JPH0113494B2 - - Google Patents

Info

Publication number
JPH0113494B2
JPH0113494B2 JP55182323A JP18232380A JPH0113494B2 JP H0113494 B2 JPH0113494 B2 JP H0113494B2 JP 55182323 A JP55182323 A JP 55182323A JP 18232380 A JP18232380 A JP 18232380A JP H0113494 B2 JPH0113494 B2 JP H0113494B2
Authority
JP
Japan
Prior art keywords
powder
polytetrafluoroethylene
wear
molding
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182323A
Other languages
Japanese (ja)
Other versions
JPS57105442A (en
Inventor
Noritsune Horiuchi
Hiroshi Harada
Akio Shimizu
Yasuyoshi Koike
Koji Nakamura
Tatsuro Uchida
Masaharu Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP18232380A priority Critical patent/JPS57105442A/en
Publication of JPS57105442A publication Critical patent/JPS57105442A/en
Publication of JPH0113494B2 publication Critical patent/JPH0113494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリテトラフルオロエチレン樹脂を基
体とし、これに特殊なフイラーを配合したシール
部材又は軸受部材用成形用組成物、とくに相手材
に対して高度の相対的耐摩耗性を有するパツキ
ン、オイルシールや軸受の成形に用いるための粉
末組成物に関するものである。 従来、例えば相対的に運動する軽合金部材の摺
動面に於ける圧力媒体のパツキン及びオイルシー
ルの材料としては、 (1) ポリテトラフルオロエチレン樹脂に芳香族系
耐熱樹脂を配合したもの、 (2) ポリテトラフルオロエチレン樹脂に炭素繊維
又はガラス繊維又はグラフアイトを配合したも
の、 (3) ポリテトラフルオロエチレン樹脂に芳香族系
耐熱樹脂を配合し、更に、ガラス繊維又はグラ
フアイトを配合したもの、 を使用していたが何れも相手軽合金とパツキン及
びオイルシール自体の摩耗が大きいため短期間で
漏れを生じる欠点があつた。 本発明の目的は、ポリオキシベンゾイルポリエ
ステル系耐熱性樹脂粉末と炭素繊維粉末を配合す
ることによつて、相手軽合金と高度の相対的耐摩
耗性を有するパツキン、オイルシールや軸受を得
ることができるようなポリテトラフルオロエチレ
ン樹脂を基体とする成形用組成物を提供すること
である。 本発明の組成物の各々の原料の配合割合は平均
粒径100ミクロン以下のポリテトラフルオロエチ
レン樹脂粉末55〜89重量%、ポリオキシベイルゾ
イルポリエステル系耐熱性樹脂粉末35〜10重量
%、炭素繊維粉末10〜1重量%の範囲にあり、こ
の配合割合の範囲内でその成形体であるフツ素樹
脂製品はより高度の相対的耐摩耗性を有すること
が見出された。 本発明の組成物の製造に使用する平均粒径100
ミクロン以下のポリテトラフルオロエチレン樹脂
粉末は、合合後のポリテトラフルオロエチレン樹
脂の粗粒末を微粉砕して得られるテトラフルオロ
エチレンの単独重合体、2重量%以下の共重合可
能な単量体で変性されたテトラフルオロエチレン
の共重合体が含まれる。前記変性剤の例として
は、炭素数3〜6のパーフルフロアルケン(たと
えばヘキサフルオロプロピレン)、炭素数3〜6
個のパーフルオロ(アルキルビニルエーテル)
(たとえばパーフルオロ(プロピルビニルエーテ
ル))などがあげられ、これらで変性された共重
合体はポリテトラフルオロエチレン同様、溶融加
工性を有しない。これら重合体は平均粒径100ミ
クロン以下、好ましくは10〜50ミクロンに粉砕し
た粉末として使用される。 本発明で使用されるポリオキシベンゾイルポリ
エステル系耐熱性樹脂は、一般に次式()の反
復単立を持つ合成樹脂である。 この化合物は上記反復単位の他に下記〔〕及
び〔〕式の反復単位を含む共重合体の形であつ
てもよい。 (Xは−O−であり;mは0又は1であり、nは
0又は1である。) 本発明に使用する炭素繊維粉末は、炭素繊維を
微粉砕したもので、各粒子の直径は3〜30ミクロ
ン程度、平均長は10〜1000ミクロン程度である。 ポリテトラフルオロエチレンへの前記各フイラ
ーの混合のしかたは通常の乾式混合、湿式混合い
ずれの方法によつても可能であるが、近年成形の
自動化が重視して行なわれるのに伴ない、粉末の
取扱い性とくに粉末流動性を改良し、高い見掛比
重を有するフイラー入り成形粉末として集塊化造
粉して使用することが好ましい。 かかる集塊化造粒の方法には、大別して乾式法
と湿式法とがある。このうち前者は水を使用しな
い方法をいい、その代表的なものとしては、ポリ
テトラフルオロエチレンとフイラーとをポリテト
ラフルオロエチレンを湿潤することのできる液
体、たとえば四塩化炭素、アセトン、トリクロロ
エチレン、フツ化塩化炭化水素などの有機液体で
湿潤させて、撹拌などの機械力を作用させる方法
(特公昭44−22620号)が知られている。後者の方
法は水を使用する方法をいい、代表例は前記乾式
法のポリテトラフルオロエチレン、フイラーおよ
び有機液体の混合物を水中で撹拌して集塊化させ
る方法(特公昭44−22619号等)である。こうし
て集塊化造粒して得られる粉末は、粒度が100〜
1000ミクロン、見掛比重が0.4〜0.9、とくに0.5〜
0.8であり、特開昭49−33943号に記載された方法
(ただし、上下ホツパーの出口直径を12mmに変更)
によつて測定された粉末流動度を2以上、好まし
くは3〜7である灰色ないし暗灰色の粉末であ
る。 本発明の組成物は、圧縮予備成形及び330〜400
℃程度の温度条件下における焼成から成る周知の
方法によつて成形されるものである。その成形方
法にはラム押出成形、等圧成形、自動成形等も包
含される。 本発明の組成物及びこれを成形して得られるフ
ツ素樹脂製品には、基体的に前記の特性を損なわ
ない限り着色剤、充填剤、帯電防止剤等の各種改
質剤を添加することができる。 本発明のフツ素樹脂製品は、前述のとおり、相
手材料及び自己製品の摺動摩耗の総量によつて表
わされる相対的耐摩耗性に関してとくにすぐれた
特性を有する上に、圧緒強度及び圧縮変形性等に
関しても改良された機械的性質を具備しており、
パツキン、オイルシールの外に軸受等として有用
である。 次に、本発明による作用効果について実施例及
び比較例をあげて説明する。 実施例1〜8、比較例1〜12 平均粒径35ミクロンのポリテトラフルオロエチ
レン樹脂粉末に対して芳香族系耐熱樹脂としてポ
リオキシベンゾイルポリエステル粉末である住友
化学(株)の「エコノールE−101」及び10〜15ミク
ロンの平均直径と100〜200ミクロンの平均長の炭
素繊維粉末とを表1に示す重量比で均一に配合し
て本発明のフイラー入りポリテトラフルオロエチ
レン成形用粉末を調製した。 この粉末を常法により成形し方形断面のリング
状パツキンを作製し、これを油圧作動シール機構
における回転軸に装着すると共に相手軽合金とし
てJIS H 5202 アルミニユーム合金鋳物
AC4C−T6のシリンダ内面に於て80Kg/cm2の油圧
圧力下で回転摺動させ、このパツキン自体の摩耗
量及び相手軽合金シリンダの最大摩耗深さを測定
した。結果を表1に示す。 比較のためにポリテトラフルオロエチレン、ポ
リオキシベンゾイルポリエステル及び炭素繊維粉
末を含有するが、その重量比が特許請求の範囲に
規定された範囲外の成形用粉末(比較例1、2)
および従来公知の成形用粉末(比較例3〜12)を
調製し、実施例1〜8と同様にリング状パツキン
を作製し、パツキン自体の摩耗量及び相手軽合金
シリンダの最大摩耗深さを測定した。結果を表1
に示す。 表1に示した実施例及び比較例の結果を対比す
れば、本発明のパツキン及びオイルシールは、相
手軽合金とパツキン及びオイルシールに対して高
度の相対的耐摩耗性を有するものであることが認
められた。
