JPH01134863A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH01134863A
JPH01134863A JP62291105A JP29110587A JPH01134863A JP H01134863 A JPH01134863 A JP H01134863A JP 62291105 A JP62291105 A JP 62291105A JP 29110587 A JP29110587 A JP 29110587A JP H01134863 A JPH01134863 A JP H01134863A
Authority
JP
Japan
Prior art keywords
chromium oxide
particle size
charging
particle
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291105A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Tsutomu Iwaki
勉 岩城
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62291105A priority Critical patent/JPH01134863A/en
Publication of JPH01134863A publication Critical patent/JPH01134863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To lessen deterioration of the capacity due to charging/discharging cycle by controlling mean particle size of chromium oxide constituting a positive electrode under 1.7mum. CONSTITUTION:A secondary battery is formed from a positive electrode using chromium oxide (CrOx, 2.7>=x>=2.5) as active substance, nonaqueous electrolyte with metal ionic conductivity, and a negative electrode as active substance, wherein the mean particle size of the chromium oxide is under 1.7mum. In case the particle size of chromium oxide is very small, alkali metal ions such as Li<+> disperse to the backmost of ion in the charging/discharging process, and the particles expand and contract uniformly from surface to inside. Thus cracking from surface of chromium oxide particle and separation are hindered. Even in case the particle size of the chromium oxide particle is a little larger, the surface area expands and contracts uniformly if the particle size is such as to allow dispersion of alkali metal ion over the whole particle surface (under 1.7mum), and cracking from the surface of particle is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特に、その正極の改良
に関する0 従来の技術 非水電解質二次電池の正極活物質については、これまで
、T i 、’V 、Cr 、Mo等の層状もしくはト
ンネル構造を有する酸化物及びカルコゲン化合物が知ら
れている。これらの中で、特に、Cr3O8゜Cr2O
5等のクロム酸化物は、高エネルギー密度を有する活物
質として開示されている〔ヨツト・オー・ベーゼンハル
ト他、ジャーナル・エレクトロケミカル・ソサエテー、
 124 、968 、(1977))。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to non-aqueous electrolyte secondary batteries, and in particular to improvements in positive electrodes. Oxides and chalcogen compounds having layered or tunnel structures such as Ti, 'V, Cr, Mo, etc. are known. Among these, especially Cr3O8゜Cr2O
Chromium oxides such as No. 5 have been disclosed as active materials with high energy density [Jord O. Bösenhard et al., Journal Electrochemical Society,
124, 968, (1977)).

Cr5o8.Cr2O5等のクロム酸化物は、通常、C
r O3の熱分解′によって製造される。たとえば、大
気圧下ではCr5Q8は約260〜3oOoC1Cr2
o5は約300〜360°Cの温度範囲で得ることがで
きる。この過程で、原料のCrO2は約200 ’(:
、で融解し、融解状態のCr O3が徐々に酸素を放出
することにより、Cr5o8.Cr206等の酸化物が
生生ずる。この融解状態のCr OaからCr3O8,
Cr206等が形成される温度へ昇温する場合、昇温速
度が大きいとCr O3の蒸気が飛散するため、公害性
という面から昇温速度は約2℃/m i n以下に制御
される。以上のようにして得られたクロム酸化物はいず
れも緊密な塊状物となるため、Cr O3の熱分解過程
の後、生成したクロム酸化物は粉砕工程を経て電池の正
極活物質として使用される。ここで、粉砕後のクロム酸
化物の粉末の平均粒度は、通常、3〜60μmの範囲に
またがる。
Cr5o8. Chromium oxides such as Cr2O5 usually contain C
Produced by pyrolysis of rO3. For example, under atmospheric pressure, Cr5Q8 is approximately 260~3oOoC1Cr2
o5 can be obtained at a temperature range of about 300-360°C. In this process, the raw material CrO2 is about 200' (:
, and the molten CrO3 gradually releases oxygen to form Cr5o8. Oxides such as Cr206 are generated. From this molten Cr Oa to Cr3O8,
When increasing the temperature to a temperature at which Cr206 and the like are formed, if the temperature increase rate is high, CrO3 vapor will scatter, so the temperature increase rate is controlled to about 2° C./min or less from the viewpoint of pollution. All of the chromium oxides obtained in the above manner form tight lumps, so after the thermal decomposition process of CrO3, the produced chromium oxides undergo a pulverization process and are used as positive electrode active materials for batteries. . Here, the average particle size of the chromium oxide powder after crushing usually ranges from 3 to 60 μm.

