JPH01137638A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPH01137638A
JPH01137638A JP29643987A JP29643987A JPH01137638A JP H01137638 A JPH01137638 A JP H01137638A JP 29643987 A JP29643987 A JP 29643987A JP 29643987 A JP29643987 A JP 29643987A JP H01137638 A JPH01137638 A JP H01137638A
Authority
JP
Japan
Prior art keywords
thin film
substrate
stress
internal stress
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29643987A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29643987A priority Critical patent/JPH01137638A/en
Publication of JPH01137638A publication Critical patent/JPH01137638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce the internal stress of a thin film after forming and avoid the breakage and deterioration of the thin film without changing other properties by a method wherein a stress which reduces the internal stress created in the film when the film is formed is applied to a substrate. CONSTITUTION:Before a thin film is formed, a substrate 1 is placed on a supporter 2 and the supporter 2 is evacuated by a vacuum pump through an exhaust outlet 4 to attract and hold the substrate 1 by suction holes 3. The substrate 1 is heated by a resistance heater 6 provided in the supporter 2 and raw gas in introduced into a treatment chamber 10 to form a thin film on the substrate 1. The substrate 1 is deformed and a stress to be applied is applied so that, when the substrate 1 is released from the attracting force, the internal stress of the thin film can be reduced. With this constitution, the breakage and deterioration of the thin film after forming can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子製造に用いられる、薄膜を形成する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for forming a thin film used in semiconductor device manufacturing.

[従来の技術] 現在半導体素子、特にLSIの製造工程において、薄膜
形成装置は重要な位置を示している。LSIの製造用の
基板上に薄膜を形成する方法としては、熱CVD法、プ
ラズマ CVD法、スパッタリング法などが知られている。熱C
VD装置は、ゲート電極用ポリシリコン・高融点金属、
局所酸化マスク用Si3N。
[Prior Art] Thin film forming apparatuses are currently playing an important role in the manufacturing process of semiconductor devices, especially LSIs. Known methods for forming thin films on substrates for LSI manufacturing include thermal CVD, plasma CVD, and sputtering. fever C
The VD device uses polysilicon for gate electrodes, high melting point metals,
Si3N for local oxidation mask.

や層間絶縁用PSGなどの形成に広く用いられている。It is widely used for forming PSG for interlayer insulation.

又、プラズマCVD装置はパシベーション用SiN形成
に用いられている。更にスパックリンク装置は配線用A
n形成に用いられている。
Further, a plasma CVD apparatus is used to form SiN for passivation. Furthermore, the spack link device is for wiring A.
Used for n formation.

[発明が解決しようとしている問題点]しかしながら、
上記従、未例の薄膜形成装置では形成した膜に内部応力
が発生しやすく、この内部応力が、形成後に膜のクラッ
ク発生、ストレスマイグレーションによる特性劣化等を
おこす原因になっている。
[Problem that the invention seeks to solve] However,
In the conventional thin film forming apparatus described above, internal stress is likely to occur in the formed film, and this internal stress causes cracks in the film after formation, deterioration of characteristics due to stress migration, etc.

SiN膜をシリコン基板上に形成する場合を例にとると
、熱CVD装置の場合には基板と膜の熱膨張率の違いに
より処理終了後、常温にもどした時に1 、5 X 1
0 ”dyn/cm”程度の引張応力が、プラズマCV
D装置の場合には高速イオンの入射により5 X 10
 ’dyn/cm2程度の圧縮応力が膜形成後に発生す
る。
Taking the case of forming a SiN film on a silicon substrate as an example, in the case of a thermal CVD device, due to the difference in thermal expansion coefficient between the substrate and the film, when the temperature is returned to room temperature after the completion of processing, the
A tensile stress of about 0 dyn/cm is applied to plasma CV
In the case of D device, 5 × 10
A compressive stress of about 'dyn/cm2 is generated after the film is formed.

