.

第8図に示す従来例のサーボモータ14とその周辺の構
造を示す断面図は、前記のランナベーン操作ロッド40
が中空軸状の水車軸66中に矢印44方向に移動自在に
支承され、水車軸66の上端部はサーボモータ14のシ
リンダを構成し、このシリンダ中を前記のランナベーン
操作ロッド40をピストンロッドとして固定してこれと
一体に矢印44方向に移動自在なピストン42を設けて
いる。水車軸66はその上端を間隔板28を介して発電
機軸32を連結している。前記のサーボモータ14は、
ランナベーン操作ロッド40.水車軸66の上端部、ピ
ストン429間隔板28から構成されており、内設する
ピストン42によイて開側サーボ室16と閉側サーボ室
18の2室に区画されている。前記の発電機軸32は同
一中心線の貫通穴68を有し、この貫通穴68中に同心
に外側給油管34を配設固定し、この外側給油管34中
に同心に二重管状に内側給油管20を配設し、その下端
をピストン42に固定した内側給油管サポート54に取
り付け、内側給油管54はビス−トン42と共に矢印4
4方向に移動する。さらに外側給油管34から圧油12
を導入する装置を介して開側サーボ室16に、内側給油
管20から圧油12を導入する装置を介して閉側サーボ
室18に連絡する構造になっている。第8図に示す外側
給油管34.内側給油管20の図示を省略した上端部に
は、第7図に一点鎖線の円内に示す圧油導入装置70が
あり、圧油装置10で作られた圧油12を、制御指令信
号によって動くパイロット弁である制御弁8に導入し、
この制御弁8からの圧油12を1発電機軸上端部のこの
圧油導入装置70を介して1発電機軸32を貫通してい
る2本の同心円状の給油管、すなわち外側給油管34.
内側給油管20によってサーボモータ14に導入してい
る。
FIG. 8 is a cross-sectional view showing the structure of the conventional servo motor 14 and its surroundings.
is supported in a hollow water wheel shaft 66 so as to be movable in the direction of arrow 44, and the upper end of the water wheel shaft 66 constitutes a cylinder of the servo motor 14, and the runner vane operating rod 40 is inserted into this cylinder as a piston rod. A piston 42 is provided which is fixed and integrally movable in the direction of an arrow 44. The upper end of the water wheel shaft 66 is connected to the generator shaft 32 via the spacing plate 28. The servo motor 14 is
Runner vane operating rod 40. It is composed of the upper end of the water wheel shaft 66, a piston 429, and a spacing plate 28, and is divided into two chambers, an open side servo chamber 16 and a closed side servo chamber 18, by the piston 42 installed therein. The generator shaft 32 has a through hole 68 having the same center line, and an outer oil supply pipe 34 is concentrically arranged and fixed in this through hole 68, and an inner oil supply pipe is concentrically arranged in a double pipe shape in the outer oil supply pipe 34. A pipe 20 is arranged, and its lower end is attached to an inner oil supply pipe support 54 fixed to the piston 42, and the inner oil supply pipe 54 is connected to the arrow 4 along with the piston 42.
Move in 4 directions. Furthermore, the pressure oil 12 is connected to the outer oil supply pipe 34.
The structure is such that the open side servo chamber 16 is connected to the open side servo chamber 16 through a device for introducing pressure oil 12, and the closed side servo chamber 18 is connected through a device for introducing pressure oil 12 from the inner oil supply pipe 20. Outer oil supply pipe 34 shown in FIG. At the upper end (not shown) of the inner oil supply pipe 20, there is a pressure oil introducing device 70 shown in a circle with a dashed-dotted line in FIG. Introduced into the control valve 8, which is a moving pilot valve,
The pressure oil 12 from the control valve 8 is passed through the pressure oil introducing device 70 at the upper end of the first generator shaft into two concentric oil supply pipes, that is, the outer oil supply pipe 34, which penetrate the first generator shaft 32.
It is introduced into the servo motor 14 through an inner oil supply pipe 20.

