JPH01132059A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH01132059A
JPH01132059A JP62291103A JP29110387A JPH01132059A JP H01132059 A JPH01132059 A JP H01132059A JP 62291103 A JP62291103 A JP 62291103A JP 29110387 A JP29110387 A JP 29110387A JP H01132059 A JPH01132059 A JP H01132059A
Authority
JP
Japan
Prior art keywords
battery
organic electrolyte
solvent
batteries
tetrahydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62291103A
Other languages
Japanese (ja)
Other versions
JPH0763015B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62291103A priority Critical patent/JPH0763015B2/en
Publication of JPH01132059A publication Critical patent/JPH01132059A/en
Publication of JPH0763015B2 publication Critical patent/JPH0763015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase high rate discharge performance by using tetrahydrofuran-3, 5-dione in a solvent of an organic electrolyte. CONSTITUTION:A battery consists of a battery case 1, a sealing plate 2, a negative electrode 3, a separator 4, a positive electrode 5, and a gasket 6. LiClO4 is used as a solute of an organic electrolyte, and tetrahydrofuran-3, 5-dione at least is used as a solvent of the organic electrolyte. By using this solvent, the viscosity of the electrolyte is decreased and its dielectric constant is increased. Drop in voltage in high rate discharge is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムなどを用いた有機電解質電池
の改良に関するものであり、特に有機電解質を構成する
有機溶媒の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in organic electrolyte batteries using lithium or the like as a negative electrode, and particularly to improvements in organic solvents constituting the organic electrolyte.

従来の技術 有機電解質電池として、負極にリチウムやマグネシウム
などのアルカリ金属、アルカリ土類金属を用い、正極に
フッ化黒鉛や、二酸化マンガンを用いた電池が研究され
、一部実用化されている。
Conventional technology Organic electrolyte batteries using alkali metals or alkaline earth metals such as lithium or magnesium for the negative electrode and graphite fluoride or manganese dioxide for the positive electrode have been researched and some have been put into practical use.

また最近では、負極にリチウム、正極に二硫化チタンを
用いたリチウム有機電解質二次電池の研究も活発に行わ
れている。
Recently, research has also been actively conducted on lithium organic electrolyte secondary batteries that use lithium for the negative electrode and titanium disulfide for the positive electrode.

これら電池の電解質には、溶媒にプロピレンカーボネー
ト(PC)やテトラヒドロフラン(’I’HF)、2−
メチルテトラヒトo7ラン(2−Me −THF) 。
The electrolytes for these batteries include solvents such as propylene carbonate (PC), tetrahydrofuran ('I'HF), and 2-
Methyltetrahydro7ran (2-Me-THF).

を用い、これら溶媒に、過塩素酸リチウム(L I C
ZO4)やリチウムへキサフロロアルシネート(LiA
sF6)を溶質として溶款した有機電解質が用いられて
来た。
using lithium perchlorate (L I C
ZO4) and lithium hexafluoroarsinate (LiA
Organic electrolytes in which sF6) is dissolved as a solute have been used.

発明が解決しようとする問題点 これらの有機電解質を用いた電池では、高率放電を行っ
た場合、電池の電圧が低下するという問題点があった。
Problems to be Solved by the Invention Batteries using these organic electrolytes have a problem in that the voltage of the battery decreases when high rate discharge is performed.

問題点を解決するための手段 本発明では、従来の有機電解質に用いる溶媒に、少なく
ともテトラヒドロフラン−3、5−ジオンを使用するこ
とを特徴としている。
Means for Solving the Problems The present invention is characterized in that at least tetrahydrofuran-3,5-dione is used as a solvent for conventional organic electrolytes.

作   用 従来のpcは、誘電率は大であるが粘度が大であり、こ
のため、電池に使用すると高率放電時に電圧の低下、正
極の利用率の低下が起こる。一方THFや2− Me 
−T HFでは、粘度は小さいが、誘電率が小さいため
、高率放電時には、正極の利用率は大となるが電池電圧
の低下が起こる。したがって、THFや2− Me −
T HFO類で誘電率を大にすることによシ、電池に使
用した場合、良好な特性が得られることが予想できる。
Function Conventional PC has a high dielectric constant but a high viscosity, and for this reason, when used in a battery, a drop in voltage and a drop in the utilization rate of the positive electrode occur during high rate discharge. On the other hand, THF and 2-Me
-TH HF has a low viscosity but a low dielectric constant, so during high rate discharge, the utilization rate of the positive electrode is high, but the battery voltage decreases. Therefore, THF and 2-Me-
By increasing the dielectric constant with T HFOs, it can be expected that good characteristics will be obtained when used in batteries.

