JPH01134467A - Electrostatic latent image developing carrier - Google Patents

Electrostatic latent image developing carrier

Info

Publication number
JPH01134467A
JPH01134467A JP62294379A JP29437987A JPH01134467A JP H01134467 A JPH01134467 A JP H01134467A JP 62294379 A JP62294379 A JP 62294379A JP 29437987 A JP29437987 A JP 29437987A JP H01134467 A JPH01134467 A JP H01134467A
Authority
JP
Japan
Prior art keywords
carrier
particles
obtd
control agent
charge control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62294379A
Other languages
Japanese (ja)
Inventor
Shuntaro Kori
郡俊 太郎
Junji Machida
純二 町田
Masahiro Yasuno
政裕 安野
Yukio Tanigami
谷上 行夫
Makoto Kobayashi
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP62294379A priority Critical patent/JPH01134467A/en
Publication of JPH01134467A publication Critical patent/JPH01134467A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1139Inorganic components of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1137Macromolecular components of coatings being crosslinked

Abstract

PURPOSE:To obtain the excellent title carrier capable of maintaining a stable triboelectrostatic charge and has the rapid rising of the electrification at the same time by constituting said carrier of a carrier core particle, a thermosetting resin layer which contains a ferromagnetic particle for coating the surface of the carrier core particles and an electrostatic charge control agent fixed to the thermosetting resin layer. CONSTITUTION:The uncured coated layer of a thermosetting resin contg. the fine ferromagnetic particles is formed on the ferromagnetic carrier core material. The method of forming such layer includes those of sufficiently mixing and dispersing the fine ferromagnetic particle in a self-crosslinking type resin, and then, mixing the obtd. dispersion with the ferromagnetic core particle to form the coated layer of the carrier core particle. Next, the obtd. carrier having the uncured coated layer and the particles of the electrostatic charge control agent are mixed mechanically by a blender mill, etc., thereby sticking the agent to the coated layer. And then, the coated layer fixed with the charge control agent on the surface of a coated carrier is formed by melt-curing the coated layer with heating, and the carrier is obtd. by screening the obtd. particle to remove aggregates. Thus, the rapid rising of the electrification and the stable triboelectrifiability of the toner are obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は磁気ブラシ現像法による電子写真方式の複写機
およびプリンタ用現像剤のキャリアおよびその製造法に
関する。 従来の技術 電子写真方式の複写機、プリンタにより画像を得るには
、まず画像担体である感光体の表面を均一に帯電し、こ
れを原稿の画像に対応するパターンに基づき露光するか
、あるいはアウトプットの内容を光で感光体上に描いて
静電潜像を形成する。 つぎに、この静電潜像を有する感光体表面を現像装置を
用いて現像(可視像化)し、得られたトナー像を紙など
の転写材へ転写する。 このような現像装置では、表面にトナーが付着した磁性
キャリアからなる磁気ブラシを磁力により現像スリーブ
表面に形成し、これを感光体表面に摺接することにより
感光体表面の静電潜像の顕像化を行う。 かかる現像剤としては、従来、平均粒径20〜200μ
肩程度の鉄粉粒子等からなる磁性キャリアと、平均粒径
5〜20μ肩程度の絶縁性のトナーとを混合したものが
使用されている。 しかしながら、前記キャリアは、その体積固有電気抵抗
値が108Ωcm以下と低い。このため、連続使用等に
より現像剤中のトナー濃度が低下した場合、静電潜像担
体上の電荷がキャリアを介して逃げ、潜像の乱れ、ある
いは画像の欠損等を生じる。また、現像スリーブからの
注入電荷によりキャリアが静電潜像担体の画像部に付着
するなどの問題も存在する。さらに、キャリア粒子が硬
いため、感光体の静電潜像上に付着すると感光体表面の
清掃時にブレードクリーナ等により感光体の表面が傷つ
けられる。 このような問題を解消するため、キャリア表面に樹脂を
被覆し、キャリアの電気抵抗を大きくすることが提案さ
れている(例えば特開昭60−66264号公報、特開
昭60−662625号公報、特開昭57−660号公
報、特開昭60−60658号公報等)。 発明が解決しようとする問題点 かかるキャリアは、一般に樹脂を溶剤に溶かして得られ
た溶液をキャリア粒子に被覆して乾燥することにより得
られる。したがって、該キャリアは粒子表面が樹脂等で
完全に被覆されており、このため電荷が蓄積し、画質の
コントロールが困難である。すなわちキャリアの帯電性
、換言すればこのキャリアにより帯電されるトナーの帯
電量が非常に不安定である。したがって、複写の繰り返
しにより帯電量が増加し、充分な画像の濃度が得られな
かったり、あるいは逆に複写の繰り返しにより帯電mが
減少し画像カブリが発生したりトナー飛散が増加すると
いう問題がある。 また、前記キャリアにより帯電されるトナーで5は、帯
電の立ち上がりが遅く、したがって、未帯電のトナーが
頻繁に補給される高速複写機等への使用には問題があっ
た。 本発明は、安定した摩擦帯電量が維持でき、同時に帯電
の立ち上がりが速い優れた静電潜像現像用キャリアを提
供することを目的とする。 問題点を解決するための手段 本発明はキャリア芯材粒子、該キャリア芯材粒子の表面
を被覆する強磁性体粉含有の熱硬化性樹脂層、および該
熱硬化性樹脂層に固着した帯電制御剤からなることを特
徴とする静電潜像現像用キャリアを提供するものである
。 本発明にてキャリアを製造するには、まず、強磁性体の
キャリア芯材に強磁性体微粒子を含む熱硬化性樹脂の未
硬化コート層を形成する。かかる方法としては、自己架
橋型樹脂に磁性体微粉末を充分に混合、分散し、ついで
強磁性体の芯材粒子と混合して被覆層を形成する方法、
または、熱硬化性樹脂をあらかじめ溶剤中に溶かして磁
性体微粉末と充分に混合し、得られたスラリー液と芯材
粒子とをさらに混合撹拌し、さらにこれを熱気流中に噴
霧して溶剤を蒸発させて被覆層を形成する方法等がある
。 つぎに、得られた未硬化コート層を有するキャリアと、
帯電制御剤粒子とをブレンダーミル、ヘンシェルミキサ
ー、スーパーミキサー、リボンプレンダなどを用いて機
械的に混合し、該コート層に帯電制御剤を付着させ、そ
の後加熱により溶融硬化を行いコートキャリアの表面に
帯電制御剤が固着された被覆層を形成する。なお、該帯
電制御剤は、これを単独で被覆してもよく、またさらに
無機粒子、例えば、MgO1ZnO,PbO1AIto
3、Tl!03、IntO3、B110a、■、00、
NdzO3、CuO1N i O,F e tos、F
e1nt、Ti1t、Zr0t、M o O3、U、0
5等の金属酸化物などと共に被覆してもよい。 前記被、覆層の固定において加熱手段は特に限定されな
い。溶融硬化時、さらに撹拌あるいは加圧等を行うこと
により被覆粒子の固定化は、より均一確実となる。また
、固定化は窒素などの不活性ガス存在下におこなっても
よい。 このようにして得られた粒子を篩別して凝集物を除去し
、キャリアとして用いる。 本発明キャリアの芯材粒子としては、マグネタイト、フ
ェライト、鉄、ニッケル、コバルトなどの公知の磁性体
、あるいはこれらの混合物等が挙げられる。これら芯材