尚、内部応力は、一般に成膜後の基板のそりを測定する
ことにより行なわれており、基板が円盤状の場合には σ=EsTs2/6(1−V)rTf   (1)で求
められる。
Note that the internal stress is generally measured by measuring the warpage of the substrate after film formation, and when the substrate is disk-shaped, it is determined by σ=EsTs2/6(1-V)rTf (1).

内部応力を少なくする為に、組成、温度、プラズマパワ
ーなどの薄膜形成時の条件を最適化するという方法も考
えられるが、これらの条件を変化させると内部応力以外
の性能も変化して木来求めている薄膜の種々の特性か得
られなくなってしまう。これらの性能の最適化と低応力
化を両立することは難しい。
One possible method to reduce internal stress is to optimize the conditions during thin film formation, such as composition, temperature, and plasma power, but changing these conditions will also change performance other than internal stress. This makes it impossible to obtain the desired properties of the thin film. It is difficult to simultaneously optimize these performances and reduce stress.

本願の目的は前述従来例の欠点に鑑み、薄膜形成時の他
の条件を変える事なく、形成後の薄膜のクラック、特性
劣化等を防止する事ができる薄膜形成装置を提供する事
にある。
The purpose of the present application is to provide a thin film forming apparatus that can prevent cracks, characteristic deterioration, etc. of the thin film after it is formed, without changing other conditions during thin film formation, in view of the drawbacks of the conventional examples described above.

[問題点を解決するための手段及び作用コ本発明によれ
ば薄膜形成時に、膜に生じる内部応力を低減させる様な
応力を基板に加える様にしているので、他の性能を変化
させることなく、内部応力を低減して形成後の薄膜の破
壊、劣化を防止できる。
[Means and effects for solving the problem] According to the present invention, when forming a thin film, stress is applied to the substrate to reduce the internal stress generated in the film, without changing other performances. , it is possible to reduce internal stress and prevent destruction and deterioration of the thin film after formation.

[実施例] 第1図は本発明の第1実施例の薄膜形成装置の断面図で
ある。同図において、1は円盤状の基板、2は支持体、
3は支持体2内に設けられた吸気孔、4は吸気孔3につ
ながり、管を介して不図示の真空ポンプに接続された排
気孔、6は抵抗ヒータ、7は原料ガス、10は処理室で
ある。薄膜を形成する前の基板1を支持体2の上に載置
し、排気孔4から不図示の真空ポンプにより排気して基
板を吸気孔3で吸着保持する。この後支持体2に設けら
れた抵抗ヒータ6により基板1を加熱し、処理室10内
に原料ガスを流し込むことにより基板l上に薄膜を形成
する。
[Example] FIG. 1 is a sectional view of a thin film forming apparatus according to a first example of the present invention. In the figure, 1 is a disk-shaped substrate, 2 is a support,
3 is an intake hole provided in the support body 2, 4 is an exhaust hole connected to the intake hole 3 and connected to a vacuum pump (not shown) through a pipe, 6 is a resistance heater, 7 is a source gas, and 10 is a processing It is a room. The substrate 1 on which the thin film has not yet been formed is placed on the support 2, and is evacuated from the exhaust hole 4 by a vacuum pump (not shown), and the substrate is held by suction at the suction hole 3. Thereafter, the substrate 1 is heated by a resistance heater 6 provided on the support 2, and a raw material gas is flowed into the processing chamber 10 to form a thin film on the substrate 1.

支持体2の吸着面2aは図の様に球面になっている。こ
の球面の曲率半径rは以下の式により決定されている。
The suction surface 2a of the support 2 is spherical as shown in the figure. The radius of curvature r of this spherical surface is determined by the following formula.

r=EsTs” /6 (1−V)crTf   (2
)ここで補う応力σは以下の要領で求める。
r=EsTs”/6 (1-V)crTf (2
) The stress σ to be supplemented here is determined as follows.

まず、この実施例の装置と同じ条件で、ただし薄膜形成
時に基板にほとんど応力を印加しないようにして、装置
で処理する基板と同様の基板上に薄膜を形成する。形成
した薄膜には内部応力が発生し、基板にそりが生じる。
First, a thin film is formed on a substrate similar to that to be processed by the apparatus under the same conditions as in the apparatus of this example, but with almost no stress applied to the substrate during thin film formation. Internal stress occurs in the formed thin film, causing warpage in the substrate.

