JPH08250117A - Carbon material for lithium secondary battery negative electrode, and manufacture thereof - Google Patents

Carbon material for lithium secondary battery negative electrode, and manufacture thereof

Info

Publication number
JPH08250117A
JPH08250117A JP7049766A JP4976695A JPH08250117A JP H08250117 A JPH08250117 A JP H08250117A JP 7049766 A JP7049766 A JP 7049766A JP 4976695 A JP4976695 A JP 4976695A JP H08250117 A JPH08250117 A JP H08250117A
Authority
JP
Japan
Prior art keywords
carbon material
fluorine
negative electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7049766A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Nobuatsu Watanabe
信淳 渡辺
Youhou Tei
容宝 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP7049766A priority Critical patent/JPH08250117A/en
Publication of JPH08250117A publication Critical patent/JPH08250117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a carbon material for a lithium secondary battery negative electrode capable of efficiently removing an oxygen functional group on the surface of the carbon material to reduce the fluctuation of the initial charging quantity of a lithium secondary battery. CONSTITUTION: Graphite powder is made to react to a fluorine gas in a high temperature atmosphere to substitute fluorine for an oxygen functional group on the surface of graphite powder. Then carbon material can be manufactured by heat-treating the graphite powder in a high vacuum to remove the fluorine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池負極
用炭素材料及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a carbon material for a negative electrode of a lithium secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いるリチ
ウム二次電池は、充放電を繰り返すと充電時に、樹枝状
のリチウムが負極活物質上に析出するいわゆるデンドラ
イトが発生する。デンドライトが大きくなり、正極活物
質と接触すると電池が内部短絡し、電池のサイクル寿命
が短かくなる上、電池が発熱、発火する危険がある。そ
こで、リチウムと他の金属との合金(リチウム合金)を
負極活物質として用いることが提案された。しかしなが
ら、リチウム合金を負極活物質として用いるとエネルギ
ー密度の低下が大きくなる。そこで、リチウムイオンの
吸蔵、放出が可能な炭素材料を負極材として用いること
が提案された。この種の電池では、リチウムイオンが炭
素材料内に吸蔵、放出されて電池の充放電が行われるた
め、リチウムが負極上に析出することがなく、デンドラ
イトの発生を抑制できる。そして炭素材料はリチウムに
近い卑な電位で作動するので、リチウム合金を負極活物
質として用いる場合に比べて、エネルギー密度の低下を
低く抑えることができる。
2. Description of the Related Art In a lithium secondary battery using lithium as a negative electrode active material, when charging and discharging are repeated, so-called dendrites in which dendritic lithium is deposited on the negative electrode active material are generated during charging. When the dendrite becomes large and comes into contact with the positive electrode active material, the battery is internally short-circuited, the cycle life of the battery is shortened, and there is a risk of heat generation and ignition of the battery. Therefore, it has been proposed to use an alloy of lithium and another metal (lithium alloy) as the negative electrode active material. However, when a lithium alloy is used as the negative electrode active material, the energy density is greatly reduced. Therefore, it has been proposed to use a carbon material capable of inserting and extracting lithium ions as the negative electrode material. In this type of battery, since lithium ions are inserted into and discharged from the carbon material to charge and discharge the battery, lithium is not deposited on the negative electrode and dendrite generation can be suppressed. Since the carbon material operates at a base potential close to that of lithium, the decrease in energy density can be suppressed to a low level as compared with the case where a lithium alloy is used as the negative electrode active material.

【0003】しかしながら、炭素材料の表面には、水酸
基(−CO)、カルボニル基(−COOH)等の酸素官
能基があるため、この種の電池を充電すると、炭素材料
の表面に酸素官能基によって不可逆な反応が起こり、初
回の充電量が増加し、しかも充電量のばらつきが大きく
なる。炭素材料を負極材として用いる電池では、初回充
電を行ってリチウムイオンを炭素材料内に吸蔵しなけれ
ばならないので、初回充電量のばらつきが大きいと電池
性能に大きなばらつきが生じることになる。そこで、特
開平4−112455号公報、特開平5−28996号
公報、特開平5−144440号公報に示されるように
炭素材料を加熱して炭素材料の表面から酸素官能基を低
減することが提案された。
However, since the surface of the carbon material has oxygen functional groups such as a hydroxyl group (-CO) and a carbonyl group (-COOH), when a battery of this kind is charged, the surface of the carbon material is affected by the oxygen functional group. An irreversible reaction occurs, the amount of charge for the first time increases, and moreover, the variation in the amount of charge increases. In a battery using a carbon material as a negative electrode material, lithium ions must be occluded in the carbon material by carrying out initial charging, so that large variations in the initial charge amount cause large variations in battery performance. Therefore, as disclosed in JP-A-4-112455, JP-A-5-28996, and JP-A-5-144440, it is proposed to heat the carbon material to reduce oxygen functional groups from the surface of the carbon material. Was done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、炭素材
料を加熱して酸素官能基を低減しても初回充電量のばら
つきを少なくするのは、限界があった。また炭素材料を
加熱する法では、酸素官能基を効率良く除去するのが困
難であった。
However, even if the carbon material is heated to reduce the oxygen functional groups, there is a limit in reducing the variation in the initial charge amount. Further, it is difficult to efficiently remove the oxygen functional group by the method of heating the carbon material.