粒子は、粒径15〜200μ11好ましくは30〜10
0μ肩のものが使用される。キャリア芯材の粒径が15
μ肩より小さいと、搬送性が悪く、さらにキャリア付着
が生ずる。一方、芯材粒子の粒径が200μ屑より太き
いと、このようなキャリアを用いて得られた画像のキメ
が粗くハキムラ等を生じ粗雑な画像となる。 本発明によれば、20〜80μ屑程度の粒径の小さなキ
ャリア芯材を使用しても、強い磁気力を有する好ましい
キャリアが調製できる。 該キャリアにコートされる熱硬化性樹脂としては、エポ
キシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、
ユリア樹脂、ウレタン樹脂、シリーン樹脂、各種の変性
硬化樹脂、あるいは、酸価、水酸価を有するポリエステ
ル樹脂またはアクリル系樹脂と、金属、例えばCrXF
e、Znなどを有するキレート化合物やカップリング剤
などとのイオン架橋による熱硬化性樹脂などがあげられ
、また、これらの混合物であってもよい。 一方、かかる中間コート層のポリマーに配合される磁性
体粉微粒子としては、前記キャリア芯材粒子と同様従来
公知の磁性体粉がいずれも好適に用いられる。 該コート層に配合される磁性体粉は粒径0.0i〜3μ
lのものが使用される。粒径が3μ貢より大きいと、キ
ャリア芯材表面に良好な被覆層が形成されず、一方、粒
径が0.01μ肩より小さいと、−次疑集の解砕が困難
で分散性が悪くなる。 前記ポリマーと磁性体粉との配合割合は、樹脂100重
里部に対して磁性体粉200〜800重重部である。磁
性体の混合量が800重里部より多いと、磁性体粉が充
分結合されずコート層が脆くなり、一方200重量部よ
り少ないと、トナーに対する帯電が不安定である。 さらに、該コート層樹脂には、電気抵抗を制御する材料
、例えば金属粉、カーボンブラック、酸化スズなど、あ
るいは誘電率を制御する材料、例えばロッシェル塩、チ
タン酸バリウム、チオ尿素、リン酸二水素カリウムなど
が適宜添加されてよい。 キャリア芯村上の該コート層の層厚は、0.5〜10μ
肩が好ましい。コート層の層厚か0.5μ次より小さい
と、均一な被覆が困難であり、またlOμ!より厚いと
被覆層が剥離し易くなる。 さらに、該コート層表面に固着する帯電制御剤としては
、従来帯電制御剤として用いられているものかいずれも
好適に用いられ、例えばニグロシンなどのオイルブラッ
ク、第四級アンモニウム塩、アミノアクリレート共重合
体、Cr  Co  Paなどの金属とキレート化した
含金の油溶性染料(スピロンブラックTRH1保土谷化
学工業(株)製)やボントロンE−81,E−82、E
−84、E−85(オリエント化学工業社製)などが挙
げられろ。 コートキャリアと帯電制御剤との混合割合は、コートキ
ャリア100重量部に対して帯電制御剤0.02〜lO
重量部、好ましくは、0.05〜5重量部である。帯電
制御剤の割合が0,02重量部より少ないと、帯電制御
作用が充分でなく、−方lO重量部より多いと帯電制御
剤の凝集物が混在し好ましくない。 なお、かかる帯電制御剤の被覆層を加熱して固定化する
のに用い得る具体的な装置としては回転炉撹拌機付きオ
ートクレーブ、スパイラーフロー(フロント産業社製)
、通常のスプレードライ装置等が挙げられる。 このように、キャリア芯村上に固定された磁性体粉含有
の樹脂層および該樹脂層に固着した帯電制御剤はキャリ
アに効果的に帯電制御作用を与え、さらに、適度な導電
性を付与し、キャリアの電荷の蓄積防止に効果がある。 得られたキャリアの電気抵抗は、to” 〜to”Ωc
m、好ましくはto”〜10″Ωcmである。 キャリア芯材の周囲に固定化される被覆層の厚さは、キ
ャリア芯材と磁性粉含有ポリマー微粒子との混合割合に
より制御することができ、キャリアの電気抵抗を任意に
設定することができる。 またコート層樹脂として熱硬化樹脂を使用することによ
り磁性粉及び帯電制葡剤がより強固に固着され耐久性に
優れた被覆層を形成することができる。 実施例 つぎに本発明を実施例および比較例によりさらに具体的
に説明する。 実施例 l 上記成分ををボールミルにて5時間撹拌し各成分を充分
に混合分散した。得られたスラリー液20cc中にキャ
リア芯材(Znフェライト微粒子F’MC−6C,TD
K (株)製:平均粒径52μm)100gを加え、3
0分撹拌を行い、熱せられた気流中(120℃)に噴霧
して溶剤を蒸発させて芯材表面にコート層を形成した。 つぎに、このコートキャリアの回りに帯電制御剤ニグロ
シンベースEX(オリエント化学工業(株)製オイルブ
ラック)0.5gを静電気的に付着させた。 これを180℃にて30分間加熱して樹脂層を熱硬化さ
せ帯電制御剤を固着した後、分級して微粒子を除去した
。得られたキャリアの電気抵抗はlkv/cmの電界下
において2XlO”Ωamであった(キャリア1)。該
キャリアの耐刷テストの結果を第1表に示す。 実施例2 上記成分をボールミルを用いて5時間混合撹拌し、各成
分を充分に混合分散した。ついで、このスラリー液30
cc中にキャリア芯材としてMn・Zn−フェライト微
粒子X−012(平均粒径44μl;富士電気化学(抹
)製)  100gを加え、30分撹拌を行った。つい
で、熱気流(130℃)中に噴霧して溶媒を蒸発させ造
粒しコートキャリアを得た。さらに、これに帯電制御剤
ボントロン5−34 (オリエント化学工業(株)製)
Cr含金染料)0.5g静電気的に付着させた。 得られた粒子を150℃で1時間加熱して熱硬化を行い
帯電制御剤を固着したあと、分級して微粒子を除去した
。得られたキャリアの電気抵抗は1k v / c m
の電界下で5.0xlO130cmであった(キャリア
2)。該キャリアの耐刷テストの結果を第1表に示す。 実施例3 上記成分をボールミルを用いて5時間混合撹拌し各成分
を充分に混合分散させた。この液100cc中にキャリ
ア芯材としてKG−200(関東電化工業(株)製、鉄
微粒子:平均粒径45μ肩)200gを加え、30分撹
拌を行った。これを熱気流(130℃)中に噴霧して溶
媒を蒸発させ、造粒しコートキャリアを得た。これにス
ピロンブラックTRH(保土谷化学工業(株)製Cr含
金染料)Igを静電気的に付着させた。得られた粒子を
150℃で20分間加熱して熱硬化させ、帯電制御剤を
キャリア表面に固着させた後、熱硬化微粒子を分級にて
除去した。得られたキャリアの電気抵抗は、1 k v
 / c mの電界下で3.2×1013Ωcmであっ
た(キャリア3)。該キャリアの耐刷テストの結果を第
1表に示す。 比較例1 実施例■こおいて帯電制御剤を用いなかった以外は同様
にしてキャリアを得た。このキャリアの電気抵抗は1k
V/c肩の電界下で1.5XlO”Ω・ORであった(
キャリア4)。該キャリアの耐刷テストの結果を第1表
に示す。 比較例2 実施例1において磁性体粉(MF P −2)を添加し
なかった以外は同様にしてキャリアを得た。 このキャリアの電気抵抗はIkV/cmの電界下で1゜
2X1015Ω・Gmであった(キャリア5)。該キャ
リアの耐刷テスの結果を第1表に示す。 比較例3 MF’P−2200g MA#IO05g 上記成分を実施例1と同様に充分分散し、得られたスラ
リー液30cc中に、キャリア芯材としてFMC−6G
  100gを加え、熱気流中で造粒した。このキャリ
アの表面にボントロン5−34 0.5gを静電気的に
付着させた後、加熱して固着した。次に、分級により遊
離の微粒子を除去した。得られたキャリアの電気抵抗は
Ikv/cmの電界下で3XlO13Ωcmであった(
キャリア6)。該キャリアの耐刷テストの結果を第1表
に示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developer carrier for electrophotographic copying machines and printers using a magnetic brush development method, and a method for manufacturing the same. Conventional Technology To obtain an image using an electrophotographic copying machine or printer, the surface of a photoreceptor, which is an image carrier, is first uniformly charged, and then this is exposed to light based on a pattern corresponding to the image on the original, or the output is The contents of the image are written onto the photoreceptor using light to form an electrostatic latent image. Next, the surface of the photoreceptor having this electrostatic latent image is developed (visualized) using a developing device, and the obtained toner image is transferred to a transfer material such as paper. In such a developing device, a magnetic brush made of a magnetic carrier with toner adhered to the surface is formed on the surface of the developing sleeve by magnetic force, and this is brought into sliding contact with the surface of the photoreceptor to develop an electrostatic latent image on the surface of the photoreceptor. make changes. Conventionally, such a developer has an average particle size of 20 to 200 μm.