発電1力系統の負荷条件や水力的な状態により決まる運
転条件に対応して、制御弁8によってランナベーン4の
開度が制御され、定格回転速度を維持して運転される。
The opening degree of the runner vane 4 is controlled by the control valve 8 in accordance with the operating conditions determined by the load condition of the power generation system and the hydraulic state, and the runner vane 4 is operated while maintaining the rated rotational speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

水車の負荷を無負荷にしたとき、水の流量をその一!!
まとして水車の回転速度が最大値となるまで放置したと
きの回転速度を無拘束速度という。これは水車の負荷運
転中に負荷の発電機の発電電力系統の事故などによυ無
負荷になったときで水の流量を加減するガイドベーンが
制御されない不動時に起こるが、このとき水車回転速度
は運転条件。
When the water turbine is unloaded, the water flow rate is the first! !
The rotational speed when the waterwheel is left until it reaches its maximum rotational speed is called the unrestrained speed. This happens when the turbine is under load and the generator becomes unloaded due to an accident in the generating power system of the load generator, and the guide vanes that adjust the flow rate of water are not controlled and are stationary. is the operating condition.

ランチ特性により、定格回転速度の約2倍から約3倍と
極めて大きなものとなり、またこの無拘束速度はランナ
ベーン4の開度に依存しており、ランナベーン4が中間
開度のとき最大の高無拘束速度に達し、水車と発電機と
を回転速度の2乗に比例する強大な遠心力に耐える設計
とするためには。
Due to the launch characteristics, the unrestrained speed is extremely large, approximately two to three times the rated rotational speed, and this unrestrained speed depends on the opening degree of the runner vane 4, and the maximum unrestrained speed is reached when the runner vane 4 is at an intermediate opening. In order to reach the constraint speed and design the water turbine and generator to withstand the enormous centrifugal force proportional to the square of the rotational speed.

多くの材料を使用し重量が大となり、かつ高価になると
いう問題がある。一方ランナベーン4を全開とすれば、
この高無拘束速度に対して70チ程度の無拘束速度に制
限できる。
There are problems in that many materials are used, the weight is large, and the cost is high. On the other hand, if runner vane 4 is fully opened,
This high unrestricted speed can be limited to about 70 inches.

本発明は、ランナベ−74を全開とすることにより無拘
束速度を制限する。可動羽根水車の無拘束速度制限装置
を提供することを目的とする。
The present invention limits the unrestrained speed by fully opening the runner bay 74. An object of the present invention is to provide an unrestrained speed limiting device for a movable impeller water turbine.

〔問題点を解決するための手段〕[Means for solving problems]

前記の問題点を解決するために1本発明は、可動羽根水
車のランナベーンを駆動するランナベーンサーボモータ
のピストンによって2室に区画される一方の開側サーボ
モータ室に通じる圧油制御系統と他側サーボモータ室に
通じる圧油制御系統とを短絡あるいは遮断する短絡バル
ブを設け、前記可動羽根水車が所定の回転速度を超過し
たとき遠心力によって前記短絡バルブが開路動作し、前
記開側サーボ室の油圧と閉側サーボ室の油圧を平衡させ
て前記ランナベーンを全開させるようにした3、 〔作用〕 第6図は本発明の原理を示すサーボモータ14の圧油制
御系統を等測的に示したもので、前記の第7図に相当す
る図である。サーボモータ14のその内設するピストン
42によって2室に区画される一方の開側サーボ室16
と他方の閉側サーボ室18とのおのおのに通じる圧油制
御系統、第6図に示すものは外側給油W34と内側給油
管20.の間を短絡する短絡バルブ22または24を設
け、水車2が無拘束速度状態となると矢印に示す遠心力
52によってこの短絡バルブ22,24が開路動作する
ことにより圧油制御系統が短絡する。この短絡によって
開側サーボ室16と閉側サーボ室18とは導通し、サー
ボモータ14のランナベーン4の開方向と閉方向の油圧
は平衡するので、ランナベーン4が開モーメントをもっ
ていれば開閉機構、ランナベーン操作ロッド40を介し
たピストン42は自在に移動可能なため。
In order to solve the above-mentioned problems, the present invention provides a pressure oil control system that is divided into two chambers by a piston of a runner vane servo motor that drives a runner vane of a movable impeller water turbine, and a pressure oil control system that communicates with one open side servo motor chamber and the other side. A short-circuit valve is provided to short-circuit or cut off the pressure oil control system leading to the servo motor chamber, and when the movable impeller water wheel exceeds a predetermined rotational speed, the short-circuit valve is opened by centrifugal force, and the open-side servo chamber is opened. The runner vane is fully opened by balancing the hydraulic pressure and the hydraulic pressure in the closing side servo chamber 3. [Function] Figure 6 isometrically shows the pressure oil control system of the servo motor 14 showing the principle of the present invention. This figure corresponds to the above-mentioned FIG. 7. One open side servo chamber 16 is divided into two chambers by a piston 42 installed therein of the servo motor 14.
and the other closed-side servo chamber 18, the pressure oil control system shown in FIG. 6 includes an outer oil supply pipe W34 and an inner oil supply pipe 20. A short-circuit valve 22 or 24 is provided to short-circuit between the two, and when the water turbine 2 reaches an unrestricted speed state, the centrifugal force 52 shown by the arrow causes the short-circuit valves 22 and 24 to open, thereby short-circuiting the pressure oil control system. Due to this short circuit, the opening side servo chamber 16 and the closing side servo chamber 18 are electrically connected, and the hydraulic pressure in the opening direction and the closing direction of the runner vane 4 of the servo motor 14 is balanced. Therefore, if the runner vane 4 has an opening moment, the opening/closing mechanism, the runner vane This is because the piston 42 can be freely moved via the operating rod 40.