The present invention relates to a molding composition for sealing members or bearing members, which is made of polytetrafluoroethylene resin as a base material and which is blended with a special filler, particularly for packing and oil seals that have a high degree of wear resistance relative to the mating material. The present invention relates to a powder composition for use in molding bearings and bearings. Conventionally, materials for pressure medium seals and oil seals on the sliding surfaces of light alloy members that move relative to each other have been (1) polytetrafluoroethylene resin blended with aromatic heat-resistant resin; 2) Polytetrafluoroethylene resin blended with carbon fiber, glass fiber, or graphite; (3) Polytetrafluoroethylene resin blended with aromatic heat-resistant resin and further blended with glass fiber or graphite. , were used, but both had the drawback of causing leaks in a short period of time due to large wear on the mating light alloy, packing, and oil seal itself. The purpose of the present invention is to obtain packings, oil seals, and bearings that have a high degree of wear resistance relative to the mating light alloy by blending polyoxybenzoyl polyester heat-resistant resin powder and carbon fiber powder. An object of the present invention is to provide a molding composition based on a polytetrafluoroethylene resin that can be used as a base material. The blending ratio of each raw material in the composition of the present invention is 55-89% by weight of polytetrafluoroethylene resin powder with an average particle size of 100 microns or less, 35-10% by weight of polyoxybeilzoyl polyester heat-resistant resin powder, and carbon fiber. It has been found that the powder content is in the range of 10 to 1% by weight, and within this blending ratio, the fluororesin product that is the molded product has a higher relative wear resistance. Average particle size 100 used in the production of the composition of the present invention
Polytetrafluoroethylene resin powder of micron size or less is a homopolymer of tetrafluoroethylene obtained by finely pulverizing the coarse powder of polytetrafluoroethylene resin after synthesis, and contains copolymerizable monomers of 2% by weight or less. This includes copolymers of tetrafluoroethylene modified with Examples of the modifier include perfluoroalkenes having 3 to 6 carbon atoms (e.g. hexafluoropropylene), 3 to 6 carbon atoms;
perfluoro(alkyl vinyl ether)
(for example, perfluoro(propyl vinyl ether)), and copolymers modified with these do not have melt processability like polytetrafluoroethylene. These polymers are used as powders which have been ground to an average particle size of less than 100 microns, preferably from 10 to 50 microns. The polyoxybenzoyl polyester heat-resistant resin used in the present invention is generally a synthetic resin having repeating units of the following formula (). This compound may be in the form of a copolymer containing repeating units of the following formulas [] and [] in addition to the above repeating units. (X is -O-; m is 0 or 1, and n is 0 or 1.) The carbon fiber powder used in the present invention is finely ground carbon fiber, and the diameter of each particle is The average length is about 3 to 30 microns, and the average length is about 10 to 1000 microns. The above-mentioned fillers can be mixed into polytetrafluoroethylene using either conventional dry mixing or wet mixing methods, but as automation of molding has become more important in recent years, powder It is preferable to improve handling properties, especially powder flowability, and to use the powder by agglomeration as a filler-containing compacted powder having a high apparent specific gravity. Such agglomeration and granulation methods can be broadly classified into dry methods and wet methods. Among these, the former refers to a method that does not use water; a typical method is to mix polytetrafluoroethylene and a filler with a