【0005】本発明の目的は、リチウム二次電池の初回
充電量のばらつきを少なくできるリチウム二次電池負極
用炭素材料及びリチウム二次電池負極を提供することに
ある。
An object of the present invention is to provide a carbon material for a lithium secondary battery negative electrode and a lithium secondary battery negative electrode which can reduce variations in the amount of initial charge of the lithium secondary battery.

【0006】本発明の他の目的は、初回充電量のばらつ
きを少ないリチウム二次電池を提供することにある。
Another object of the present invention is to provide a lithium secondary battery with less variation in the initial charge amount.

【0007】本発明の他の目的は、表面にある酸素官能
基を効率良く除去して、リチウム二次電池の初回充電量
のばらつきを少なくできるリチウム二次電池負極用炭素
材料の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a carbon material for a lithium secondary battery negative electrode, by which oxygen functional groups on the surface can be efficiently removed to reduce variations in the initial charge amount of the lithium secondary battery. To do.

【0008】[0008]

【課題を解決するための手段】本発明は、リチウム二次
電池負極用炭素材料を改良の対象にして、表面の酸素官
能基の一部または全部をフッ素で置換する。
The present invention aims to improve a carbon material for a negative electrode of a lithium secondary battery, and substitutes part or all of oxygen functional groups on the surface with fluorine.

【0009】このリチウム二次電池負極用炭素材料を主
成分としてリチウム二次電池負極を構成することができ
る。また、このリチウム二次電池負極を用い、電解質と
して固体電解質または非水電解液を用いてリチウム二次
電池を構成することができる。
A lithium secondary battery negative electrode can be constituted by using this carbon material for a lithium secondary battery negative electrode as a main component. Further, a lithium secondary battery can be constructed by using this lithium secondary battery negative electrode and using a solid electrolyte or a non-aqueous electrolyte as an electrolyte.

【0010】炭素材料の酸素官能基の一部または全部を
フッ素で置換した後には、炭素材料からフッ素の一部ま
たは全部を除去してリチウム二次電池負極用炭素材料を
製造することもできる。フッ素を置換させる反応及びフ
ッ素を除去する反応は、従来の炭素材料を加熱して酸素
官能基を除去する反応よりバラツキが少ない状態で酸素
官能基を除去できる。
After substituting part or all of the oxygen functional groups of the carbon material with fluorine, part or all of the fluorine can be removed from the carbon material to produce a carbon material for a lithium secondary battery negative electrode. The reaction for substituting fluorine and the reaction for removing fluorine can remove the oxygen functional group with less variation than the conventional reaction for heating the carbon material to remove the oxygen functional group.

【0011】[0011]