A mixture of a magnetic carrier made of shoulder-sized iron powder particles and an insulating toner having an average particle diameter of about 5 to 20 μm is used. However, the carrier has a low volume specific electrical resistance value of 10 8 Ωcm or less. Therefore, when the toner concentration in the developer decreases due to continuous use or the like, the charge on the electrostatic latent image carrier escapes through the carrier, causing disturbances in the latent image or defects in the image. Further, there is a problem that carriers adhere to the image area of the electrostatic latent image carrier due to charges injected from the developing sleeve. Further, since the carrier particles are hard, if they adhere to the electrostatic latent image on the photoreceptor, the surface of the photoreceptor will be damaged by a blade cleaner or the like when cleaning the surface of the photoreceptor. In order to solve this problem, it has been proposed to coat the carrier surface with resin to increase the electrical resistance of the carrier (for example, Japanese Patent Laid-Open No. 60-66264, Japanese Patent Laid-Open No. 60-662625, JP-A-57-660, JP-A-60-60658, etc.). Problems to be Solved by the Invention Such carriers are generally obtained by dissolving a resin in a solvent and coating carrier particles with a solution obtained, followed by drying. Therefore, the particle surface of the carrier is completely covered with a resin or the like, which causes charge to accumulate, making it difficult to control the image quality. That is, the chargeability of the carrier, in other words, the amount of charge of the toner charged by the carrier is extremely unstable. Therefore, repeated copying increases the amount of charge, making it impossible to obtain sufficient image density, or conversely, repeated copying reduces charge m, causing image fogging and increasing toner scattering. . Further, the toner 5 charged by the carrier has a slow charging start-up, and therefore has a problem in use in high-speed copying machines and the like where uncharged toner is frequently replenished. SUMMARY OF THE INVENTION An object of the present invention is to provide an excellent carrier for developing electrostatic latent images that can maintain a stable amount of triboelectric charge and at the same time quickly build up the charge. Means for Solving the Problems The present invention provides carrier core particles, a thermosetting resin layer containing ferromagnetic powder that covers the surface of the carrier core particles, and a charge control layer fixed to the thermosetting resin layer. A carrier for developing an electrostatic latent image is provided. To manufacture a carrier according to the present invention, first, an uncured coat layer of a thermosetting resin containing ferromagnetic fine particles is formed on a ferromagnetic carrier core material. Such a method includes sufficiently mixing and dispersing magnetic fine powder in a self-crosslinking resin, and then mixing it with ferromagnetic core material particles to form a coating layer;
Alternatively, the thermosetting resin may be dissolved in a solvent in advance and thoroughly mixed with the magnetic fine powder, the resulting slurry liquid and core material particles may be further mixed and stirred, and then this may be sprayed into a hot air stream to remove the solvent. There is a method of forming a coating layer by evaporating. Next, a carrier having the obtained uncured coat layer,
The charge control agent particles are mechanically mixed using a blender mill, Henschel mixer, super mixer, ribbon blender, etc., the charge control agent is adhered to the coat layer, and then melted and hardened by heating to charge the surface of the coated carrier. A coating layer is formed to which the control agent is fixed. The charge control agent may be coated alone or may be coated with inorganic particles such as MgO1ZnO, PbO1AIto
3. Tl! 03, IntO3, B110a, ■, 00,
NdzO3, CuO1N i O, F e tos, F
e1nt, Ti1t, Zr0t, M o O3, U, 0
It may be coated with a metal oxide such as No. 5 or the like. The heating means for fixing the covering layer is not particularly limited. By further performing stirring or pressurization during melt hardening, the fixation of the coated particles becomes more uniform and reliable. Further, the immobilization may be performed in the presence of an inert gas such as nitrogen. The particles thus obtained are sieved to remove aggregates and used as a carrier. Examples of the core material particles of the carrier of the present invention include known magnetic substances such as magnetite, ferrite, iron, nickel, and cobalt, or mixtures thereof. These core material particles have a particle size of 15 to 200 μ11, preferably 30 to 10