ランナベーン4は全開するため、水車の回転速度を高無
拘束速度に対して70チ程度、すなわち定格回転速度の
約1.4倍から約2倍程度以下に制限することが出来る
Since the runner vane 4 is fully opened, the rotational speed of the water turbine can be limited to about 70 degrees compared to the high unrestricted speed, that is, about 1.4 times to about 2 times the rated rotational speed.

〔実施例〕〔Example〕

第1図ないし第3図は本発明の第1の実施例を示すもの
で、第1図はサーボモータ14とその周辺の構造を示す
断面図で前記の従来例の第8図に相当する図、第2図は
第1図に示す短絡バルブ22が開路動作している状態を
示す断面図、第3図は第1図のA−A半断面図である。
1 to 3 show a first embodiment of the present invention, and FIG. 1 is a sectional view showing the servo motor 14 and its surrounding structure, which corresponds to FIG. 8 of the conventional example. 2 is a cross-sectional view showing a state in which the short-circuit valve 22 shown in FIG. 1 is in an opening operation, and FIG. 3 is a half-sectional view taken along the line AA in FIG. 1.

第1図と第8図との相異点は、サーボモータ14の閉側
サーボ室18へ内側給油管20から圧油12を導入する
装置が異る点と、短絡バルブ22を設けた点で、その他
の点は従来例と同じであるからその説明を省略する。
The differences between FIG. 1 and FIG. 8 are that the device for introducing pressure oil 12 from the inner oil supply pipe 20 into the closed-side servo chamber 18 of the servo motor 14 is different, and that a short-circuit valve 22 is provided. , and other points are the same as the conventional example, so the explanation thereof will be omitted.

第1図において、内側給油管20の下端部を、サポート
26を介して間隔板28に固定している。このサポート
26は第3図に示すように複数個の長穴30を設けたリ
ング体で1発電機軸32に固定し、その内径部は内側給
油管20を固定しているから、外側給油管34からの圧
油12は長穴30を介して自在に開側サーボ室16に導
入できる。内側給油管20の下端には継手36を介して
導入給油管38を設け、ランナベーン操作ロッド40の
上端部に設けた導入穴42にこの導入給油管38が圧油
の洩れがなくかつ軸方向移動自在にはめ合っている。以
上の説明のようにして内側給油管20から圧油12を導
入する装置を構成しているので、ピストン42とランナ
ベーン操作ロッド40とが矢印44の方向に移動しても
、内側給油管20は移動することなく導入給油管38と
導入穴42との間が摺動して、圧油12は内側給油管2
oから閉側サーボ室18に導入できる。
In FIG. 1, the lower end of the inner oil supply pipe 20 is fixed to a spacing plate 28 via a support 26. As shown in FIG. 3, this support 26 is a ring body with a plurality of elongated holes 30 and is fixed to one generator shaft 32, and its inner diameter part fixes the inner oil supply pipe 20, so the outer oil supply pipe 34 Pressure oil 12 can be freely introduced into the open side servo chamber 16 via the elongated hole 30. An introduction oil supply pipe 38 is provided at the lower end of the inner oil supply pipe 20 via a joint 36, and this introduction oil supply pipe 38 is inserted into an introduction hole 42 provided at the upper end of the runner vane operating rod 40 so that there is no pressure oil leakage and axial movement is achieved. They fit together freely. Since the device for introducing the pressure oil 12 from the inner oil supply pipe 20 is constructed as described above, even if the piston 42 and the runner vane operating rod 40 move in the direction of the arrow 44, the inner oil supply pipe 20 The introduction oil supply pipe 38 and the introduction hole 42 slide without moving, and the pressure oil 12 is transferred to the inner oil supply pipe 2.
It can be introduced into the closed side servo chamber 18 from o.

