JPH0112927B2 - - Google Patents

Info

Publication number
JPH0112927B2
JPH0112927B2 JP56033989A JP3398981A JPH0112927B2 JP H0112927 B2 JPH0112927 B2 JP H0112927B2 JP 56033989 A JP56033989 A JP 56033989A JP 3398981 A JP3398981 A JP 3398981A JP H0112927 B2 JPH0112927 B2 JP H0112927B2
Authority
JP
Japan
Prior art keywords
intake
exhaust
pipe
valve
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033989A
Other languages
Japanese (ja)
Other versions
JPS57148024A (en
Inventor
Akio Kobayashi
Tetsuya Murakami
Hiromi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP56033989A priority Critical patent/JPS57148024A/en
Publication of JPS57148024A publication Critical patent/JPS57148024A/en
Publication of JPH0112927B2 publication Critical patent/JPH0112927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 本発明はデイーゼル機関の吸、排気装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake and exhaust system for a diesel engine.

本発明の目的は、吸、排気管の両方又は排気管
の長さによる慣性効果を機関の負荷に応じて変化
させ、特に高負荷域での出力増大と低負荷域での
燃費率の向上を図つたことである。
The purpose of the present invention is to change the inertia effect of both the intake and exhaust pipes or the length of the exhaust pipe depending on the engine load, thereby increasing output in the high load range and improving fuel efficiency in the low load range. This was planned.

従来機関の吸気効率を向上するために、吸、排
気弁の開閉により吸、排気管内に発生する気柱振
動(脈動)を利用する慣性過給手段は周知であ
る。
BACKGROUND ART In order to improve the intake efficiency of conventional engines, inertial supercharging means that utilizes air column vibration (pulsation) generated in intake and exhaust pipes by opening and closing intake and exhaust valves is well known.

すなわち、吸気管側において、管内に発生する
気柱振動(脈動)による正の圧力の山の部分が吸
気弁の閉じる直前の時点で吸気弁付近に到達する
ように吸気管の長さを選択し、シリンダ内に最も
密度の高い空気を充填させることであり、これを
慣性過給といつている。
In other words, on the intake pipe side, the length of the intake pipe is selected so that the peak of positive pressure due to air column vibration (pulsation) generated in the pipe reaches the vicinity of the intake valve just before the intake valve closes. , the cylinder is filled with the highest density air, and this is called inertial supercharging.

また、排気管側の気柱振動は、前記吸気管内の
気柱振動よりも大きい。これは排気弁の開いた直
後の流速は音速で、したがつて動圧も大きいから
である。しかし定性的な理論は吸気管の場合と同
様であり、排気弁が開くとシリンダ内は急に圧力
が降下し、一方、排気弁付近の排気ポート内は排
気吹出しを受けて一度圧力が急上昇する。その衝
撃が排気管内を往復することによつて脈動が発生
し、その波はしだいに減衰するが衝撃圧が大きい
ので、脈動の振幅も大きい。この際、正圧力波は
シリンダ内圧がまだ高いので、排気吹出しにはほ
とんど影響ないが、その後の脈動圧の正負と排気
弁閉止時期および吸気弁とのオーバラツプする時
期との位相関係は、排気弁の開いている後半に弁
の出口が負圧であるときは排出作用を助長し、特
にオーバラツプ時に負圧であれば掃気作用も兼ね
て残留ガスを吸い出し、体積効率の増大となり、
前記吸気管における過給効果と同じように吸気効
率を高める。
Furthermore, the air column vibration on the exhaust pipe side is larger than the air column vibration within the intake pipe. This is because the flow velocity immediately after the exhaust valve opens is the sonic velocity, and therefore the dynamic pressure is also large. However, the qualitative theory is the same as in the case of the intake pipe: when the exhaust valve opens, the pressure inside the cylinder suddenly drops, while the pressure inside the exhaust port near the exhaust valve suddenly rises once due to the exhaust blowing. . Pulsations are generated by the impact reciprocating within the exhaust pipe, and the waves gradually attenuate, but since the impact pressure is large, the amplitude of the pulsations is also large. At this time, since the cylinder internal pressure is still high, the positive pressure wave has almost no effect on the exhaust blowout, but the phase relationship between the positive and negative pulsating pressure, the exhaust valve closing timing, and the overlapping timing with the intake valve is When the outlet of the valve is under negative pressure in the latter half of the opening period, it promotes the discharge action, and especially when the valve is overlapping, if the pressure is negative, it also serves as a scavenging action and sucks out the residual gas, increasing the volumetric efficiency.
The intake efficiency is increased in the same way as the supercharging effect in the intake pipe.