A 0μ shoulder is used. Particle size of carrier core material is 15
If it is smaller than the μ shoulder, the transportability will be poor and carrier adhesion will occur. On the other hand, if the particle size of the core material particles is larger than 200 micron particles, the image obtained using such a carrier will have a rough texture, such as flaking and unevenness, resulting in a rough image. According to the present invention, a preferable carrier having strong magnetic force can be prepared even if a carrier core material having a small particle size of about 20 to 80 micron particles is used. The thermosetting resin coated on the carrier includes epoxy resin, unsaturated polyester resin, phenolic resin,
Urea resin, urethane resin, silicone resin, various modified cured resins, or polyester resin or acrylic resin having an acid value or hydroxyl value, and a metal such as CrXF.
Examples include thermosetting resins formed by ionic crosslinking with chelate compounds containing e.g., Zn, etc., and coupling agents, and may also be mixtures thereof. On the other hand, as the magnetic powder fine particles to be blended into the polymer of the intermediate coat layer, any conventionally known magnetic powder can be suitably used, similar to the carrier core material particles. The magnetic powder blended into the coating layer has a particle size of 0.0i to 3μ.
l is used. If the particle size is larger than 3μ, a good coating layer will not be formed on the surface of the carrier core material.On the other hand, if the particle size is smaller than 0.01μ, it will be difficult to crush the particles and the dispersibility will be poor. Become. The mixing ratio of the polymer and the magnetic powder is 200 to 800 parts by weight of the magnetic powder to 100 parts by weight of the resin. If the mixed amount of the magnetic material is more than 800 parts by weight, the magnetic powder will not be sufficiently bonded and the coating layer will become brittle, while if it is less than 200 parts by weight, the charging of the toner will be unstable. Furthermore, the coating layer resin may contain materials that control electrical resistance, such as metal powder, carbon black, tin oxide, etc., or materials that control dielectric constant, such as Rochelle's salt, barium titanate, thiourea, dihydrogen phosphate, etc. Potassium etc. may be added as appropriate. The layer thickness of the coating layer on the carrier core Murakami is 0.5 to 10μ
Shoulders are preferred. If the thickness of the coating layer is less than 0.5μ, it will be difficult to achieve uniform coating, and if the thickness of the coating layer is less than 0.5μ, it will be difficult to achieve uniform coating. If it is thicker, the coating layer will easily peel off. Furthermore, as the charge control agent that adheres to the surface of the coating layer, any of those conventionally used as a charge control agent may be suitably used, such as oil black such as nigrosine, quaternary ammonium salts, and aminoacrylate copolymer. Metal-containing oil-soluble dyes chelated with metals such as Cr Co Pa (Spiron Black TRH1 manufactured by Hodogaya Chemical Industry Co., Ltd.) and Bontron E-81, E-82, E
Examples include -84 and E-85 (manufactured by Orient Chemical Industry Co., Ltd.). The mixing ratio of the coat carrier and the charge control agent is 0.02 to 1O of the charge control agent to 100 parts by weight of the coat carrier.
Parts by weight, preferably 0.05 to 5 parts by weight. If the proportion of the charge control agent is less than 0.02 parts by weight, the charge control effect will not be sufficient, and if it is greater than 10 parts by weight, aggregates of the charge control agent will be present, which is not preferable. Specific devices that can be used to heat and fix the coating layer of the charge control agent include an autoclave with a rotary furnace stirrer, and Spiral Flow (manufactured by Front Sangyo Co., Ltd.).
, a normal spray drying device, and the like. In this way, the resin layer containing magnetic powder fixed to the carrier core Murakami and the charge control agent fixed to the resin layer effectively impart a charge control effect to the carrier, and further impart appropriate conductivity to the carrier. Effective in preventing carrier charge accumulation. The electrical resistance of the obtained carrier is to” to”Ωc