本発明は、T!(Fを改良し、下に示すようにTHFの
3および5の位置が、カルボニルおよびカルボキシル基
とすることにより誘電率が増大し、電池特性を向上させ
たものである。
The present invention is based on T! (By improving F and replacing the 3 and 5 positions of THF with carbonyl and carboxyl groups as shown below, the dielectric constant is increased and the battery characteristics are improved.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 負極に直径17.5mm、厚さ0.5 mmの円柱体リ
チウムを用いた。この時の理論充填量は247mAhで
ある。正極には、二酸化マンガン1oo重量に導電剤と
してのアセチレンブラック10重量部、結着剤としての
ポリ四フッ化エチレン樹脂10重量部を加えた合剤1.
4gを、直径17.6mmの円盤状に圧縮成形したもの
を用いた。この正極の理論充填容量は103 mAhで
あった。この正極、負極を用いて第1図に示した扁平形
電池を構成し、有機電解質の違いによる特性差を検討し
た。
Example 1 A lithium cylinder having a diameter of 17.5 mm and a thickness of 0.5 mm was used as a negative electrode. The theoretical charging amount at this time is 247mAh. For the positive electrode, a mixture of 1.0 g of manganese dioxide, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of polytetrafluoroethylene resin as a binder was used.
4 g was compression-molded into a disk shape with a diameter of 17.6 mm. The theoretical filling capacity of this positive electrode was 103 mAh. A flat battery shown in FIG. 1 was constructed using these positive and negative electrodes, and differences in characteristics due to differences in organic electrolytes were investigated.

第1図において、1は電池ケース、2は封目板、3は負
極、4はセパレータ、5は正極、6はガスケットである
In FIG. 1, 1 is a battery case, 2 is a sealing plate, 3 is a negative electrode, 4 is a separator, 5 is a positive electrode, and 6 is a gasket.

有機電解質の溶質として、全て濃度1モ/I//lのL
iCIO4を用いた。有機電解質の溶媒として、テトラ
ヒドロフラン−3、5−ジオンを用いり電池をA、従来
のPC、THF 、 2− Me−THFを用いた電池
を各々B、C,Dとする。また従来の混合溶媒の例とし
て、溶媒に体積比で1=1の割合でPCとTHFとを混
合した溶媒を用いた電池をEとする。また、これらの電
池の有機電解質の量は、全て200μtとした。
As a solute in an organic electrolyte, all L at a concentration of 1 mo/I//l
iCIO4 was used. A battery using tetrahydrofuran-3,5-dione as the organic electrolyte solvent is designated as A, and batteries B, C, and D are designated as batteries using conventional PC, THF, and 2-Me-THF, respectively. Further, as an example of a conventional mixed solvent, a battery E uses a solvent in which PC and THF are mixed at a volume ratio of 1=1. Further, the amount of organic electrolyte in these batteries was all 200 μt.

これらの電池を10oΩの負荷で放電させた時の放電特
性を第2図に示す。従来のPCを用いた電池Bでは、放
電初期の電圧は大であるが、利用率が低い。またTHF
や2− Me −T HFなどの低粘度溶媒を用いたC
、Dの電池では、利用率は向上しているが、電圧が低い
ことがわかる。また、従来の高誘電率の溶媒と低粘度の
溶媒を組み合せたpcとTHFの混合溶媒を用いた電池
Eでは、B、C,Dに比べ電池特性は向上している。し
かし、本発明のテトラヒドロフラン−3、5−ジオンを
溶媒に用いた有機電解質電池Aでは、B−Eに比べ、電
圧、利用率ともに向上していることがわかる。
FIG. 2 shows the discharge characteristics when these batteries were discharged under a load of 10 ohms. In battery B using a conventional PC, the voltage at the initial stage of discharge is high, but the utilization rate is low. Also THF
C using a low viscosity solvent such as or 2-Me-THF
It can be seen that in the batteries of , D, the utilization rate is improved, but the voltage is low. Further, in battery E using a mixed solvent of PC and THF, which is a combination of a conventional high dielectric constant solvent and a low viscosity solvent, the battery characteristics are improved compared to B, C, and D. However, it can be seen that in organic electrolyte battery A using tetrahydrofuran-3,5-dione of the present invention as a solvent, both the voltage and the utilization rate are improved compared to BE.

実施例2 本実施例では、二次電池に応用した場合について示す。Example 2 In this example, a case where the present invention is applied to a secondary battery will be described.

実施例1と同様に電池を構成した。ただし、正極の活物
質には、二酸化マンガンの代わりに、二硫化チタンを用
い、合剤配合量、合剤充填量は実施例1と同様である。
A battery was constructed in the same manner as in Example 1. However, as the active material of the positive electrode, titanium disulfide was used instead of manganese dioxide, and the amount of the mixture blended and the amount of the mixture filled were the same as in Example 1.

したがって正極の理論充填量は80 mAhであった。Therefore, the theoretical filling amount of the positive electrode was 80 mAh.