【作用】本発明のように、表面の酸素官能基の一部また
は全部をフッ素で置換すると、電池の初回充電量を小さ
くできる上、初回充電量のばらつきを少なくして、電池
性能のばらつきを減少させることができる。この理由は
定かではないが、酸素官能基は−COOH、−OH等の
種々の構造を有するものがあり、電池を初回充電した際
に不可逆な種々の形式の反応が生じるのに対して、酸素
官能基をフッ素と置換した炭素材料では、炭素材料の表
面にフッ素だけが存在しているので、不可逆な反応形式
は一種類になるためであると考えられる。
By replacing part or all of the oxygen functional groups on the surface with fluorine as in the present invention, the initial charge of the battery can be reduced, and the fluctuation of the initial charge can be reduced to reduce the fluctuation of the battery performance. Can be reduced. The reason for this is not clear, but oxygen functional groups have various structures such as -COOH and -OH, and various types of irreversible reactions occur when the battery is first charged, whereas oxygen functional groups have different structures. It is considered that in the carbon material in which the functional group is replaced with fluorine, only the fluorine is present on the surface of the carbon material, so that the irreversible reaction mode becomes one kind.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は本実施例のリチウム二次電池の破断
断面図である。本実施例のリチウム二次電池は、正極集
電体1の片面に形成された正極材2と負極集電体3の片
面に形成された負極材4とが電解質層5を介して積層さ
れた構造を有している。正極集電体1は厚み0.2mmの
ステンレス板により形成されており、正極端子を兼ねて
いる。正極材2は、LiClO4 からなる活物質材料8
5重量%と、アセチレンブラックからなる導電材10重
量%と、ポリテトラフルオロエチレン微粉末からなる結
着剤5重量%とを混合した混合物を乾燥した後、圧縮成
形して形成した厚み2mmのペレットにより構成されてい
る。負極集電体3は厚み0.2mmのステンレス板により
形成されており、負極端子を兼ねている。負極材4はグ
ラファイトからなる炭素材料を主成分としており、次の
ようにして形成した。まず、日本黒鉛株式会社からJS
Pの製品名で販売されている平均粒子径5μmの人造の
黒鉛粉末(グラファイト粉末)3重量%と硝酸ナトリウ
ム2重量%と濃硫酸84重量%と過マンガン酸カリウム
11重量%とを100℃中で混合して酸化グラファイト
を作ってから、140℃で熱分解してグラファイト粉末
に酸素官能基を付加して炭素素材を作った。これによ
り、後述する試験に用いる比較例の電池に用いるグラフ
ァイト粉末と素材としての条件を同じにした。なおグラ
ファイト粉末の平均粒径は5〜50μmが好ましい。次
にグラファイト粉末を温度75℃のフッ素ガス雰囲気中
に5時間放置して、酸素官能基をフッ素と置換させた。
これにより酸素官能基の約90%をフッ素と置換した炭
素材料を作成した。酸素官能基の90%以上をフッ素と
置換するのが好ましい。なおフッ素と置換するには、温
度50〜100℃のフッ素ガス雰囲気中に2〜5時間炭
素材料を放置するのが好ましい。
(Embodiment 1) FIG. 1 is a cutaway sectional view of a lithium secondary battery of this embodiment. In the lithium secondary battery of this example, the positive electrode material 2 formed on one surface of the positive electrode current collector 1 and the negative electrode material 4 formed on one surface of the negative electrode current collector 3 were laminated with the electrolyte layer 5 interposed therebetween. It has a structure. The positive electrode current collector 1 is formed of a stainless plate having a thickness of 0.2 mm and also serves as a positive electrode terminal. The positive electrode material 2 is an active material 8 made of LiClO 4.
Pellets having a thickness of 2 mm formed by drying a mixture obtained by mixing 5% by weight, 10% by weight of a conductive material made of acetylene black, and 5% by weight of a binder made of fine powder of polytetrafluoroethylene and then compression-molding the mixture. It is composed by. The negative electrode current collector 3 is formed of a stainless plate having a thickness of 0.2 mm and also serves as a negative electrode terminal. The negative electrode material 4 contains a carbon material made of graphite as a main component, and was formed as follows. First, JS from Nippon Graphite Co., Ltd.
3% by weight of artificial graphite powder (graphite powder) having an average particle size of 5 μm sold under the product name of P (graphite powder), 2% by weight of sodium nitrate, 84% by weight of concentrated sulfuric acid and 11% by weight of potassium permanganate in 100 ° C. Was mixed to prepare graphite oxide and then pyrolyzed at 140 ° C. to add oxygen functional groups to the graphite powder to prepare a carbon material. As a result, the conditions of the graphite powder used in the battery of the comparative example used in the test described later were the same as those of the raw material. The average particle size of the graphite powder is preferably 5 to 50 μm. Next, the graphite powder was left in a fluorine gas atmosphere at a temperature of 75 ° C. for 5 hours to replace the oxygen functional group with fluorine.
This produced a carbon material in which about 90% of the oxygen functional groups were replaced with fluorine. It is preferred to replace 90% or more of the oxygen functional groups with fluorine. In order to replace with fluorine, it is preferable to leave the carbon material in a fluorine gas atmosphere at a temperature of 50 to 100 ° C. for 2 to 5 hours.