liquid that can wet the polytetrafluoroethylene, such as carbon tetrachloride, acetone, trichloroethylene, or A method is known in which the material is moistened with an organic liquid such as chlorinated hydrocarbon and mechanical force such as stirring is applied (Japanese Patent Publication No. 22620/1989). The latter method refers to a method that uses water, and a representative example is the dry method method in which a mixture of polytetrafluoroethylene, a filler, and an organic liquid is stirred in water to agglomerate it (Japanese Patent Publication No. 22619/1974, etc.). It is. The powder obtained by agglomeration and granulation in this way has a particle size of 100~
1000 microns, apparent specific gravity 0.4~0.9, especially 0.5~
0.8, and the method described in JP-A-49-33943 (however, the exit diameter of the upper and lower hoppers was changed to 12 mm)
It is a gray to dark gray powder with a powder fluidity of 2 or more, preferably 3 to 7, as measured by . The composition of the present invention can be compressed preformed and
It is molded by a well-known method consisting of firing at a temperature of about .degree. The molding method includes ram extrusion molding, isopressure molding, automatic molding, and the like. Various modifiers such as colorants, fillers, and antistatic agents may be added to the composition of the present invention and the fluororesin products obtained by molding the same, as long as they do not fundamentally impair the above-mentioned properties. can. As mentioned above, the fluororesin product of the present invention has particularly excellent properties in terms of relative wear resistance expressed by the total amount of sliding wear of the mating material and its own product, and also It also has improved mechanical properties in terms of strength etc.
In addition to packing and oil seals, it is useful as bearings, etc. Next, the effects of the present invention will be explained with reference to Examples and Comparative Examples. Examples 1 to 8, Comparative Examples 1 to 12 "Econol E-101" manufactured by Sumitomo Chemical Co., Ltd. is a polyoxybenzoyl polyester powder as an aromatic heat-resistant resin for polytetrafluoroethylene resin powder with an average particle size of 35 microns. Filled polytetrafluoroethylene molding powder of the present invention was prepared by uniformly blending carbon fiber powder with an average diameter of 10 to 15 microns and an average length of 100 to 200 microns at the weight ratio shown in Table 1. . This powder is molded using a conventional method to produce a ring-shaped packing with a rectangular cross section, and this is attached to the rotating shaft of the hydraulically operated seal mechanism, and a JIS H 5202 aluminum alloy casting is used as the mating light alloy.
The packing was rotated and slid on the inner surface of the cylinder of AC4C-T6 under a hydraulic pressure of 80 kg/ cm2 , and the wear amount of the packing itself and the maximum wear depth of the mating light alloy cylinder were measured. The results are shown in Table 1. For comparison, molding powder containing polytetrafluoroethylene, polyoxybenzoyl polyester, and carbon fiber powder, but whose weight ratio is outside the range specified in the claims (Comparative Examples 1 and 2)
and conventionally known molding powders (Comparative Examples 3 to 12) were prepared, ring-shaped packings were made in the same manner as Examples 1 to 8, and the wear amount of the packing itself and the maximum wear depth of the mating light alloy cylinder were measured. did. Table 1 shows the results.
Shown below. Comparing the results of the Examples and Comparative Examples shown in Table 1, it can be seen that the packing and oil seal of the present invention have a high degree of relative wear resistance compared to the mating light alloy, packing, and oil seal. was recognized.