m, preferably to'' to 10'' Ωcm. The thickness of the coating layer fixed around the carrier core material can be controlled by the mixing ratio of the carrier core material and the magnetic powder-containing polymer particles, and the electrical resistance of the carrier can be arbitrarily set. Further, by using a thermosetting resin as the coating layer resin, the magnetic powder and the antistatic agent are more firmly fixed, and a coating layer with excellent durability can be formed. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 The above components were stirred in a ball mill for 5 hours to thoroughly mix and disperse each component. A carrier core material (Zn ferrite fine particles F'MC-6C, TD
Add 100 g of K Co., Ltd. (average particle size 52 μm),
After stirring for 0 minutes, the solvent was evaporated by spraying into a heated air stream (120° C.) to form a coating layer on the surface of the core material. Next, 0.5 g of a charge control agent Nigrosine Base EX (Oil Black manufactured by Orient Chemical Industry Co., Ltd.) was electrostatically adhered around the coated carrier. This was heated at 180° C. for 30 minutes to thermoset the resin layer and fix the charge control agent, and then classified to remove fine particles. The electrical resistance of the obtained carrier was 2XlO"Ωam under an electric field of lkv/cm (Carrier 1). The results of the printing durability test of the carrier are shown in Table 1. Example 2 The above components were mixed using a ball mill. The slurry was mixed and stirred for 5 hours to thoroughly mix and disperse each component.
100 g of Mn.Zn-ferrite fine particles X-012 (average particle size: 44 μl; manufactured by Fuji Electrochemical Co., Ltd.) was added to the cc as a carrier core material, and stirred for 30 minutes. Then, the mixture was sprayed into a hot air stream (130° C.) to evaporate the solvent and granulate to obtain a coated carrier. Furthermore, the charge control agent Bontron 5-34 (manufactured by Orient Chemical Industry Co., Ltd.)
0.5 g of Cr-containing metal dye) was electrostatically deposited. The obtained particles were heated at 150° C. for 1 hour to thermally cure the charge control agent, and then classified to remove fine particles. The electrical resistance of the obtained carrier is 1 kv/cm
(Carrier 2). Table 1 shows the results of the printing durability test of the carrier. Example 3 The above components were mixed and stirred for 5 hours using a ball mill to thoroughly mix and disperse each component. To 100 cc of this liquid, 200 g of KG-200 (manufactured by Kanto Denka Kogyo Co., Ltd., iron fine particles: average particle size: 45 μm) was added as a carrier core material, and stirred for 30 minutes. This was sprayed into a hot air stream (130°C) to evaporate the solvent and granulate to obtain a coated carrier. Spiron black TRH (Cr-containing metal dye manufactured by Hodogaya Chemical Industry Co., Ltd.) Ig was electrostatically adhered to this. The obtained particles were heated at 150° C. for 20 minutes to thermoset the charge control agent on the carrier surface, and then the thermoset fine particles were removed by classification. The electrical resistance of the obtained carrier is 1 kv
It was 3.2×1013 Ωcm under an electric field of /cm (Carrier 3). Table 1 shows the results of the printing durability test of the carrier. Comparative Example 1 A carrier was obtained in the same manner as in Example (1) except that no charge control agent was used. The electrical resistance of this carrier is 1k
It was 1.5XlO"Ω・OR under the V/c shoulder electric field (
Career 4). Table 1 shows the results of the printing durability test of the carrier. Comparative Example 2 A carrier was obtained in the same manner as in Example 1 except that the magnetic powder (MF P-2) was not added. The electrical resistance of this carrier was 1°2×10 15 Ω·Gm under an electric field of IkV/cm (carrier 5). Table 1 shows the results of the printing durability test of the carrier. Comparative Example 3 MF'P-2200g MA#IO05g The above components were sufficiently dispersed in the same manner as in Example 1, and FMC-6G was added as a carrier core material into 30cc of the resulting slurry liquid.
100 g was added and granulated in a hot air stream. After 0.5 g of Bontron 5-34 was electrostatically attached to the surface of this carrier, it was fixed by heating. Next, free fine particles were removed by classification. The electrical resistance of the obtained carrier was 3XlO13Ωcm under an electric field of Ikv/cm (
Career 6). Table 1 shows the results of the printing durability test of the carrier.