短絡バルブ22は1発電機軸32中に発電機軸32の半
径方向に移動可能に短絡遮断プラグ46を支承し。
The short circuit valve 22 supports a short circuit interrupting plug 46 in the generator shaft 32 so as to be movable in the radial direction of the generator shaft 32.

内側給油管20に設けた外側給油管34への短絡穴48
に付勢機構50の押圧力で短絡遮断プラグ46の一端部
が当接して、この短絡穴48を第1図に示すように1発
電機軸32が定格回転速度を少し超過した所定の回転速
度以内のときは、閉鎖している。無拘束速度状態となり
発電機軸32が所定の回転速度以上になるときは、第2
図に示すように短絡遮断プラグ46に作用する遠心力5
2が付勢機構5oの押圧力よυ大となって、短絡遮断プ
ラグ46は外方へ移動して短絡穴48の閉鎖を解除する
開路動作をなし。
Short-circuit hole 48 provided in the inner oil supply pipe 20 to the outer oil supply pipe 34
One end of the short circuit interrupting plug 46 comes into contact with the pressing force of the biasing mechanism 50, and as shown in FIG. It is closed when . When the speed is not restricted and the generator shaft 32 reaches a predetermined rotational speed or higher, the second
Centrifugal force 5 acting on the short-circuit interrupting plug 46 as shown in the figure
2 becomes larger than the pressing force of the biasing mechanism 5o, the short-circuit interrupting plug 46 moves outward and performs an opening operation to unclose the short-circuit hole 48.

開側サーボ室16と閉側サーボ室18とのおのおのに通
じる外側給油管34.内側給油管2oが接続する圧油制
御系統間を短絡するため、前記の〔作用〕の項で説明し
たように、この短絡によって開側サーボ室16と閉側サ
ーボ室18とは導通し、サーボモータ14のランナベー
ン4の開方向と閉方向の油圧は平衡するので、ランナベ
ーン4が開モーメントをもっていればランナベ−/4は
全開し、逆にランナベーン4が閉モーメントをもってい
ればランナベーン4は全閉するため1発電機軸32の無
拘束速度を高無拘束速度に対して70%程度、すなわち
定格回転速度の約1,4倍から約2倍程度以下に制限す
ることができる。無拘束速度状態が解除され発電機軸3
2が所定の回転速度以内となるときは、付勢機構50の
押圧力よりも遠心力52が小となりで、短絡遮断プラグ
46が短絡穴48を自動的に閉鎖する。
An outer oil supply pipe 34 that communicates with the open side servo chamber 16 and the closed side servo chamber 18, respectively. Since the pressure oil control system connected to the inner oil supply pipe 2o is short-circuited, as explained in the [Function] section above, this short-circuit causes the open-side servo chamber 16 and the close-side servo chamber 18 to be electrically connected, and the servo Since the hydraulic pressure in the opening and closing directions of the runner vane 4 of the motor 14 is balanced, if the runner vane 4 has an opening moment, the runner vane/4 will be fully opened, and conversely, if the runner vane 4 has a closing moment, the runner vane 4 will be fully closed. Therefore, the unrestricted speed of one generator shaft 32 can be limited to about 70% of the high unrestrained speed, that is, about 1.4 times to about 2 times the rated rotational speed or less. The unrestricted speed state is released and the generator shaft 3
2 is within a predetermined rotational speed, the centrifugal force 52 becomes smaller than the pressing force of the biasing mechanism 50, and the short-circuit blocking plug 46 automatically closes the short-circuit hole 48.