【0013】次に、フッ素置換した炭素粉末とポリフッ
化ビニリデンからなる結着剤とを90:10の重量比で
適量のN−メチルピロリドン液を溶媒として混合した混
合物を作った。次にこの混合物をステンレス網に塗布し
てから加熱真空乾燥してN−メチルピロリドン液を揮発
させて厚み0.1mmのシート状の負極材4を完成した。
Next, a mixture was prepared by mixing fluorine-substituted carbon powder and a binder made of polyvinylidene fluoride in a weight ratio of 90:10 with an appropriate amount of N-methylpyrrolidone solution as a solvent. Next, this mixture was applied to a stainless steel net, and then heated and vacuum dried to volatilize the N-methylpyrrolidone solution to complete a sheet-shaped negative electrode material 4 having a thickness of 0.1 mm.

【0014】電解質層5は、ポリプロピレン不織布から
なるセパレータに電解液が含浸されて構成されている。
電解液は、エチレンカーボネートとジエチルカーボネー
トを75:25の体積比で混合した混合液にLiClO
4 1Mを溶かして作った。
The electrolyte layer 5 is formed by impregnating a separator made of polypropylene nonwoven fabric with an electrolytic solution.
The electrolytic solution was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 75:25, and LiClO.
4 Made by melting 1M.

【0015】(実施例2)本実施例の電池では、実施例
1において酸素官能基をフッ素に置換した炭素材料を1
-6Torrの高真空下において1000℃の温度で4時間
加熱してフッ素を95%除去したものを炭素材料として
用いた。フッ素は90%以上除去するのが好ましい。そ
の他は実施例1の電池と同じ構成を有している。なおフ
ッ素を除去するには、10-2Torr以下の真空中で600
℃以上に加熱するのが好ましい。
(Example 2) In the battery of this example, the carbon material obtained by substituting fluorine for the oxygen functional group in Example 1 was used.
A material obtained by heating at a temperature of 1000 ° C. for 4 hours under a high vacuum of 0 −6 Torr and removing 95% of fluorine was used as a carbon material. It is preferable to remove 90% or more of fluorine. Others have the same configuration as the battery of the first embodiment. In order to remove fluorine, 600 in a vacuum of 10 -2 Torr or less.
It is preferable to heat to ℃ or more.

【0016】(比較例1)本比較例の電池では、実施例
1において酸素官能基を付加した炭素材料をアルゴン雰
囲気中において、1300℃で4時間加熱して、酸素官
能基を減少させ、残った酸素官能基をフッ素と置換させ
ない炭素材料を用いた。その他は実施例1の電池と同じ
構成を有している。
Comparative Example 1 In the battery of this comparative example, the carbon material to which the oxygen functional group was added in Example 1 was heated at 1300 ° C. for 4 hours in an argon atmosphere to reduce the oxygen functional group and leave it. A carbon material in which the oxygen functional group was not replaced with fluorine was used. Others have the same configuration as the battery of the first embodiment.

【0017】次に上記各電池をそれぞれ10個作り、各
電池を0.5 mA/cm2 の定電流密度で4.2Vの定電圧
充電を行った後に0.5 mA/cm2 の定電流密度で終止電
圧:2.8Vまで放電を行い、各電池の電圧による放電
容量の変化を調べた。図2(A),(B)はその測定結
果を示している。本図において斜線に示す範囲は、試験
に用いた10個の電池のばらつきの範囲である。本図よ
り実施例1及び2の電池は比較例1の電池に比べてばら
つきが少ないのが分る。
[0017] Then each cell 10 or making each constant current of 0.5 mA / cm 2 after the constant-voltage charging at 4.2V at a constant current density of 0.5 mA / cm 2 each battery Discharge was carried out to a final voltage of 2.8 V in terms of density, and the change in discharge capacity depending on the voltage of each battery was examined. 2A and 2B show the measurement results. The hatched range in this figure is the range of variation of the 10 batteries used in the test. From this figure, it can be seen that the batteries of Examples 1 and 2 have less variation than the battery of Comparative Example 1.