【表】【table】

【表】 実施例10、11、比較例13 実施例1と同じ原料粉末を、ポリテトラフルオ
ロエチレン樹脂粉末70重量部、ポリオキシベンゾ
イルポリエステル粉末25重量部及び炭素繊維5重
量部の割合で均一に混合した(この混合粉末を粉
末Aと称す)。この混合粉末A1Kgに対し湿潤剤と
してトリクロロトリフルオロエタンを0.4の割
合で用いてV型ブレンダーにより転動造粒処理を
行なつた。処理後10メツシユ篩により粗大粒子を
除去し篩下の造粒粉末を成形用粉末として取得し
た。この粉末の平均粒径は450ミクロン、見掛密
度は0.4、粉末流動度は3であつた(この粉末を
粉末Bと称す)。 さらに以上とは別に粉末Aの調製において炭素
繊維を使用せずに混合粉末を調製した(この混合
粉末を粉末cと称す)。 以上の粉末A、B、Cについて、摩耗係数、動
摩擦係数、圧縮弾性率、圧縮強度(25%変形)及
び定荷重変形率を測定した。その結果を表2に示
す。なお、前記各物性の測定方法は次のとおりで
ある。 圧縮強度及び圧縮弾性率:予備成形圧力500Kg/
cm2、温度370℃で5.5時間焼成後、降温速度50
℃/hrで冷却して得られた50mmφ×50mmの成
形品から加圧平向方向に10mmφ×20mmの試料
を作成し、圧縮変形(%)に対する圧縮強度を
自動的に記録して測定し、25%変形時の圧縮強
度及び弾性変形範囲における変形率を圧縮弾性
率として求める。 定荷重変形:圧縮強度測定用に作製した成形品か
ら加圧平行方向に11.3mmφ×10mmの試料を作
成し、ASTM D621に準拠し、24℃、140Kg/
cm2及び24時間の条件下に圧縮クリープ、全変形
及び永久変形の割合(%)を求める。圧縮クリ
ープ(%)は負荷後24時間の全変形(%)より
負荷後10秒の変形(%)を差引いた値である。 動摩擦係数:鈴木式摩擦摩耗試験機を用い、相手
材SUS−306、荷重4Kg/cm2及び速度1m/sec
の条件下で測定する。 摩耗係数:圧縮強度測定用に作製した成形品から
外径及び内径が25.6mm及び20mmで長さが15mmの
試料を切りとり、鈴木式摩擦摩耗試験機によ
り、相手材SUS−306、荷重4Kg/cm2、速度1
m/sec及び試験時間65時間の条件下に測定し、
次式によつて摩耗係数を求める。 k=0.0385w k:摩耗係数(mm/Km・Kg/cm2
W:摩耗量
[Table] Examples 10, 11, Comparative Example 13 The same raw material powder as in Example 1 was uniformly mixed with 70 parts by weight of polytetrafluoroethylene resin powder, 25 parts by weight of polyoxybenzoyl polyester powder, and 5 parts by weight of carbon fiber. (This mixed powder is referred to as powder A). 1 kg of this mixed powder A was subjected to rolling granulation using a V-type blender using trichlorotrifluoroethane as a wetting agent at a ratio of 0.4. After the treatment, coarse particles were removed using a 10-mesh sieve, and the granulated powder under the sieve was obtained as a molding powder. This powder had an average particle size of 450 microns, an apparent density of 0.4, and a powder fluidity of 3 (this powder is referred to as powder B). Furthermore, in addition to the above, a mixed powder was prepared without using carbon fiber in the preparation of powder A (this mixed powder is referred to as powder c). For the above powders A, B, and C, the wear coefficient, dynamic friction coefficient, compressive elastic modulus, compressive strength (25% deformation), and constant load deformation rate were measured. The results are shown in Table 2. The methods for measuring each of the above-mentioned physical properties are as follows. Compressive strength and compressive modulus: Preforming pressure 500Kg/
cm 2 , after firing for 5.5 hours at a temperature of 370℃, cooling rate of 50
A sample of 10 mmφ x 20 mm was created in the pressing plane direction from a 50 mmφ x 50 mm molded product obtained by cooling at °C/hr, and the compressive strength against compressive deformation (%) was automatically recorded and measured. The compressive strength at 25% deformation and the deformation rate in the elastic deformation range are determined as the compressive elastic modulus. Constant load deformation: A sample of 11.3 mmφ x 10 mm was prepared in the parallel direction under pressure from a molded product prepared for compressive strength measurement, and was deformed at 24℃ and 140 kg/cm in accordance with ASTM D621.
Determine the percentage of compression creep, total deformation and permanent deformation under the conditions of cm2 and 24 hours. Compression creep (%) is the value obtained by subtracting the deformation (%) 10 seconds after loading from the total deformation (%) 24 hours after loading. Dynamic friction coefficient: Using a Suzuki friction and wear tester, mating material SUS-306, load 4Kg/cm 2 and speed 1m/sec
Measure under the following conditions. Wear coefficient: Samples with outer and inner diameters of 25.6 mm and 20 mm and a length of 15 mm were cut from the molded product prepared for compressive strength measurement, and tested using a Suzuki friction and wear tester using a mating material of SUS-306 and a load of 4 kg/cm. 2 , speed 1
Measured under the conditions of m/sec and test time of 65 hours,
Find the wear coefficient using the following formula. k=0.0385w k: Wear coefficient (mm/Km・Kg/cm 2 )
W: Amount of wear