第4図および第5図は本発明の第2の実施例を示すもの
で、第4図はサーボモータ14とその周辺の構造を示す
断面図で、前記の第1の実施例を示す第1図および従来
例の第8図に相当する図、第5図は第4図の短絡バルブ
24の詳細を示す断面図である。第2の実施例は、遠心
力52によって開閉する短絡バルブ24でサーボモータ
14の開側サーボ室16と閉側サーボ室18とを短絡す
れば、前記の第1の実施例と同じ作用が得られることに
着目して構成したものである。第4図において、内側給
油管20の下端をピストン42に固定する内側給油管サ
ポート54に、第5図にその詳細を示す短絡バルブ24
を設けたものである。第5図においてバルブシリンダ5
6には、短絡穴58とこれに通じるシリンダ室60と何
人62を設けており、短絡遮断プラグ46はバルブシリ
ンダ56中を移動自在に支承され、ふた64で封止され
た圧縮ばねなどの付勢機構50によって付勢されて、そ
のテーパ状端部が短絡穴58を閉鎖して短絡バルブ24
を構成し、内側給油管サポート54に取り付けている。
4 and 5 show a second embodiment of the present invention, and FIG. 4 is a sectional view showing the structure of the servo motor 14 and its surroundings. FIG. 5 is a cross-sectional view showing details of the short-circuit valve 24 of FIG. 4, and FIG. 5 is a diagram corresponding to FIG. 8 of the conventional example. In the second embodiment, the same effect as in the first embodiment can be obtained by short-circuiting the open-side servo chamber 16 and the close-side servo chamber 18 of the servo motor 14 using a short-circuit valve 24 that is opened and closed by centrifugal force 52. It was constructed with a focus on the things that can be done. In FIG. 4, a short-circuit valve 24, the details of which are shown in FIG.
It has been established. In Fig. 5, the valve cylinder 5
6 is provided with a short-circuit hole 58, a cylinder chamber 60 communicating with the short-circuit hole 58, and a cylinder chamber 62. The tapered end closes the shorting hole 58 and closes the shorting valve 24 when biased by the biasing mechanism 50.
and is attached to the inner oil supply pipe support 54.

水車軸66とこれに連結した発1!機軸32が定格回転
速度を少し超過した所定の回転速度以内のときは、第5
図に示すように短絡バルブ24は閉鎖している。無拘束
速度状態だなり、水車軸66と発電機軸32が所定の回
転速度以上になるときは、第4図に示すように、短絡遮
断プラグ46に作用する遠心力52が付勢機構50の押
圧力より大となって、短絡遮断プラグ46は外方へ移動
して短絡穴58の閉鎖を解除する開路動作をなし。
The water wheel shaft 66 and the engine 1 connected to it! When the machine shaft 32 is within a predetermined rotational speed that slightly exceeds the rated rotational speed, the fifth
As shown, the short circuit valve 24 is closed. When the rotational speed of the water wheel shaft 66 and the generator shaft 32 exceeds a predetermined speed in an unrestricted speed state, the centrifugal force 52 acting on the short-circuit interrupting plug 46 pushes the biasing mechanism 50, as shown in FIG. As the pressure becomes greater, the short-circuit interrupting plug 46 moves outward to perform an opening action that unblocks the short-circuit hole 58.