【キャリアの評価】[Career evaluation]

実施例および比較例にて得られたキャリアの摩擦帯電性
と耐刷テストはっぎの方法により行った。 〔トナーの調製〕 成  分                配合型上記
原材料を充分混合した後、PCM30(二軸押出混練機
)を用いて混練し、冷却後、粗粉砕した。次に、ジェッ
ト粉砕機1−2型ミル(日本ニューマヂック工業(株)
製)にて微粉砕し、ジグザグ分級機(アルピネ社製)に
て分級し、平均径13.2μ肩のトナーを得た。このト
ナーを疎水性シリカR−972(日本アエロジル工業(
株)製)0.1重量%にて表面処理した。 〔摩擦帯電量〕 前記絶縁性トナーと、実施例あるいは比較例で ″得ら
れたキャリアとを10:90の割合で混合し、現像剤3
0gを調製した。得られた現像剤を50coのポリエチ
レンビンに入れ100 rpmで撹拌した時の撹拌混合
時間に対するトナーの摩擦帯電量の変化を測定した。得
られた結果を第1図に示す。 〔耐刷テスト〕 前記絶縁性トナーと、実施例1〜3および比較例1〜3
のキャリアとを10:90の割合で混合撹拌し現像剤(
No 1〜6)を調整した。これらの現像剤をEP−4
70Z(ミノルタカメラ(株)製、PPC複写機)によ
り耐刷テストに供した。 得られた結果を下記の第1表に示す。 第1表 113J L、32013.11J4013.01J5
0214.11.28014.11.29013.8 
+、370316.21.26016.41.2501
6.41.24045.10.70 x −−−一−− 514,51J5017.01.00020.90.4
50613.01.4107.2.1.02△310,
66 x注) QF:トナー帯電量(μc/g) ■D:画像農度 カブリ:耐刷テスト時の画像カブリを目視によりつぎに
示す画質評価の基準に基づき ランク付けした。 ○;実用上はとんどカブリなし △;カブリは目立つが実用的に許容 できろ ×:カブリが目立ち実用上不可 第1図および第1表より明らかなごとく、実施例のキャ
リアはトナーに対して摩擦帯電量の立ち上がりが速く、
また耐刷にともなう帯電量の経時変化が少なく安定して
いる。これに対して比較例1のキャリア(キャリアNo
4)では、初期からトナー帯電量が低く、カブリもひど
くて耐刷テストに耐えられないキャリアであった。また
比較例2のキャリア(キャリアNo5)ではトナーに対
して摩擦帯?[tfflの立ち上がりが遅く、また耐刷
中に帯ff1fflが上昇し、画像濃度が低下した。さ
らに比較例3のキャリア(キャリアNo6)では耐刷中
に帯7[1fft及び画像濃度が低下し、カブリもひど
くなった。 なお、各現像剤による感光体への傷の程度を調べたとこ
ろ、キャリア1〜3についてはso、oo。 枚の耐刷後についてもほとんど影響なくフィルミングも
皆無であった。 一方、キャリア6の場合は、to、ooo枚で傷が多く
、紙の両端に黒点触着を生じ、50,000枚では黒点
触着がひどく使用不可能であった。また、本発明のキャ
リアを用いることにより、画像部へのキャリア現像など
についても皆無であったが、比較例3にて得られたキャ
リアを用いた場合、20.000枚ぐらいからキャリア
が画像部に現像されるのが認められた。 したがって、本発明のキャリアは、荷電の立ち上がりが
早く、ランニングテストにおいてもカブリや黒点触着な
どを生じなかったが、比較例3のキャリアの場合、コー
ト皮膜が耐刷中に劣化又は剥離してキャリアが感光体に
傷をつけたり、また帯電制御剤を含む樹脂が剥がれるた
め、トナーに対する荷電を付与の能力が低下してカブリ
を生じたりすることが判った。また比較例3にて得られ
たキャリアを用いた場合、to、ooo枚以降は実用上
使用が不可能であった。 灸肌囚軌果 本発明のキャリアは高い電気抵抗を有しかつ部分的に適
度の導電性を有するので、トナーの荷電の立ち上がりが
速く、しかも安定した摩擦帯電性を有し、長期使用して
も電荷の蓄積が発生せずに安定した帯電量をトナーに提
供できる。 また、感光体表面の損傷が少なく、トナーの融着、画像
部へのキャリアの付着がなく、さらに磁気力が強いため
画像、または文字部回りのキャリア付着がなくなった。
Triboelectric charging properties and printing durability tests of the carriers obtained in Examples and Comparative Examples were carried out by Haggi's method. [Preparation of toner] Ingredients Compound type The above raw materials were thoroughly mixed, then kneaded using a PCM30 (twin-screw extrusion kneader), cooled, and coarsely pulverized. Next, a jet crusher 1-2 type mill (Japan New Magic Industry Co., Ltd.)
The powder was pulverized using a zigzag classifier (manufactured by Alpine) to obtain a toner having an average diameter of 13.2 μm. This toner was mixed with hydrophobic silica R-972 (Nippon Aerosil Kogyo Co., Ltd.)
Co., Ltd.) 0.1% by weight. [Amount of triboelectric charge] The insulating toner and the carrier obtained in Example or Comparative Example were mixed at a ratio of 10:90, and developer 3
0g was prepared. The obtained developer was placed in a 50 CO polyethylene bottle and stirred at 100 rpm, and the change in the amount of triboelectric charge of the toner with respect to the stirring and mixing time was measured. The results obtained are shown in FIG. [Print durability test] The above insulating toner, Examples 1 to 3 and Comparative Examples 1 to 3
The developer (
Nos. 1 to 6) were adjusted. These developers are EP-4
70Z (manufactured by Minolta Camera Co., Ltd., PPC copying machine) was used for a printing durability test. The results obtained are shown in Table 1 below. Table 1 113J L, 32013.11J4013.01J5
0214.11.28014.11.29013.8
+, 370316.21.26016.41.2501
6.41.24045.10.70 x ---1-- 514,51J5017.01.00020.90.4
50613.01.4107.2.1.02△310,
66 x Note) QF: Toner charge amount (μc/g) D: Image quality fog: Image fog during a printing durability test was visually observed and ranked based on the image quality evaluation criteria shown below. ○: Practically no fog △: Fog is noticeable but practically tolerable ×: Fog is noticeable and not practical As is clear from Figure 1 and Table 1, the carrier of the example has a negative effect on toner. The amount of triboelectric charge rises quickly,