【0018】次に酸素官能基をフッ素に置換した場合、
電池の初回充電量にどのようなばらつきの変化が生じる
かを調べた。最初に次のようにして酸素官能基の量が異
なる炭素材料と、フッ素の量が異なる炭素材料とを作っ
た。まず実施例1において酸素官能基を付加した炭素材
料をアルゴン雰囲気中において、600℃〜1300℃
の温度範囲で4時間加熱して、酸素官能基の量が異なる
各種の炭素材料を作った。なお酸素官能基の量は、光電
子分光法によりC1SとO1S原子数比により、C1SとO1S
とを合わせたものに対してO1Sが0〜20%の範囲で異
なるものとした。次に前述と同様に酸素官能基の量が異
なる各種の炭素材料を作ってから、これらの炭素材料を
温度50〜100℃のフッ素ガス雰囲気中に5時間放置
して、酸素官能基をフッ素と置換させた。これによりフ
ッ素の量が異なる各種の炭素材料を作った。なおフッ素
の量は、光電子分光法によりC1SとF1S原子数比によ
り、C1SとF1Sとを合わせたものに対してF1Sが0〜2
0%の範囲で異なるものとした。次に酸素官能基及びフ
ッ素の量がそれぞれ異なる各炭素粉末炭素とポリフッ化
ビニリデンからなる結着剤とを90:10の重量比で適
量のN−メチルピロリドン液を溶媒として混合した混合
物を作った。次にこの混合物をステンレス網に塗布して
から加熱真空乾燥してN−メチルピロリドン液を揮発さ
せて酸素官能基及びフッ素の量が異なる炭素電極を作っ
た。
Next, when the oxygen functional group is replaced with fluorine,
The variation of the initial charge of the battery was investigated. First, carbon materials having different amounts of oxygen functional groups and carbon materials having different amounts of fluorine were prepared as follows. First, the carbon material having an oxygen functional group added in Example 1 was heated to 600 ° C. to 1300 ° C. in an argon atmosphere.
In the temperature range of 4 hours, various carbon materials having different amounts of oxygen functional groups were prepared. The amount of oxygen functional groups was determined by photoelectron spectroscopy based on the C1S and O1S atomic ratio.
O1S was different in the range of 0 to 20% with respect to the combination of the above. Next, similar to the above, various carbon materials having different amounts of oxygen functional groups were produced, and then these carbon materials were left in a fluorine gas atmosphere at a temperature of 50 to 100 ° C. for 5 hours to convert the oxygen functional groups to fluorine. Replaced. This produced various carbon materials with different amounts of fluorine. The amount of fluorine depends on the atomic ratio of C1S and F1S by photoelectron spectroscopy, and F1S is 0 to 2 with respect to the total of C1S and F1S.
Different in the range of 0%. Next, a mixture was prepared by mixing carbon powder carbons having different amounts of oxygen functional groups and fluorine and a binder made of polyvinylidene fluoride at a weight ratio of 90:10 with an appropriate amount of N-methylpyrrolidone solution as a solvent. . Next, this mixture was applied to a stainless steel mesh and dried under heating and vacuum to volatilize the N-methylpyrrolidone liquid to prepare carbon electrodes having different amounts of oxygen functional groups and fluorine.

【0019】そして、各炭素電極を図3に示す試験用セ
ル内に配置した。図3において、11は炭素電極、12
はリチウム電極、13はセパレータ、14はリチウム基
準の参照極、15はエチレンカーボネートとジエチルカ
ーボネートを75:25の体積比で混合した混合液にL
iClO4 1Mを溶かして作った電解液、16は正負極
の切替えが可能な充放電用電源、17は電圧計である。
そして、炭素電極11に負極端子を接続し、リチウム電
極12に正極端子を接続するように充放電用電源16の
正負極を設定し、炭素電極11とリチウム電極12との
間に0.5 mA/cm2 の電流密度で電流を流した。これに
より、リチウム電極12から炭素電極11にリチウムイ
オンが流れる。そして、参照極14により測定した炭素
電極11の電位が0Vになるまでの充電して初回充電容
量を測定した。図4はフッ素の量が異なる炭素電極にお
けるフッ素の量と初回充電容量との関係を示している。
本図において斜線に示す範囲は、フッ素の量が異なるそ
れぞれ10個の炭素電極のばらつきの範囲である。図5
は酸素官能基の量が異なる炭素電極における酸素官能基
の量と初回充電容量との関係を示している。本図におい
て斜線に示す範囲は、酸素官能素基の量が異なるそれぞ
れ10個の炭素電極のばらつきの範囲である。両図より
酸素官能素基をフッ素に置換した炭素電極は、フッ素に
置換しない炭素電極に比べて初回充電量のばらつきが少
ないのが分る。
Then, each carbon electrode was placed in the test cell shown in FIG. In FIG. 3, 11 is a carbon electrode, 12
Is a lithium electrode, 13 is a separator, 14 is a reference electrode based on lithium, and 15 is L in a mixed solution in which ethylene carbonate and diethyl carbonate are mixed in a volume ratio of 75:25.
An electrolytic solution prepared by dissolving 1M of iClO 4 ; 16 is a charging / discharging power source capable of switching between positive and negative electrodes; and 17 is a voltmeter.
Then, the positive and negative electrodes of the charging / discharging power supply 16 are set so that the negative electrode terminal is connected to the carbon electrode 11 and the positive electrode terminal is connected to the lithium electrode 12, and 0.5 mA is set between the carbon electrode 11 and the lithium electrode 12. A current was applied at a current density of / cm 2 . As a result, lithium ions flow from the lithium electrode 12 to the carbon electrode 11. Then, charging was performed until the potential of the carbon electrode 11 measured by the reference electrode 14 became 0 V, and the initial charge capacity was measured. FIG. 4 shows the relationship between the amount of fluorine and the initial charge capacity in carbon electrodes having different amounts of fluorine.
In the figure, the hatched range is the range of variation of 10 carbon electrodes having different amounts of fluorine. Figure 5
Shows the relationship between the amount of oxygen functional groups and the initial charge capacity in carbon electrodes having different amounts of oxygen functional groups. In the figure, the hatched range is the range of variation of 10 carbon electrodes having different amounts of oxygen functional groups. From both figures, it can be seen that the carbon electrode in which the oxygen functional group is replaced with fluorine has less variation in the initial charge amount than the carbon electrode in which the oxygen functional group is not replaced with fluorine.