発明が解決しようとする問題点 しかし、このようにして得たクロム酸化物粉末を正極に
用い、Li等のアルカリ金属を負極に用いた非水電解質
二次電池を構成し充放電をくり返した場合、充放電サイ
クルでの容量劣化が著しいという問題点があった。これ
は下記の理由による。
Problems to be Solved by the Invention However, when a non-aqueous electrolyte secondary battery is constructed using the chromium oxide powder thus obtained as the positive electrode and an alkali metal such as Li as the negative electrode, and the battery is repeatedly charged and discharged. However, there was a problem in that the capacity deteriorated significantly during charge/discharge cycles. This is due to the following reasons.

Cr30s * Cr 20 s等のクロム酸化物では
、放電・充電過程でLi+等のアルカリ金属イオンが酸
化物結晶格子内へ侵入又は格子内から放出される。
In chromium oxides such as Cr30s*Cr20s, alkali metal ions such as Li+ enter or are released from the oxide crystal lattice during the discharging and charging processes.

このためクロム酸化物粒子は充放電過程で膨張。For this reason, chromium oxide particles expand during the charging and discharging process.

収縮をくり返す。この膨張、収縮の度合は約30係もの
体積変化である。Cr so a 、Cr2O5等のク
ロム酸化物結晶格子内でのLi+等のアルカリ金属イオ
ンの拡散係数は1o−” cr!/sec と他の層状
又はトンネル化合物に比べ3桁小さい。このため、充放
電反応はクロム酸化物粒子の表面近傍でのみ起こること
になシ、Li+等が侵入した粒子の表面近傍では粒子の
著しい膨張があるのに対し、イオンが侵入していない粒
子内部では膨張が見られない〇したがって、充放電をく
り返すとクロム酸化物粒子は表面からひび割れを生じ分
離していく。
Repeat contractions. The degree of expansion and contraction is a volume change of about 30 factors. The diffusion coefficient of alkali metal ions such as Li+ within the crystal lattice of chromium oxides such as Cr so a and Cr2O5 is 1o-" cr!/sec, which is three orders of magnitude smaller than that of other layered or tunnel compounds. The reaction occurs only near the surface of the chromium oxide particles, and while there is significant expansion of the particles near the surface where Li+ etc. have entered, no expansion is observed inside the particles where no ions have entered. No〇 Therefore, when charging and discharging are repeated, the chromium oxide particles crack and separate from the surface.

Cr3O8やCr2O5等のクロム酸化物は電子伝導性
に乏しいため、正極板内に混合されている導電剤のカー
ボンブラック粒子等に接触しているクロム酸化物粒子以
外、充放電過程で分離したクロム酸化物は充放電に寄与
できなくなる。充放電をくり返すと分離し充放電に寄与
できなくなるクロム酸化物の量は増加するだめ、充放電
サイクルでの容量劣化が著しくなるのである。
Since chromium oxides such as Cr3O8 and Cr2O5 have poor electronic conductivity, chromium oxide particles separated during the charging and discharging process, other than the chromium oxide particles that are in contact with the carbon black particles of the conductive agent mixed in the positive electrode plate, Objects can no longer contribute to charging and discharging. As charging and discharging are repeated, the amount of chromium oxide that separates and becomes unable to contribute to charging and discharging increases, resulting in significant capacity deterioration during charging and discharging cycles.

そこで本発明は、正極活物質にクロム酸化物(Cryx
、2.7≧X≧2.6)を用いても、充放電サイクルに
ともなう容量劣化が小さい非水電解質二次電池を提供す
ることを目的とする。
Therefore, the present invention uses chromium oxide (Cryx) as the positive electrode active material.
, 2.7 ≧

問題点を解決するための手段 以上のような問題点を解決するため、本発明は、平均粒
度が1.7μm以下であるクロム酸化物粉末を正極活物
質に用いることを特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is characterized in that a chromium oxide powder having an average particle size of 1.7 μm or less is used as a positive electrode active material. .