この過給効果や排気管の吸出し効果、すなわ
ち、慣性効果を多気筒エンジンに利用する場合、
各シリンダが多岐管で連結されていると隣りの吸
気または排気管の圧力波を受けて干渉して合成波
となり効果がなくなるので、この干渉を除去する
ために各シリンダから集合部までの距離を長くし
ているのが一般的である。
When using this supercharging effect and the exhaust pipe suction effect, that is, the inertia effect, in a multi-cylinder engine,
If each cylinder is connected by a manifold, the pressure waves from the adjacent intake or exhaust pipe will interfere and become a composite wave, which will have no effect.In order to eliminate this interference, the distance from each cylinder to the converging part will be reduced. It is common that it is long.

この慣性効果の最適条件は機関の回転速度によ
つてきまるので、ある回転速度で最大の効果が得
られれば他の回転速度では逆に悪い条件となるの
で、広い範囲の回転速度を使用する一般の自動車
機関では十分その効果を利用することは難かしか
つた。
The optimum conditions for this inertial effect depend on the engine rotation speed, so if the maximum effect can be obtained at a certain rotation speed, the conditions will be worse at other rotation speeds, so a wide range of rotation speeds should be used. It was difficult to take full advantage of this effect with ordinary automobile engines.

そこで、この慣性効果を機関の負荷状態で考察
してみると、慣性効果によつて吸入効率が高めら
れると高負荷時の出力は増大するが、低負荷時に
おいては燃料に対して必要以上の余分な空気が入
り、その結果、特に圧縮行程のときにポンピング
ロスが増大し、それだけ余計な力を要するために
低負荷時における燃費を悪化する問題点がある。
Therefore, if we consider this inertial effect in terms of engine load conditions, we find that if the intake efficiency is increased by the inertial effect, the output will increase at high loads, but at low loads, the output will increase more than necessary for the fuel. Extra air enters, resulting in an increase in pumping loss, particularly during the compression stroke, which requires extra force, which poses a problem of worsening fuel efficiency at low loads.

本発明は上記問題点に鑑み、慣性効果を利用し
て低負荷域では逆に吸気効率を低下させ前記不具
合を解消するよう吸気管、もしくは排気管の等価
管長を負荷に対応して変化するようにしたもので
ある。
In view of the above problems, the present invention utilizes the inertia effect to reduce the intake efficiency in the low load range and to change the equivalent length of the intake pipe or exhaust pipe in accordance with the load in order to solve the above problem. This is what I did.