【0020】なお、上記実施例では、フッ素置換した炭
素材料を加熱処理してフッ素を除去したが、フッ素置換
した炭素材料を電解液中で還元反応させてもフッ素を除
去することができる。
In the above embodiment, the fluorine-substituted carbon material was heat-treated to remove fluorine, but fluorine can be removed by reducing the fluorine-substituted carbon material in the electrolytic solution.

【0021】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The constitution of some of the inventions described in the specification will be shown below.

【0022】(1)リチウムイオンの吸蔵と放出とが可
能で表面に酸素官能基を有する炭素材料をフッ素ガスと
反応させて前記酸素官能基の90%以上をフッ素で置換
することによりリチウム二次電池負極用炭素材料を製造
することを特徴とするリチウム二次電池負極用炭素材料
の製造方法。
(1) Lithium secondary by reacting a carbon material capable of inserting and extracting lithium ions and having an oxygen functional group on the surface with fluorine gas to replace 90% or more of the oxygen functional group with fluorine. A method for producing a carbon material for a lithium secondary battery negative electrode, which comprises producing a carbon material for a battery negative electrode.

【0023】(2)リチウムイオンの吸蔵と放出とが可
能で表面に酸素官能基を有する炭素材料を50〜100
℃の雰囲気中でフッ素ガスと反応させて前記酸素官能基
の90%以上をフッ素で置換した後、前記炭素材料から
前記フッ素の90%以上を除去してリチウム二次電池負
極用炭素材料を製造することを特徴とするリチウム二次
電池負極用炭素材料の製造方法。
(2) 50 to 100 carbon materials capable of absorbing and desorbing lithium ions and having oxygen functional groups on the surface are used.
90% or more of the oxygen functional groups are replaced with fluorine by reacting with fluorine gas in an atmosphere of ° C, and 90% or more of the fluorine is removed from the carbon material to produce a carbon material for a lithium secondary battery negative electrode. A method for producing a carbon material for a lithium secondary battery negative electrode, comprising:

【0024】(3)前記表面に酸素官能基を有する炭素
材料は平均粒径5〜50μmのグラファイト粉末である
上記(1)または(2)に記載のリチウム二次電池負極
用炭素材料の製造方法。
(3) The method for producing a carbon material for a lithium secondary battery negative electrode according to the above (1) or (2), wherein the carbon material having an oxygen functional group on the surface is graphite powder having an average particle size of 5 to 50 μm. .

【0025】(4)前記炭素材料を真空中で加熱処理し
て前記フッ素を除去することを特徴とする上記(2)に
記載のリチウム二次電池負極用炭素材料の製造方法。
(4) The method for producing a carbon material for a lithium secondary battery negative electrode according to (2), wherein the carbon material is heat-treated in vacuum to remove the fluorine.