有機電解質の溶質は、Li(JO4O代わりK 1 %
 /’ / l OL I A s F e ヲ用いた
。本発明のテトラヒドロフラン−3、5−ジオンを溶媒
に用いた電池をF 、 PC、THF 。
The solute of the organic electrolyte is Li (K1% instead of JO4O).
/' / l OL I A s Fe wo was used. Batteries using the tetrahydrofuran-3,5-dione of the present invention as a solvent were F, PC, and THF.

2−Me−THF、体積比で1:1の割合でPCとTH
Fとを混合した溶液を用いた電池を各々G。
2-Me-THF, PC and TH in a 1:1 volume ratio
Each battery using a solution mixed with F is labeled G.

H,I 、Jとする。Let them be H, I, and J.

これらの電池を10 mAの定電流で充放電をくり返し
た。放電は電池電圧が1.2vになる時点、充電は2.
8vになる時点でそれぞれ止めるようにした。
These batteries were repeatedly charged and discharged at a constant current of 10 mA. Discharging occurs when the battery voltage reaches 1.2V, and charging occurs when the battery voltage reaches 2.2V.
I tried to stop each when it reached 8v.

第3図には、第3サイクルでの放電曲線を示す。FIG. 3 shows the discharge curve in the third cycle.

これより本発明の溶媒を用いた電池は、従来の溶媒を用
いたものに比べ、電圧、利用率ともに向上していること
がわかる。
From this, it can be seen that the battery using the solvent of the present invention has improved both voltage and utilization rate compared to the battery using the conventional solvent.

発明の効果 以上のように、本発明により高率放電特性に優れた電池
が得られる。
Effects of the Invention As described above, the present invention provides a battery with excellent high rate discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた電池の縦断面図、第2図は各種
溶媒を用いた一次電池の放電曲線を示す図、第3図は二
次電池の第3サイクル日の放電曲線を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 はφ11名3
− 負 極 4−’t=パレータ 5−正 板 第1図
Figure 1 is a longitudinal cross-sectional view of the battery used in the examples, Figure 2 is a diagram showing the discharge curve of the primary battery using various solvents, and Figure 3 is the discharge curve of the secondary battery on the third cycle day. It is a diagram. Name of agent: Patent attorney Toshio Nakao, φ11 people 3
- Negative electrode 4-'t=Parameter 5-Positive plate Fig. 1

Claims (1)

【特許請求の範囲】[Claims]  負極と、正極と、有機電解質を有し、有機電解質の溶
媒に、少なくともテトラヒドロフラン−3、5−ジオン
を用いたことを特徴とする有機電解質電池。
An organic electrolyte battery comprising a negative electrode, a positive electrode, and an organic electrolyte, the battery comprising at least tetrahydrofuran-3,5-dione as a solvent for the organic electrolyte.
JP62291103A 1987-11-18 1987-11-18 Organic electrolyte battery Expired - Lifetime JPH0763015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291103A JPH0763015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291103A JPH0763015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01132059A true JPH01132059A (en) 1989-05-24
JPH0763015B2 JPH0763015B2 (en) 1995-07-05

Family

ID=17764488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291103A Expired - Lifetime JPH0763015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0763015B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807899A1 (en) * 2004-10-27 2007-07-18 Cheil Industries Inc. Nonaqueous electrolyte for battery
US10135048B2 (en) 2015-02-27 2018-11-20 GS Yuasa Internationl Ltd. Lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807899A1 (en) * 2004-10-27 2007-07-18 Cheil Industries Inc. Nonaqueous electrolyte for battery
JP2008518392A (en) * 2004-10-27 2008-05-29 チェイル インダストリーズ インコーポレイテッド Non-aqueous electrolyte for batteries
EP1807899A4 (en) * 2004-10-27 2009-11-11 Cheil Ind Inc Nonaqueous electrolyte for battery
US10135048B2 (en) 2015-02-27 2018-11-20 GS Yuasa Internationl Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JPH0763015B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPH01132059A (en) Organic electrolyte battery
JPS62290070A (en) Organic electrolyte secondary battery
JPH01134873A (en) Organic electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH03192663A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPS62290068A (en) Organic electrolyte battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH01320767A (en) Organic electrolyte battery
JPH04206276A (en) Nonaqueous electrolyte secondary battery
JPH01132067A (en) Organic electrolyte secondary cell
JPS6332872A (en) Organic electrolyte cell
JPS6332869A (en) Origanic electrolyte cell
JP3009673B2 (en) Non-aqueous electrolyte secondary battery
JPH01320768A (en) Organic electrolyte battery
JPS614162A (en) Lithium battery
JPH01320766A (en) Organic electrolyte battery
JPS62290069A (en) Organic electrolyte secondary battery
JPS614170A (en) Nonaqueous electrolyte secondary battery
JPH0822840A (en) Organic electrolyte secondary battery
JP2707657B2 (en) Electrolyte for lithium secondary battery
JPH06283175A (en) Reversible electrode
JPH01313861A (en) Organic electrolyte secondary cell
JP3021526B2 (en) Electrolyte for lithium secondary battery
JPS58111275A (en) Organic electrolyte secondary battery