In addition, the amount of charge changes little over time during printing, and is stable. In contrast, the carrier of Comparative Example 1 (carrier No.
In the case of 4), the toner charge amount was low from the beginning and the fog was severe, so the carrier could not withstand the printing durability test. Also, in the carrier of Comparative Example 2 (Carrier No. 5), is there a friction zone against the toner? [The rise of tffl was slow, and the band ff1ffl increased during printing, resulting in a decrease in image density. Furthermore, in the carrier of Comparative Example 3 (Carrier No. 6), band 7 [1 fft] and image density decreased during printing, and fog became severe. In addition, when examining the degree of damage to the photoreceptor caused by each developer, carriers 1 to 3 were found to be so and oo. Even after printing, there was almost no influence and there was no filming. On the other hand, in the case of Carrier 6, there were many scratches and black spots appeared on both ends of the paper, and when 50,000 sheets were printed, black spots were so severe that the paper was unusable. Furthermore, by using the carrier of the present invention, there was no carrier development in the image area, but when the carrier obtained in Comparative Example 3 was used, the carrier developed in the image area after about 20,000 sheets. It was observed that the image was developed. Therefore, the carrier of the present invention had a quick charge build-up and did not cause fogging or black spot adhesion in the running test, but in the case of the carrier of Comparative Example 3, the coating film deteriorated or peeled off during printing. It has been found that the carrier scratches the photoreceptor and the resin containing the charge control agent is peeled off, reducing the ability to charge the toner and causing fog. Further, when the carrier obtained in Comparative Example 3 was used, it was practically impossible to use more than 100 sheets. The carrier of the present invention has high electrical resistance and moderate electrical conductivity in some parts, so the charge build-up of the toner is quick, and it has stable triboelectric charging properties, making it suitable for long-term use. Also, a stable amount of charge can be provided to the toner without accumulation of charge. In addition, there was little damage to the surface of the photoreceptor, and there was no toner fusion or carrier adhesion to the image area, and since the magnetic force was strong, there was no carrier adhesion around the image or character area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はキャリアートナーの摩擦混合時間と、トナー摩
擦帯電量との関係を示すグラフである。 特許出願人 ミノルタカメラ株式会社
FIG. 1 is a graph showing the relationship between the frictional mixing time of carrier toner and the amount of triboelectric charge of the toner. Patent applicant Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)キャリア芯材粒子、該キャリア芯材の表面を被覆
する強磁性体粉含有の熱硬化性樹脂層、および該熱硬化
性樹脂層に固着した帯電制御剤からなることを特徴とす
る静電潜像現像用キャリア。
(1) A static carrier comprising carrier core material particles, a thermosetting resin layer containing ferromagnetic powder covering the surface of the carrier core material, and a charge control agent fixed to the thermosetting resin layer. Carrier for electrolatent image development.
JP62294379A 1987-11-20 1987-11-20 Electrostatic latent image developing carrier Pending JPH01134467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294379A JPH01134467A (en) 1987-11-20 1987-11-20 Electrostatic latent image developing carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294379A JPH01134467A (en) 1987-11-20 1987-11-20 Electrostatic latent image developing carrier