【0026】(5)前記加熱処理は前記炭素材料を10
-2Toor以下の真空中で600℃以上に加熱することを特
徴とする上記(4)に記載のリチウム二次電池負極用炭
素材料の製造方法。
(5) In the heat treatment, the carbon material is added to 10
The method for producing a carbon material for a negative electrode of a lithium secondary battery according to (4) above, wherein the carbon material is heated to 600 ° C. or higher in a vacuum of −2 Toor or lower.

【0027】(6)前記炭素材料を電解液中で還元反応
させて前記フッ素を除去することを特徴とする上記
(2)に記載のリチウム二次電池負極用炭素材料の製造
方法。
(6) The method for producing a carbon material for a negative electrode of a lithium secondary battery according to (2), wherein the carbon material is subjected to a reduction reaction in an electrolytic solution to remove the fluorine.

【0028】(7)表面の酸素官能基の90%以上がフ
ッ素で置換されてなるグラファイト粉末を主成分として
作られた負極と、LiClO4 を主成分として作られた
正極と、エチレンカーボネート及びジエチルカーボネー
トを混合してなる電解液とを用いて構成されるリチウム
二次電池。
(7) Negative electrode made mainly of graphite powder in which 90% or more of oxygen functional groups on the surface are substituted with fluorine, positive electrode made mainly of LiClO4, ethylene carbonate and diethyl carbonate A lithium secondary battery configured by using an electrolytic solution obtained by mixing

【0029】[0029]

【発明の効果】本発明によれば、炭素材料の表面の酸素
官能基の一部または全部をフッ素で置換するので、初回
充電量を小さくできる上、電池の初回充電量のばらつき
を少なくして、電池性能のばらつきを減少させることが
できる。
According to the present invention, part or all of the oxygen functional groups on the surface of the carbon material are replaced with fluorine, so that the initial charge amount can be reduced and the variation in the initial charge amount of the battery can be reduced. It is possible to reduce variations in battery performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例のリチウム二次電池の破断断面図で
ある。
FIG. 1 is a cutaway sectional view of a lithium secondary battery according to an embodiment.

【図2】 (A)及び(B)は試験に用いた電池の電圧
による放電容量の変化のばらつきを示す図である。
FIG. 2A and FIG. 2B are diagrams showing variations in change in discharge capacity depending on the voltage of the battery used in the test.

【図3】 試験に用いた試験用セルの平面図である。FIG. 3 is a plan view of a test cell used in a test.

【図4】 炭素電極におけるフッ素の量による初回充電
容量の変化のばらつきを示す図である。
FIG. 4 is a diagram showing variation in change in initial charge capacity depending on the amount of fluorine in a carbon electrode.

【図5】 炭素電極における酸素官能基の量による初回
充電容量の変化のばらつきを示す図である。
FIG. 5 is a diagram showing variation in change in initial charge capacity depending on the amount of oxygen functional groups in a carbon electrode.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】表面の酸素官能基の一部または全部がフッ
素で置換されてなるリチウム二次電池負極用炭素材料。
1. A carbon material for a lithium secondary battery negative electrode, wherein a part or all of oxygen functional groups on the surface are substituted with fluorine.
【請求項2】請求項1に記載のリチウム二次電池負極用
炭素材料を主成分とするリチウム二次電池負極。
2. A lithium secondary battery negative electrode containing the carbon material for a lithium secondary battery negative electrode according to claim 1 as a main component.
【請求項3】請求項2に記載のリチウム二次電池負極が
用いられてなるリチウム二次電池。
3. A lithium secondary battery using the negative electrode of the lithium secondary battery according to claim 2.
【請求項4】表面に酸素官能基を有する炭素材料の前記
酸素官能基の一部または全部をフッ素で置換してリチウ
ム二次電池負極用炭素材料を製造することを特徴とする
リチウム二次電池負極用炭素材料の製造方法。
4. A lithium secondary battery, wherein a carbon material for a lithium secondary battery negative electrode is produced by substituting a part or all of the oxygen functional groups of a carbon material having an oxygen functional group on the surface with fluorine. Manufacturing method of carbon material for negative electrode.
【請求項5】表面に酸素官能基を有する炭素材料の前記
酸素官能基の一部または全部をフッ素で置換した後、前
記炭素材料から前記フッ素の一部または全部を除去して
リチウム二次電池負極用炭素材料を製造することを特徴
とするリチウム二次電池負極用炭素材料の製造方法。
5. A lithium secondary battery in which a part or all of the oxygen functional groups of a carbon material having an oxygen functional group on the surface are replaced with fluorine and then part or all of the fluorine is removed from the carbon material. A method of manufacturing a carbon material for a negative electrode of a lithium secondary battery, which comprises manufacturing a carbon material for a negative electrode.
JP7049766A 1995-03-09 1995-03-09 Carbon material for lithium secondary battery negative electrode, and manufacture thereof Pending JPH08250117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7049766A JPH08250117A (en) 1995-03-09 1995-03-09 Carbon material for lithium secondary battery negative electrode, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7049766A JPH08250117A (en) 1995-03-09 1995-03-09 Carbon material for lithium secondary battery negative electrode, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08250117A true JPH08250117A (en) 1996-09-27