作  用 クロム酸化物粒子の粒径が極めて小さい場合、充放電過
程では、Li+等のアルカリ金属イオンは粒子内奥部に
まで拡散することになり、粒子は表面から内部まで均一
に膨張、収縮する。したがって、クロム酸化物粒子の表
面からのひび割れ、分離を阻止することができる。
Effect When the particle size of chromium oxide particles is extremely small, alkali metal ions such as Li+ will diffuse deep into the particles during the charging and discharging process, and the particles will expand and contract uniformly from the surface to the inside. . Therefore, cracking and separation of the chromium oxide particles from the surface can be prevented.

クロム酸化物粒子の粒径がやや大きくなり、充放電過程
でLi+等のアルカリ金属イオンの粒子内奥部までの拡
散が困難となり反応が粒子表面近傍のみで起こるように
なった場合でも、粒子表面層全体にアルカリ金属イオン
が拡散しうる程度の粒径であれば、表面層は均一に膨張
、収縮することができ、粒子の表面からのひび割れが抑
制される。
Even if the particle size of the chromium oxide particles becomes slightly larger and it becomes difficult for alkali metal ions such as Li+ to diffuse deep inside the particles during the charging and discharging process, and the reaction occurs only near the particle surface, If the particle size is large enough to allow alkali metal ions to diffuse throughout the layer, the surface layer can expand and contract uniformly, and cracks from the surface of the particles can be suppressed.

しかし、クロム酸化物粒子の粒径が極めて大きい場合、
充放電過程でのLi+等のアルカリ金属イオンの拡散は
、正極板内に混合されている導電剤のカーボンブラック
粒子等がクロム酸化物粒子に接触している近傍のみにな
るため、クロム酸化物粒子の膨張、収縮は不均一になり
、充放電をくり返すと粒子のひび割れ、分離が著しくな
る。
However, when the particle size of chromium oxide particles is extremely large,
During the charging and discharging process, alkali metal ions such as Li+ diffuse only in the vicinity where the carbon black particles, etc. of the conductive agent mixed in the positive electrode plate, are in contact with the chromium oxide particles. The expansion and contraction of the particles become uneven, and when charging and discharging are repeated, cracking and separation of particles becomes noticeable.

以上のようなりロム酸化物粒子の充放(過程でのひび割
れ、分離は、クロム酸化物の平均粒度が1.7μm以下
であれば抑制することができる。なお、ここでの平均粒
度は次式で定義される算術平均径である。
As described above, the filling (cracking and separation during the process) of chromium oxide particles can be suppressed if the average particle size of chromium oxide is 1.7 μm or less.The average particle size here is calculated using the following formula: is the arithmetic mean diameter defined by

da・・・・・・平均粒度 d、・・・・・・個々の粒子の粒子径 n、・・・・・・粒子径d、の粒子数 以下、本発明の実施例を示す。da・・・・・・Average particle size d, ...Particle diameter of individual particles n, ... Number of particles with particle diameter d, Examples of the present invention will be shown below.

実施例 種々の平均粒度を五するクロム阪化物は以下のようにし
て作製した。
EXAMPLE Chromium peroxides having various average particle sizes were prepared as follows.

Cr O3を約200’Cで融解した後、Cr3O8を
作製する場合には2ao’c、Cr2O5を作製する場
合には320°Cの温度まで約7’C/fninで昇温
し、各温度で約8時間保った。昇温速度が約7°C/m
in以上では、融解しているC r O3は沸騰状、1
πになると同時に、Cr Osの熱分解によシ酸素ガス
が急激に放出されるため、生成した塊状のクロム酸化物
は、空隙の多いスポンジ状であった。このようにして得
られたクロム酸化物は容易に平均粒度を1〜2μmまで
粉砕することが可能であり、粉砕時間を調整することで
種々の平均粒度をもつクロム酸化物を作製した。
After melting CrO3 at about 200'C, the temperature is raised at about 7'C/fnin to a temperature of 2ao'c when producing Cr3O8 and 320°C when producing Cr2O5, and at each temperature. It lasted about 8 hours. Temperature increase rate is approximately 7°C/m
Above in, the melted C r O3 is boiling, 1
At the same time as the temperature reaches π, oxygen gas is rapidly released by thermal decomposition of CrOs, so the resulting lumpy chromium oxide was sponge-like with many voids. The chromium oxide thus obtained can be easily ground to an average particle size of 1 to 2 μm, and by adjusting the grinding time, chromium oxides having various average particle sizes were produced.