Publications (1)

Publication Number Publication Date
JPH01134467A true JPH01134467A (en) 1989-05-26

Family

ID=17806960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294379A Pending JPH01134467A (en) 1987-11-20 1987-11-20 Electrostatic latent image developing carrier

Country Status (1)

Country Link
JP (1) JPH01134467A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534991A (en) * 1990-11-30 1993-02-12 Minolta Camera Co Ltd Carrier for developing electrostatic charge image
EP0618512A1 (en) * 1993-03-29 1994-10-05 Xerox Corporation Developer compositions with coated carrier particles
US6627370B2 (en) 1995-09-28 2003-09-30 Nexpress Solutions Llc Hard carrier particles coated with a polymer resin and a conductive material
JP2007156400A (en) * 2005-11-08 2007-06-21 Ricoh Co Ltd Electrophotographic carrier, developer, image forming method, process cartridge, and image forming apparatus
JP2012048167A (en) * 2010-08-30 2012-03-08 Sharp Corp Resin coated carrier and manufacturing method of resin coated carrier
CN102445868A (en) * 2010-09-30 2012-05-09 夏普株式会社 Two-component developer and image forming method
US9040217B2 (en) 2008-02-28 2015-05-26 Sharp Kabushiki Kaisha Carrier, two-component developer using the same, and image-forming apparatus using said developer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534991A (en) * 1990-11-30 1993-02-12 Minolta Camera Co Ltd Carrier for developing electrostatic charge image
EP0618512A1 (en) * 1993-03-29 1994-10-05 Xerox Corporation Developer compositions with coated carrier particles
US6627370B2 (en) 1995-09-28 2003-09-30 Nexpress Solutions Llc Hard carrier particles coated with a polymer resin and a conductive material
JP2007156400A (en) * 2005-11-08 2007-06-21 Ricoh Co Ltd Electrophotographic carrier, developer, image forming method, process cartridge, and image forming apparatus
JP4673790B2 (en) * 2005-11-08 2011-04-20 株式会社リコー Electrophotographic carrier, developer, image forming method, process cartridge, image forming apparatus
US9040217B2 (en) 2008-02-28 2015-05-26 Sharp Kabushiki Kaisha Carrier, two-component developer using the same, and image-forming apparatus using said developer
JP2012048167A (en) * 2010-08-30 2012-03-08 Sharp Corp Resin coated carrier and manufacturing method of resin coated carrier
CN102445868A (en) * 2010-09-30 2012-05-09 夏普株式会社 Two-component developer and image forming method

Similar Documents

Publication Publication Date Title
JP2000221733A (en) Carrier for electrostatic latent image developer, electrostatic latent image developer and image forming method
JP3141799B2 (en) Electrostatic latent image developer and image forming method
JPH01134467A (en) Electrostatic latent image developing carrier
JP2007033631A (en) Carrier and two-component developer
EP0254436B1 (en) Magnetic brush developer for electrophotography
JPH11184167A (en) Electrostatic latent image developing carrier, electrostatic charge image developer and image forming method
JPH10198077A (en) Carrier for electrostatic latent image developer, tow-component developer and image forming method
JPH11174740A (en) Carrier for developing electrostatic latent image and electrostatic charge image developer and image forming method
KR910007723B1 (en) Toner for development of electrostatically charged image
JPH0721678B2 (en) Charging member for electrostatic image development
JP3158813B2 (en) Resin coated carrier
JP3327121B2 (en) Image forming method and image forming apparatus
JPS63228174A (en) Magnetic carrier and its manufacture
JPH086308A (en) Electrophotogtraphic carrier, manufacture thereof, and electrophotographic electrification imparting member
JP2767837B2 (en) Developer
JP3036131B2 (en) Binder type carrier
JPH096054A (en) Electrophotographic carrier, its production and electric charge imparting member for electrophotography
JP2005345999A (en) Carrier and two-component developer
JP3036132B2 (en) Electrophotographic carrier
JPS59170858A (en) Electrophotographic developer composition
JPH0119580B2 (en)
JPH10288869A (en) Method for processing electrostatic charge image developing carrier, manufacture of developer, and, electrostatic charge image developing carrier and developer manufactured by the method
JP3186953B2 (en) Electrophotographic carrier
JPH0346671A (en) Carrier for developer
JPH09304974A (en) Carrier for developing electrostatic charge image, developer and developing method