このそりが生じた基板の曲率半径を測定し、(1)式よ
り内部応力の値を求める。これが形成薄膜により基板が
受ける応力であるが、基板にあらかじめ例えば機械的に
この応力と逆向きで同程度の応力を印加しておき、成膜
後この機械的印加応力を取り除けば、形成薄膜から受け
る応力は打ち消されることになり、即ち薄膜の内部応力
が低減され、理想的には0になる。このあらかじめ印加
すべき応力が補う応力σ即ち形成薄膜に発生する内部応
力を低減する応力となる。σを求め、(2)式より曲率
半径「を決定し、この曲率半径rの曲面に加工された吸
着面2aに基板lを吸着保持することにより、基板lは
図の様に変形し、前述の印加すべき応力が印加されるこ
とになる。この基板上に前述の要領で薄膜を形成すれば
、吸着を解除した時には薄膜の内部応力は低減されてい
る。基板に応力を加えるたけなので、他の薄膜形成条件
を変化させる必要はない。支持体2は取り外し可能であ
り、薄膜形成の条件、基板の条件に応じて適正な形状の
支持体に取り換えられる。
The radius of curvature of the substrate where this warp has occurred is measured, and the value of internal stress is determined from equation (1). This is the stress that is applied to the substrate by the formed thin film, but if a stress of the same magnitude in the opposite direction is applied mechanically to the substrate in advance, and this mechanically applied stress is removed after the film is formed, the formed thin film can be The applied stress will be canceled out, ie the internal stress of the thin film will be reduced, ideally to zero. This stress to be applied in advance becomes a supplementary stress σ, that is, a stress that reduces the internal stress generated in the formed thin film. σ is determined, the radius of curvature is determined from equation (2), and the substrate l is deformed as shown in the figure by suctioning and holding the substrate l on the suction surface 2a that has been processed into a curved surface with the radius of curvature r. If a thin film is formed on this substrate in the manner described above, the internal stress of the thin film will have been reduced when the adsorption is released. There is no need to change other thin film formation conditions.The support 2 is removable and can be replaced with a support of an appropriate shape depending on the thin film formation conditions and substrate conditions.

この実施例による常圧熱CVD法によるSi、N、形成
例を説明する。基板lとして6インチシリコン基板(厚
さ525 gm)を用いた。原料ガス7としてN H3
とSiH4を用いた。基板温度を800℃に保った。
An example of forming Si and N by the atmospheric pressure thermal CVD method according to this embodiment will be explained. A 6-inch silicon substrate (thickness: 525 gm) was used as the substrate 1. NH3 as raw material gas 7
and SiH4 were used. The substrate temperature was maintained at 800°C.

まず、応力発生手段を用いず、5izN4膜を3000
人厚成膜したところ1.5X10”dyn/Cm’の引
張応力を生じた。
First, the 5izN4 film was heated to 3000 without using any stress generating means.
When the film was formed to a normal thickness, a tensile stress of 1.5 x 10"dyn/Cm' was generated.

次に、(2)式により求めた曲率(2×10’cm凸)
をもつ支持体に基板を吸着させ、前と同条件で成膜した
ところ、応力は測定限界(3x l O’dyn/cm
”)以下になった。密度、エッチレートなどの他性能は
変わらず良質だった。
Next, the curvature (2 x 10'cm convex) determined by equation (2)
When the substrate was adsorbed to a support with
”).Other performances such as density and etch rate remained good.

82図は本発明の第2実施例の薄膜形成装置の断面図で
、同図において、1は円盤状の基板、2は支持体、5は
基板に応力を加える爪、6は抵抗ヒータ、7は原料ガス
、10は処理室である。
FIG. 82 is a sectional view of a thin film forming apparatus according to the second embodiment of the present invention, in which 1 is a disk-shaped substrate, 2 is a support, 5 is a claw that applies stress to the substrate, 6 is a resistance heater, and 7 1 is a raw material gas, and 10 is a processing chamber.