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径100ミクロン以下のポリテトラフル
オロエチレン樹脂粉末55〜89重量%、ポリオキシ
ベンゾイルポリエステル系耐熱性樹脂粉末35〜10
重量%及び炭素繊維粉末10〜1重量%を含有して
なるシール部材又は軸受部材成形用組成物。
1 55-89% by weight polytetrafluoroethylene resin powder with an average particle size of 100 microns or less, 35-10% polyoxybenzoyl polyester heat-resistant resin powder
% by weight and 10 to 1% by weight of carbon fiber powder.
JP18232380A 1980-12-23 1980-12-23 Filler-containing polytetrafluoroethylene molding powder and fluoroplastic molded product Granted JPS57105442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18232380A JPS57105442A (en) 1980-12-23 1980-12-23 Filler-containing polytetrafluoroethylene molding powder and fluoroplastic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18232380A JPS57105442A (en) 1980-12-23 1980-12-23 Filler-containing polytetrafluoroethylene molding powder and fluoroplastic molded product

Publications (2)

Publication Number Publication Date
JPS57105442A JPS57105442A (en) 1982-06-30
JPH0113494B2 true JPH0113494B2 (en) 1989-03-07

Family

ID=16116294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18232380A Granted JPS57105442A (en) 1980-12-23 1980-12-23 Filler-containing polytetrafluoroethylene molding powder and fluoroplastic molded product

Country Status (1)