開側サーボ室16と閉側サーボ室18とを短絡、導通す
るから、前記の第1の実施例での説明と同様胤ランナベ
ーン4の特性によって、ランナベーン4が全開または全
閉となって同じ作用が得られ、無拘束速度条件が解除さ
れれば短絡バルブ24は自動復帰する。
Since the open-side servo chamber 16 and the close-side servo chamber 18 are short-circuited and electrically connected, the runner vane 4 is fully opened or fully closed depending on the characteristics of the runner vane 4, as described in the first embodiment, and the same effect is achieved. is obtained and the unrestricted speed condition is released, the short-circuit valve 24 automatically returns.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、サーボモータの開側サーボ室と閉側サ
ーボ室とのおのおのに通じる圧油制御系統間を短絡する
短絡バルブを設けたため、無拘束速度状態となって水車
とこれ忙一体に連結して回転する発電機軸9発電機の回
転子などの機械系が定格速度以上の所定の回転速度を超
過したときに遠心力によって前記の短絡バルブが開路動
作し、開側サーボ室と閉側サーボ室が短絡、導通状態と
なり1両サーボ室の油圧が平衡してピストンが自在に移
動できるようになるため、ランナベーンのもつ固有の開
または閉のモーメント特性によってランナベーンは全開
または全閉となる。このい1れの場合でも水車とこれに
連結されている発電機は、ランナベーンが中間開度のと
きの定格回転速度の約2倍から約3倍と極めて大きな高
無拘束速度に達することなく、その約70%程度の定格
回転速度の約1.4倍から約2倍程度以下の無拘束速度
に制限することが出来る。回転速度の2乗に比例する遠
心力はこの結果、 (0,7) 2中0.5と、従来例
の設計条件の高無拘束速度のときの約1/2となるから
、遠心力による強度上の厳しい条件が緩和され、材料の
使用量や重量を節約することが可能となり、かつ製作コ
ストの低減が可能となり、またこれまで無拘束速度が大
きすぎるため水車に適合した発電機の製作が不可能なこ
とがあったが、本発明によって可能となる。
According to the present invention, a short-circuit valve is provided to short-circuit the pressure oil control system that communicates with the open-side servo chamber and the closed-side servo chamber of the servo motor, so that an unrestricted speed state is achieved and the water turbine and the water turbine are busy. When the mechanical system such as the rotor of the generator shaft 9 that rotates in conjunction exceeds a predetermined rotational speed that is higher than the rated speed, the short circuit valve is opened by centrifugal force, and the open side servo chamber and the closed side servo chamber are opened. The servo chambers are short-circuited and conductive, and the oil pressure in both servo chambers is balanced, allowing the piston to move freely, so the runner vane becomes fully open or fully closed depending on the unique opening or closing moment characteristics of the runner vane. In either case, the water turbine and the generator connected to it do not reach extremely high unrestrained speeds, approximately two to three times the rated rotational speed when the runner vane is at an intermediate opening. It is possible to limit the unrestrained speed to about 1.4 times to about twice the rated rotational speed, which is about 70% of the rated rotation speed. As a result, the centrifugal force that is proportional to the square of the rotational speed is 0.5 in (0,7) 2, which is about 1/2 of the high unrestrained speed of the conventional design condition, so the centrifugal force is Strict strength requirements have been eased, making it possible to save material usage and weight, and reduce manufacturing costs.Also, since the unrestrained speed has been too high, it is now possible to create a generator that is compatible with water turbines. This was previously impossible, but the present invention makes it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1の実施例を示すもの