基板lを支持体2の上に載せ、爪5のビスを締めること
により、膜に生じる内部応力を補うように接触面を球面
に加工された支持体2に基板1が押しつけられて密着す
る。そして抵抗ヒータ6で基板lを加熱し、原料ガス7
を流し、高周波電極8に電圧を印加することにより基板
l上に薄膜形成する。
By placing the substrate 1 on the support 2 and tightening the screws of the claws 5, the substrate 1 is pressed against the support 2 whose contact surface is processed into a spherical surface so as to compensate for the internal stress generated in the film, so that the substrate 1 is brought into close contact with the support 2. Then, the substrate l is heated with the resistance heater 6, and the raw material gas 7 is heated.
A thin film is formed on the substrate l by applying a voltage to the high frequency electrode 8.

この実施例によるプラズマCVDによるSiN形成例を
説明する。基板lとして6インチ基板を用いた。原料ガ
スとしてN2とS i N 4を用いた。操作圧は0.
ITorrに保った。プラズマは、1356MHzの高
周波をウェハ上方に設けた平行平板型電極にsoow加
え、発生させた。抵抗加熱により加熱し、基板を300
℃に保った。
An example of SiN formation by plasma CVD according to this embodiment will be explained. A 6-inch substrate was used as the substrate l. N2 and SiN4 were used as source gases. The operating pressure is 0.
It was kept at ITorr. Plasma was generated by applying a high frequency wave of 1356 MHz to parallel plate electrodes provided above the wafer. The substrate is heated to 300℃ using resistance heating.
It was kept at ℃.

まず、応力発生手段を用いず、S i NMをIJLm
厚成膜したところ、5 X 10 ”dyn/cm2の
圧縮応力を生じた。
First, without using stress generation means, S i NM is
When a thick film was formed, a compressive stress of 5 x 10'' dyn/cm2 was generated.

次に(2)式を用いて求め4た曲率(1,8x10’c
m凹)をもつ支持体に基板を密着させ、前と同条件で成
膜したところ、応力は測定限界(I X 10 ’dy
n/cs2)以下になワた。密度、水素含有率などの他
性能は変わらず良質だった。
Next, the curvature (1,8x10'c
When the substrate was brought into close contact with a support having a diameter of
n/cs2) below. Other properties such as density and hydrogen content were still of good quality.

前述の実施例では円盤状の基板用の薄膜形成装置につい
てのみであったが、他の形状の基板であっても、その形
状に応じた適切な応力を印加する手段を設ける事により
、本願効果が達成されることは言うまでもない。
In the above embodiment, only a thin film forming apparatus was used for a disk-shaped substrate, but even for substrates of other shapes, the effects of the present invention can be achieved by providing a means for applying appropriate stress according to the shape. Needless to say, this will be achieved.