Family

ID=12840304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7049766A Pending JPH08250117A (en) 1995-03-09 1995-03-09 Carbon material for lithium secondary battery negative electrode, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08250117A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060803A (en) * 1996-12-31 1998-10-07 손욱 Method for producing a conductive agent and a secondary battery containing the conductive agent
JPH10284079A (en) * 1997-02-06 1998-10-23 Japan Storage Battery Co Ltd Manufacture of host material and nonaqueous electrolyte secondary battery
WO2000033401A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2003515872A (en) * 1999-10-12 2003-05-07 キャボット コーポレイション Modified carbon products useful for gas diffusion electrodes
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
CN103181003A (en) * 2010-12-22 2013-06-26 海洋王照明科技股份有限公司 Electrode plate, preparing method therefor, super capacitor and lithium ion battery
JP2014504248A (en) * 2010-12-22 2014-02-20 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Graphene fluoride oxide and preparation method thereof
JP2014505650A (en) * 2010-12-30 2014-03-06 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Graphene derivative-carbon nanotube composite material and manufacturing method thereof
WO2014080897A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
KR20180020857A (en) * 2014-05-30 2018-02-28 에스 이 아이 가부시키가이샤 Electrode material, manufacturing method for same, and lithium battery
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060803A (en) * 1996-12-31 1998-10-07 손욱 Method for producing a conductive agent and a secondary battery containing the conductive agent
JPH10284079A (en) * 1997-02-06 1998-10-23 Japan Storage Battery Co Ltd Manufacture of host material and nonaqueous electrolyte secondary battery
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
WO2000033401A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2003515872A (en) * 1999-10-12 2003-05-07 キャボット コーポレイション Modified carbon products useful for gas diffusion electrodes
JP2014504000A (en) * 2010-12-22 2014-02-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Electrode plate and method for preparing the same, super capacitor and lithium ion battery
CN103181003A (en) * 2010-12-22 2013-06-26 海洋王照明科技股份有限公司 Electrode plate, preparing method therefor, super capacitor and lithium ion battery
JP2014504248A (en) * 2010-12-22 2014-02-20 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Graphene fluoride oxide and preparation method thereof
US8865932B2 (en) 2010-12-22 2014-10-21 Ocean's King Lighting Science & Technology Co., Ltd. Fluorinated graphene oxide and preparation method thereof
JP2014505650A (en) * 2010-12-30 2014-03-06 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Graphene derivative-carbon nanotube composite material and manufacturing method thereof
WO2014080897A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
JPWO2014080897A1 (en) * 2012-11-22 2017-01-05 日産自動車株式会社 Negative electrode for electric device and electric device using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
KR20180020857A (en) * 2014-05-30 2018-02-28 에스 이 아이 가부시키가이샤 Electrode material, manufacturing method for same, and lithium battery

Similar Documents

Publication Publication Date Title
US4980250A (en) Secondary battery
JPH08250117A (en) Carbon material for lithium secondary battery negative electrode, and manufacture thereof
KR100269923B1 (en) Method for manufacturing active material for negative electrode of lithium series secondary battery
JPH07230803A (en) Carbon negative electrode material for lithium secondary battery
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
CN113066988B (en) Negative pole piece and preparation method and application thereof
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JP3435731B2 (en) Non-aqueous electrolyte secondary battery
JP3618492B2 (en) Battery electrode material and secondary battery
JPH08213014A (en) Nonaqueous electrolyte secondary battery
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JPH09320602A (en) Negative electrode for lithium secondary battery
JP2002270170A (en) Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JPH09161776A (en) Monaqueous secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH10233207A (en) Negative electrode for lithium secondary cell
JP2002343358A (en) Manufacturing method of positive electrode for lithium ion secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
Weininger et al. Polymer‐Bonded Negative Electrodes for Lead‐Acid Batteries
JPH11126613A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030819