で、第1図はサーボモータ14とその周辺の構造を示す
断面図、第2図は第1図に示す短絡バルブ22が遠心力
52によって開路動作している状態を示す断面図、第3
図は第1図のA−A半断面図。 第4図および第5図は本発明の第2の実施例を示すもの
で、第4図はサーボモータ14とその周辺の構造を示す
断面図で前記の第1図に相当する図。 第5図は第4図の短絡バルブ24の詳細を示す断面図、
第6図は本発明の原理を示すサーボモータ14の圧油制
御系統を等測的に示した図、第7図および第8図は従来
例を示すもので、第7図は可動羽根水車2の二点鎖線で
示したランナベーン4を矢印6方向に駆動して開閉させ
るサーボモータ14の圧油制御系統を示す図で前記の第
6図に相当する図、第8図はサーボモータ14とその周
辺の構造を示す断面図で前記の第1図および第4図に相
当する図である。 2・・・可動羽根水車(水車)、4・・・ランナベーン
。 12・・・圧油、14・・・ランナベーンサーボモータ
(サーボモータ)、16・・・開側サーボ室、18・・
・閉側サーボ室、 20・・・内側給油管、22.24
・・・短絡バルブ、28・・・間隔板、32・・・発電
機軸、34・・・外側給油管、38・・・導入給油管、
 40・・・うyナペーン操作ロッド、42・・・ピス
トン、46・・・短絡遮断プラグ、 50・・・付勢機
構、54・・・内側給油管サポート、56・・・バルブ
シリンダ、66第6図
1 to 3 show a first embodiment of the present invention, in which FIG. 1 is a sectional view showing the servo motor 14 and its surrounding structure, and FIG. 2 is a short-circuit valve 22 shown in FIG. 1. 3 is a cross-sectional view showing a state in which the circuit is opened by the centrifugal force 52.
The figure is a half sectional view taken along line A-A in FIG. 4 and 5 show a second embodiment of the present invention, and FIG. 4 is a cross-sectional view showing the structure of the servo motor 14 and its surroundings, which corresponds to FIG. 1 described above. FIG. 5 is a sectional view showing details of the short-circuit valve 24 in FIG. 4;
FIG. 6 is an isometric diagram showing the pressure oil control system of the servo motor 14 illustrating the principle of the present invention, and FIGS. 7 and 8 show conventional examples. A diagram showing the pressure oil control system of the servo motor 14 that drives the runner vane 4 in the direction of the arrow 6 to open and close the runner vane 4 indicated by the two-dot chain line, and corresponds to the above-mentioned FIG. 6, and FIG. 8 shows the servo motor 14 and its FIG. 4 is a sectional view showing the surrounding structure and corresponds to FIG. 1 and FIG. 4 described above. 2...Movable impeller water wheel (water wheel), 4...Runner vane. 12...Pressure oil, 14...Runner vane servo motor (servo motor), 16...Open side servo chamber, 18...
・Closing side servo chamber, 20...inner oil supply pipe, 22.24
...Short circuit valve, 28...Spacer plate, 32...Generator shaft, 34...Outer oil supply pipe, 38...Introduction oil supply pipe,
40... Uy nape operating rod, 42... Piston, 46... Short circuit blocking plug, 50... Biasing mechanism, 54... Inner oil supply pipe support, 56... Valve cylinder, 66th Figure 6