[発明の効果] 以上説明したように、本発明によれば、他の性能を良質
に保ち、内部応力の少ない薄膜形成が可能になる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to maintain other properties at high quality and form a thin film with less internal stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の断面図である。 第2図は本発明の第2実施例の断面図である。 1は円盤状の基板、2は支持体、3は吸気口、4は排気
口、5は基板に応力を加える爪。 6は抵抗ヒータ、7は原料ガス、8は高周波電極、lO
は処理室である。
FIG. 1 is a sectional view of a first embodiment of the present invention. FIG. 2 is a sectional view of a second embodiment of the invention. 1 is a disk-shaped substrate, 2 is a support, 3 is an inlet, 4 is an exhaust port, and 5 is a claw that applies stress to the substrate. 6 is a resistance heater, 7 is a raw material gas, 8 is a high frequency electrode, lO
is the processing room.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に薄膜を形成する為の手段と、前記薄膜形
成手段で薄膜を形成する際に、形 成薄膜に発生する内部応力を低減する様な 応力を前記基板に印加する手段と、を有す る事を特徴とする薄膜形成装置。
(1) means for forming a thin film on a substrate; and means for applying stress to the substrate to reduce internal stress generated in the formed thin film when the thin film is formed by the thin film forming means. A thin film forming apparatus characterized by having:
(2)前記応力発生手段は、前記基板を球面状に加工さ
れた支持体の接触面に吸着させる 事により応力を発生させる事を特徴とする 特許請求の範囲第1項記載の薄膜形成装 置。
(2) The thin film forming apparatus according to claim 1, wherein the stress generating means generates stress by adsorbing the substrate to a contact surface of a spherically processed support.
(3)前記応力発生手段は、前記基板を球面状に加工さ
れた支持体の接触面に押しつける 事により応力を発生させる事を特徴とする 特許請求の範囲第2項記載の薄膜形成装 置。
(3) The thin film forming apparatus according to claim 2, wherein the stress generating means generates stress by pressing the substrate against a contact surface of a spherically processed support.
JP29643987A 1987-11-24 1987-11-24 Thin film forming apparatus Pending JPH01137638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29643987A JPH01137638A (en) 1987-11-24 1987-11-24 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29643987A JPH01137638A (en) 1987-11-24 1987-11-24 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPH01137638A true JPH01137638A (en) 1989-05-30

Family

ID=17833553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29643987A Pending JPH01137638A (en) 1987-11-24 1987-11-24 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPH01137638A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246130A (en) * 2008-03-31 2009-10-22 Tokyo Electron Ltd Film forming device, film forming method, and method of manufacturing semiconductor integrated circuit device
JP2013012776A (en) * 2012-09-24 2013-01-17 Tokyo Electron Ltd Plasma processing apparatus and substrate placement base
JP2014063872A (en) * 2012-09-21 2014-04-10 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor device and deposition device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296726A (en) * 1985-06-25 1986-12-27 Nec Corp Manufacture of semiconductor device
JPS6459809A (en) * 1987-08-31 1989-03-07 Nec Corp Formation of low-stress thin film and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296726A (en) * 1985-06-25 1986-12-27 Nec Corp Manufacture of semiconductor device
JPS6459809A (en) * 1987-08-31 1989-03-07 Nec Corp Formation of low-stress thin film and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246130A (en) * 2008-03-31 2009-10-22 Tokyo Electron Ltd Film forming device, film forming method, and method of manufacturing semiconductor integrated circuit device
JP2014063872A (en) * 2012-09-21 2014-04-10 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor device and deposition device
JP2013012776A (en) * 2012-09-24 2013-01-17 Tokyo Electron Ltd Plasma processing apparatus and substrate placement base

Similar Documents

Publication Publication Date Title
JP2938361B2 (en) Multi-stage CVD for thin film transistors
JPS61127121A (en) Formation of thin film
JPS6345371A (en) Formation of deposited film
WO1999028961A1 (en) Process for producing insulating film
JP3406250B2 (en) Method of forming silicon nitride based film
JPH1112738A (en) Cvd film forming method
JPH04233734A (en) Fluorization silicon nitride adhesion method
JPH01137638A (en) Thin film forming apparatus
JPH06244175A (en) Method and device for manufacturing insulating film
JPH0745610A (en) Manufacture of semiconductor device
JPH0629222A (en) Manufacture of semiconductor device
JPH09102490A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
JPH04120733A (en) Method for forming silicon nitride film
JPS6234139B2 (en)
JPS5941773B2 (en) Vapor phase growth method and apparatus
JP2000332012A (en) Method of forming silicon nitride film
JP3570354B2 (en) Method for forming film on semiconductor wafer and semiconductor wafer
JPS62221120A (en) Manufacture of semiconductor device
JPH02111867A (en) Method for depositing a metal onto a silicon substrate
JP3123494B2 (en) Semiconductor device and manufacturing method thereof
JP3261795B2 (en) Plasma processing equipment
JPH02148843A (en) Manufacture of semiconductor device
JPH01265568A (en) Manufacture of semiconductor device
JPH04286332A (en) Thin film formation method
JP2581281B2 (en) Method for manufacturing compound semiconductor device