充放電試験はすべて第4図に示すような扁平型電池で行
なった。
All charging and discharging tests were conducted using flat batteries as shown in FIG.

扁平型電池の作製は次のように行なった。The flat battery was manufactured as follows.

上記のように作製したクロム酸化物粉末とカーボンブラ
ック、四沸化エチレン樹脂を重量比で70対20対1o
の割合で混合し、混合物5011Qをとり、正極集電体
1をスポット溶接した電池ケース2内へ直接17.51
1に正極板3を成型した。
The weight ratio of the chromium oxide powder prepared above, carbon black, and tetrafluoroethylene resin is 70:20:10.
Take the mixture 5011Q and directly put it into the battery case 2 to which the positive electrode current collector 1 was spot welded 17.51
A positive electrode plate 3 was molded on 1.

負極にはリチウムを用い、厚さ380μmのリチウムシ
ートを直径171Bのディスクに打ち抜き、負極集電体
4をスポット溶接した封口板6に圧着した。
Lithium was used as the negative electrode, and a lithium sheet with a thickness of 380 μm was punched out into a disk with a diameter of 171 B, and the negative electrode current collector 4 was pressure-bonded to a spot-welded sealing plate 6.

セパレータ6には、ポリプロピレン不織布を用い、電解
液には、プロピレンカーボネートとジメトキシエタンを
等体積で混合したものに、Lick○4を1M/lの割
合で溶解したものを用いた。
The separator 6 was made of polypropylene nonwoven fabric, and the electrolytic solution was a mixture of propylene carbonate and dimethoxyethane in equal volumes, in which Lick○4 was dissolved at a ratio of 1 M/l.

−このように作製した扁平型電池を用いて、2mAの定
電流、充電上限電圧3.9V、放電下限電圧1.6■の
条件で充放電試験を行なった。
- Using the flat battery thus prepared, a charge/discharge test was conducted under the conditions of a constant current of 2 mA, an upper limit charge voltage of 3.9 V, and a lower limit discharge voltage of 1.6 .

第3図はクロム酸化物にCr3O8を用いた場合で、本
発明の実施例として平均粒度が1.4μmのもの(実線
)、比較例として平均粒度が3.0μmのもの(破線)
における各充放電サイクルでの放電容量をプロットした
図である。第3図より本発明の実施例では、比較例に対
し充放電サイクルでの容量劣化が小さいことがわかる。
Figure 3 shows the case where Cr3O8 is used as the chromium oxide, with an example of the present invention having an average particle size of 1.4 μm (solid line), and a comparative example having an average particle size of 3.0 μm (dashed line).
It is a figure which plotted the discharge capacity in each charge-discharge cycle in . From FIG. 3, it can be seen that in the examples of the present invention, capacity deterioration during charge/discharge cycles is smaller than in the comparative examples.

ここで、容量維持率を次式のように定義する。Here, the capacity maintenance rate is defined as the following equation.

第1図はCr3O8において平均粒度に対して容量維持
率をプロットした図であり、第2図は同様にCr 20
5の場合である。第1図および第2図よりCTa Os
 、 Cr 20 sのいずれにおいても、平均粒度が
1.7μmを超えると容量維持率が急激に減少する。す
なわち、充放電サイクルでの容量劣化が大きくなること
がわかる。なお、Cr5o5.Cr206の両者におい
て、平均粒度がいずれの場合でも1.7μmを超えたと
ころで容量維持率が低下するのは、両者におけるLi+
の拡散係数がほぼ等しいことによる。
Figure 1 is a diagram plotting the capacity retention rate against the average particle size for Cr3O8, and Figure 2 is a diagram plotting the capacity retention rate against the average particle size for Cr3O8.
This is the case of 5. From Figures 1 and 2, CTa Os
, Cr 20 s, when the average particle size exceeds 1.7 μm, the capacity retention rate decreases rapidly. That is, it can be seen that capacity deterioration during charge/discharge cycles increases. In addition, Cr5o5. In both cases of Cr206, the capacity retention rate decreases when the average particle size exceeds 1.7 μm in both Li+
This is due to the fact that their diffusion coefficients are almost equal.