Claims (1)

【特許請求の範囲】 1)制御弁と圧油導入装置と給油管とを介して圧油を導
入し可動羽根水車のランナベーンを駆動するランナベー
ンサーボモータの圧油制御系統において、このランナベ
ーンサーボモータのピストンによって2室に区画される
一方の開側サーボモータ室に通じる圧油制御系統と他側
サーボモータ室に通じる圧油制御系統とを短絡あるいは
遮断する短絡バルブを設け、前記可動羽根水車が所定の
回転速度を超過したとき遠心力によって前記短絡バルブ
が開路動作し、前記開側サーボ室の油圧と閉側サーボ室
の油圧を平衡させて前記ランナベーンを全開させること
を特徴とする可動羽根水車の無拘束速度制限装置。 2)特許請求の範囲第1項記載の装置において、その圧
油制御系統は、水車軸に連結する中空管状の貫通穴を有
する発電機軸と、この発電機軸の貫通穴中に同心に配設
固定する外側給油管と、この外側給油管中に同心に二重
管状に配設固定する内側給油管と、開側サーボ室へ外側
給油管から圧油を導入する装置と、閉側サーボ室へ内側
給油管から圧油を導入する装置とを備え、その短絡バル
ブは、発電機軸中に発電機軸の半径方向に移動自在に短
絡遮断プラグを支承し発電機軸が所定の回転速度以内の
ときは内側給油管に設けた外側給油管への短絡穴に付勢
機構の押圧力で短絡遮断プラグの一端部が当接してこの
短絡穴を閉鎖している構造としたものであることを特徴
とする可動羽根水車の無拘束速度制限装置。 3)特許請求の範囲第1項記載の装置において、閉側サ
ーボ室に通じる圧油制御系統のピストンに固定する内側
給油管サポートに短絡バルブを設けることを特徴とする
可動羽根水車の無拘束速度制限装置。
[Scope of Claims] 1) In a pressure oil control system for a runner vane servo motor that introduces pressure oil through a control valve, a pressure oil introduction device, and an oil supply pipe to drive a runner vane of a movable impeller hydraulic turbine, A short-circuit valve is provided to short-circuit or cut off a pressure oil control system leading to one open side servo motor chamber divided into two chambers by a piston and a pressure oil control system leading to the other side servo motor chamber, and the movable impeller water wheel is connected to a predetermined position. The movable vane water turbine is characterized in that when the rotational speed exceeds the rotation speed, the short-circuit valve is opened by centrifugal force, and the hydraulic pressure in the open-side servo chamber and the hydraulic pressure in the closed-side servo chamber are balanced to fully open the runner vane. Unrestricted speed limiter. 2) In the device according to claim 1, the pressure oil control system is arranged and fixed concentrically with a generator shaft having a hollow tubular through hole connected to the water wheel shaft, and in the through hole of the generator shaft. an inner oil supply pipe arranged and fixed concentrically in the form of a double pipe within the outer oil supply pipe, a device for introducing pressure oil from the outer oil supply pipe into the open side servo chamber, and an inner oil supply pipe arranged and fixed in a double pipe shape concentrically within the outer oil supply pipe; The short-circuit valve supports a short-circuit cutoff plug movably in the radial direction of the generator shaft in the generator shaft, and when the generator shaft is within a predetermined rotational speed, the short-circuit valve supports internal oil supply. A movable vane characterized by having a structure in which one end of a short-circuit interrupting plug comes into contact with a short-circuit hole for an outer oil supply pipe provided in a pipe by the pressing force of a biasing mechanism, thereby closing the short-circuit hole. Unrestrained speed limiter for water turbines. 3) The device according to claim 1, characterized in that a short-circuit valve is provided on the inner oil supply pipe support fixed to the piston of the pressure oil control system leading to the closed side servo chamber. restriction device.
JP62296308A 1987-11-25 1987-11-25 Runaway speed limitter for movable vane waterwheel Pending JPH01138374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296308A JPH01138374A (en) 1987-11-25 1987-11-25 Runaway speed limitter for movable vane waterwheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296308A JPH01138374A (en) 1987-11-25 1987-11-25 Runaway speed limitter for movable vane waterwheel

Publications (1)

Publication Number Publication Date
JPH01138374A true JPH01138374A (en) 1989-05-31

Family

ID=17831867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296308A Pending JPH01138374A (en) 1987-11-25 1987-11-25 Runaway speed limitter for movable vane waterwheel

Country Status (1)

Country Link
JP (1) JPH01138374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428295A1 (en) 2006-08-04 2012-03-14 Citizen Holdings Co., Ltd. Tool post

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428295A1 (en) 2006-08-04 2012-03-14 Citizen Holdings Co., Ltd. Tool post

Similar Documents

Publication Publication Date Title
JP3226279B2 (en) Self-controlled fluid energy turbine
JP4194802B2 (en) Variable geometry turbine
JPH0639907B2 (en) Actuator for movable blades
US10352194B2 (en) Damper with adjustable seal
KR890000071B1 (en) Butterfly valve with servo-motor
JPH0365494A (en) Device for changing blade pitch
JP2017089627A (en) Centerline-mounted hydraulic pitch change mechanism actuator
CA1039658A (en) Actuating mechanism for gas turbine engine nozzles
US4020869A (en) Combined stop and intercept valve for steam turbines
JP2007309316A (en) Guide vane device of axial flow turbine of exhaust driven supercharger
JPH01138374A (en) Runaway speed limitter for movable vane waterwheel
JP2004084545A (en) Variable turbo supercharger
JPS5882682A (en) Pneumatic power tool
EP0111330B1 (en) Guide vane operating mechanism for water turbines
JPH04101074A (en) Windmill
CN110617148B (en) Reversing power turbine rotating mechanism system
US4557674A (en) Flow sensing speed control for pressure fluid motor
JPS622272Y2 (en)
US11022031B2 (en) Turbine arrangement
JP6059468B2 (en) Pitch change mechanism for open rotor style
US3068878A (en) Relief valve unit for adjustable blade turbine
JP2735109B2 (en) Electric runner vane servomotor
JPH0439389Y2 (en)
JPS6129977Y2 (en)
JP3299766B2 (en) Electric control device for water turbine