以下本発明の実施例について、図面に基づいて
説明する。第1図において1は機関である。2
a,2bは吸気マニホールド、6a,6bは排気
マニホールドであり、6気筒数の半数づつをまと
めて受け持たせ、各吸気マニホールド2a,2b
にそれぞれ吸気管3a,3bを、また各排気マニ
ホールド6a,6bにそれぞれ排気管7a,7b
を接続すると共に、吸、排気弁位置から長さl1
部位で両吸気管3a,3bを一本の吸気管3c
で、また両排気管7a,7bを一本の排気管7c
で集合する。さらに、両吸気管3a,3b間に
は、吸気弁から前記長さl1よりも短い長さl2の部
位で連通管4を設け、これに開閉弁5を設ける。
また、両排気管7a,7b間にも排気弁から前記
長さl1よりも短い長さl2の部位で連通管8を設け、
これに開閉弁9を設けたものである。尚、第1図
においては、吸、排気両方の構成であるが、排気
側単独でもよい。
Embodiments of the present invention will be described below based on the drawings. In FIG. 1, 1 is an engine. 2
A and 2b are intake manifolds, and 6a and 6b are exhaust manifolds, and each intake manifold 2a and 2b is responsible for half of the six cylinders.
Intake pipes 3a, 3b are connected to the respective exhaust manifolds 6a, 6b, and exhaust pipes 7a, 7b are connected to the respective exhaust manifolds 6a, 6b.
At the same time, both intake pipes 3a and 3b are connected to one intake pipe 3c at a length l 1 from the intake and exhaust valve positions.
Also, both exhaust pipes 7a and 7b are combined into one exhaust pipe 7c.
Let's meet at. Furthermore, a communication pipe 4 is provided between the intake pipes 3a and 3b at a length l2 shorter than the length l1 from the intake valve, and an on-off valve 5 is provided in this.
Further, a communicating pipe 8 is provided between both exhaust pipes 7a and 7b at a portion having a length l2 shorter than the length l1 from the exhaust valve,
This is provided with an on-off valve 9. Although FIG. 1 shows a configuration for both intake and exhaust, it is also possible to use only the exhaust side.

本発明による作用は吸気側は勿論のこと排気側
の制御でも同一の作用が得られるが、以下の説明
は吸気側で代表して説明する。
Although the same effect according to the present invention can be obtained by controlling not only the intake side but also the exhaust side, the following explanation will be made representative of the intake side.

すなわち、連通管4の開閉弁5の閉弁時には長
さl1の等価管長となり、開閉弁5を開弁すると連
通管4の連通によつて長さl2の短い等価管長とな
る。従つて機関の回転速度での慣性効果を逆利用
した際の吸入効率の低下について勘案すると、機
関が低回転の場合には等価管長をl2に短くし、ま
た高回転の場合にはl1に長くすることによつて得
られる。
That is, when the on-off valve 5 of the communication pipe 4 is closed, the equivalent pipe length becomes a length l 1 , and when the on-off valve 5 is opened, the communication pipe 4 becomes connected, resulting in a short equivalent pipe length of a length l 2 . Therefore, considering the reduction in suction efficiency when the inertia effect at the engine speed is adversely utilized, the equivalent pipe length should be shortened to l 2 when the engine is running at low rotation speeds, and l 1 when the engine rotation speeds are high. It can be obtained by making it longer.

そこで、高負荷の場合には回転数が高低何れに
おいても吸入効率を上げて出力の増大を図る必要
があり、低負荷の場合には回転数の高低何れにお
いても吸入効率を下げてポンピングロスを解消す
る必要がある。
Therefore, in the case of high loads, it is necessary to increase the suction efficiency at both high and low rotational speeds to increase output, and in the case of low loads, it is necessary to reduce the suction efficiency and reduce pumping loss at both high and low rotational speeds. It needs to be resolved.

これを本発明で満足させる場合には、高負荷低
回転では等価管長をl1に長くし、また高負荷高回
転ではl2に短くすることによつて慣性効果により
吸入効率が上がる。
In order to satisfy this requirement with the present invention, the equivalent pipe length is increased to l 1 for high loads and low rotations, and shortened to l 2 for high loads and high rotations, thereby increasing the suction efficiency due to the inertia effect.

さらに、低負荷低回転では等価管長をl2に短く
し、また低負荷高回転ではl1に長くすることによ
つて吸入効率が下げらる。
Furthermore, the suction efficiency is lowered by shortening the equivalent pipe length to l 2 at low load and low rotation, and by increasing it to l 1 at low load and high rotation.