発明の効果 以上のように本発明は、クロム酸化物の平均粒度を1.
7μm以下にしているため、充放電をくり返しても容量
劣化の小さい、信頼性の高い非水電解質二次電池を得る
ことができる。
Effects of the Invention As described above, the present invention reduces the average particle size of chromium oxide to 1.
Since the thickness is 7 μm or less, it is possible to obtain a highly reliable non-aqueous electrolyte secondary battery with little capacity deterioration even after repeated charging and discharging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCr sOsにおいて平均粒度に対して容量維
持率をプロットした図、第2図はCr206の平均粒度
に対する容量維持率を示す特性図、第3図は本発明の実
施例及び比較例の電池における充放電サイクルでの放電
容量特性図、第4図は本発明の実施例及び比較例にもち
いた扁平型電池の断面図である。 1・・・・・・正極集電体、2・・・・・・電池ケース
、3・・・・・・正極板、4・・・・・・負極集電体、
6・・・・・・封口板、6・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名容量
雄特!!P(%) む       B 容量蛤将争(y、) 税      も 丞電客量C=gA^)     8
Figure 1 is a diagram plotting the capacity retention rate against the average particle size in Cr sOs, Figure 2 is a characteristic diagram showing the capacity retention rate against the average particle size of Cr206, and Figure 3 is a graph showing the capacity retention rate against the average particle size of Cr206. FIG. 4 is a sectional view of a flat type battery used in an example of the present invention and a comparative example. 1... Positive electrode current collector, 2... Battery case, 3... Positive electrode plate, 4... Negative electrode current collector,
6... Sealing plate, 6... Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person: Capacity Yutoku! ! P (%) B Capacity war (y,) Tax Mojo electric customer volume C=gA^) 8

Claims (1)

【特許請求の範囲】[Claims]  クロム酸化物(CrO_x、2.7≧x≧2.5小数
点第2位を四捨五入する、xはO/Cr原子比を活物質
とする正極、アルカリ金属イオン導伝性の非水電解質、
及びアルカリ金属を活物質とする負極を構成要素とし、
前記クロム酸化物の平均粒度が1.7μm以下であるこ
とを特徴とする非水電解質二次電池。
Chromium oxide (CrO_x, 2.7≧x≧2.5 rounded to the second decimal place, x is a positive electrode with an O/Cr atomic ratio as an active material, an alkali metal ion conductive nonaqueous electrolyte,
and a negative electrode containing an alkali metal as an active material,
A non-aqueous electrolyte secondary battery, wherein the chromium oxide has an average particle size of 1.7 μm or less.
JP62291105A 1987-11-18 1987-11-18 Nonaqueous electrolyte secondary battery Pending JPH01134863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291105A JPH01134863A (en) 1987-11-18 1987-11-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291105A JPH01134863A (en) 1987-11-18 1987-11-18 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH01134863A true JPH01134863A (en) 1989-05-26

Family

ID=17764515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291105A Pending JPH01134863A (en) 1987-11-18 1987-11-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH01134863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467196A (en) * 2019-10-04 2022-05-10 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467196A (en) * 2019-10-04 2022-05-10 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPS6223433B2 (en)
US5958622A (en) Negative electrode material for lithium secondary batteries
JPH0660887A (en) Nonaqueous battery
JPH11260400A (en) Nonaqueous electrolyte secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JPH1186905A (en) Nonaqueous electrolyte secondary battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JPH08250117A (en) Carbon material for lithium secondary battery negative electrode, and manufacture thereof
JP3641648B2 (en) Lithium secondary battery
JPH0821382B2 (en) Non-aqueous electrolyte secondary battery
JPH05307956A (en) Nonaqueous group secondary battery
JP3618492B2 (en) Battery electrode material and secondary battery
US20230261254A1 (en) Solid-state electrolyte material comprising a chalcogenide-based ionic-conductive structure, particularly a sulfide-based ionic-conductive structure
JPH01134863A (en) Nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPS6259412B2 (en)
JPS6369154A (en) Nonaqueous electrolyte secondary battery
JPH06243870A (en) Nonaqeous secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP3152497B2 (en) Non-aqueous electrolyte secondary battery
JPH04188560A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JPH05290845A (en) Lithium battery
JP2000235869A (en) Nonaqueous electrolyte secondary battery
JPH08138678A (en) Positive electrode mix