Country Link
JP (1) JPS57105442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031237A1 (en) 1999-10-21 2001-05-03 Daikin Industries, Ltd. Seal ring
CN101831124A (en) * 2010-05-14 2010-09-15 浙江超维新材料有限公司 Polytetrafluoroethylene alloy and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3366454D1 (en) * 1982-07-20 1986-10-30 Hoechst Ag Primer for coatings containing fluorocarbon polymers with an amount of poly(arylene sulfide) resin, aromatic polyether sulfone resin or aromatic polyether ketone resin, and use thereof
JPS59166577A (en) * 1983-03-12 1984-09-19 Nippon Pillar Packing Co Ltd Liquid gasket
JPS60184539A (en) * 1984-03-02 1985-09-20 Akebono Brake Ind Co Ltd Composite material composition
JPS60233144A (en) * 1984-05-07 1985-11-19 Nok Corp Sf engine oil-resistant rubber composition
JPH07108951B2 (en) * 1987-01-16 1995-11-22 日本精工株式会社 Polyphenylene sulfide resin composition
JPH02212676A (en) * 1989-02-10 1990-08-23 Chuko Kasei Kogyo Kk Piston ring composition
JPH0320347A (en) * 1989-06-15 1991-01-29 Mitsubishi Electric Corp Sliding material
JP2550254B2 (en) * 1991-04-17 1996-11-06 三井・デュポンフロロケミカル株式会社 Tetrafluoroethylene copolymer resin powder composition and method for producing the same
JP2831541B2 (en) * 1993-08-20 1998-12-02 日本ピラー工業株式会社 Sliding seal composition
DE69931821T2 (en) * 1999-10-14 2007-05-16 Daikin Industries, Ltd. HEAT-CURABLE POWDER-LACK COMPOSITION
EP1273614B1 (en) * 2000-03-24 2007-05-30 Daikin Industries, Ltd. Seal ring
JPWO2002053446A1 (en) * 2000-12-28 2004-04-30 ダイキン工業株式会社 Seal ring and valve device for power steering including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125462A (en) * 1973-04-03 1974-11-30
JPS5224251A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles containing carbonaceous material
JPS5224252A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles contaning inorganic filler
JPS5763348A (en) * 1980-10-03 1982-04-16 Sumitomo Chem Co Ltd Fluororesin product containing composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125462A (en) * 1973-04-03 1974-11-30
JPS5224251A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles containing carbonaceous material
JPS5224252A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles contaning inorganic filler
JPS5763348A (en) * 1980-10-03 1982-04-16 Sumitomo Chem Co Ltd Fluororesin product containing composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031237A1 (en) 1999-10-21 2001-05-03 Daikin Industries, Ltd. Seal ring
CN101831124A (en) * 2010-05-14 2010-09-15 浙江超维新材料有限公司 Polytetrafluoroethylene alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS57105442A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
JPH0113494B2 (en)
US3855191A (en) Polytetrafluoroethylene molding powders of tetrafluoroethylene and perfluoro (alkyl vinyl ether) copolymer
CA1126431A (en) Process and product prepared from tetrafluoroethylene resin and graphite fibers
US4429078A (en) Anisotropic melt-forming polymer composition containing PTFE
US3766133A (en) Polytetrafluoroethylene filled and unfilled molding powders and theirpreparation
US2644804A (en) Packing composition containing polytrifluorochloroe thylene and an inorganic antifriction agent
JPH0217576B2 (en)
JP2008525622A (en) Microsphere-filled polytetrafluoroethylene composition
US3917761A (en) Process of making a porous polyimide shaped article
CN108367347B (en) Novel iron-based composite powder
US3980612A (en) Process for reducing filler loss during polytetrafluoroethylene agglomeration
US3896036A (en) Bearing compositions
US3980596A (en) Process for reducing filler loss
JP5034150B2 (en) Polytetrafluoroethylene granulated product and molded product thereof
JP3677336B2 (en) Fluororesin powder composition for sliding members
JP3347823B2 (en) Polytetrafluoroethylene granules
Khakbiz et al. Investigation of rheological behaviour of 316L stainless steel–3 wt-% TiC powder injection moulding feedstock
JP2812479B2 (en) Glass fiber-containing polytetrafluoroethylene composition and molded article thereof
US3981853A (en) Polytetrafluoroethylene molding powder from polytetrafluoroethylene fine powder
US4107194A (en) Product and process for reducing discoloration and dark spotting in tetrafluoroethylene resin molded parts
WO2022061048A1 (en) Compression molding composition, method for producing the same, and molded product
JP5315934B2 (en) Polytetrafluoroethylene composition and molded article thereof
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JP4698022B2 (en) Method for producing filled polytetrafluoroethylene molding powder
JP2001131372A (en) Resin composition for sliding part