従つて、機関の回転数と負荷との関係に応じて
前記開閉弁5を開閉制御して等価管長を長短コン
トロールすることにより第2図のような吸入効率
と、第3図のような燃費率が得られ、低回転から
高回転の広い範囲に亘つて高負荷時には吸入効率
の上昇により出力増大が得られ、また低負荷時に
は吸入効率を下げ、燃焼に不要な量の空気の流入
を阻止し、ポンピングロスの解消ならびにそれに
基く燃費率の向上が得られる利点を有している。
Therefore, by controlling the opening and closing of the on-off valve 5 according to the relationship between the engine speed and the load and controlling the length of the equivalent pipe length, the suction efficiency as shown in Figure 2 and the fuel efficiency as shown in Figure 3 can be achieved. This increases output by increasing intake efficiency at high loads over a wide range from low to high rotations, and lowers intake efficiency at low loads to prevent the inflow of air in an amount unnecessary for combustion. , it has the advantage of eliminating pumping loss and improving fuel efficiency based on it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す平面図、第2図
は本発明による吸入効率の曲線図、第3図は燃費
率の曲線図である。 1……機関、2a,2b……吸気マニホール
ド、3a,3b,3c……吸気管、4……連通
管、5……開閉弁、6a,6b……排気マニホー
ルド、7a,7b,7c……排気管、8……連通
管、9……開閉弁。
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a curve diagram of intake efficiency according to the present invention, and FIG. 3 is a curve diagram of fuel consumption rate. 1... Engine, 2a, 2b... Intake manifold, 3a, 3b, 3c... Intake pipe, 4... Communication pipe, 5... Open/close valve, 6a, 6b... Exhaust manifold, 7a, 7b, 7c... Exhaust pipe, 8...Communication pipe, 9...Opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims] 1 機関の吸、排気管の両方又は排気管の等価管
長を可変とし、機関の低負荷域では吸入効率を低
下させ、高負荷域では吸入効率を高めるべく前記
等価管長を機関の負荷に応じて変化させることを
特徴とするデイーゼル機関の吸、排気装置。
1 The equivalent pipe length of both the intake and exhaust pipes of the engine or the exhaust pipe is made variable, and the equivalent pipe length is adjusted according to the engine load in order to reduce the suction efficiency in the low engine load range and increase the suction efficiency in the high load range. A diesel engine intake and exhaust system that is characterized by its ability to change.
JP56033989A 1981-03-11 1981-03-11 Intake and exhaust for diesel engine Granted JPS57148024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56033989A JPS57148024A (en) 1981-03-11 1981-03-11 Intake and exhaust for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56033989A JPS57148024A (en) 1981-03-11 1981-03-11 Intake and exhaust for diesel engine

Publications (2)

Publication Number Publication Date
JPS57148024A JPS57148024A (en) 1982-09-13
JPH0112927B2 true JPH0112927B2 (en) 1989-03-02

Family

ID=12401883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56033989A Granted JPS57148024A (en) 1981-03-11 1981-03-11 Intake and exhaust for diesel engine

Country Status (1)

Country Link
JP (1) JPS57148024A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210320A (en) * 1982-05-29 1983-12-07 Hino Motors Ltd Inertial supercharging device for multicylinder engine with turbocharger
JPS59126028A (en) * 1982-12-31 1984-07-20 Hino Motors Ltd Apparatus for controlling inertia supercharging
US4527392A (en) * 1983-04-20 1985-07-09 Hino Jidosha Kogyo Kabushiki Kaisha Bypass valve actuator for inertia supercharging in multicylinder engines
EP0159803A3 (en) * 1984-04-16 1986-01-22 General Motors Corporation Engine intake system with modulated tuning
US4549506A (en) * 1984-04-16 1985-10-29 General Motors Corporation Engine intake system with modulated tuning
JPS61116020A (en) * 1984-11-08 1986-06-03 Mazda Motor Corp Engine intake-air device
JPH0420983Y2 (en) * 1985-01-17 1992-05-13
JPS61171830U (en) * 1985-04-16 1986-10-25
DE3701659A1 (en) * 1986-01-21 1987-07-23 Mazda Motor INTAKE SYSTEM FOR COMBUSTION ENGINES
JPS63106324A (en) * 1986-10-24 1988-05-11 Mazda Motor Corp Exhauster for v-type multicylinder engine
JP2820411B2 (en) * 1988-05-02 1998-11-05 マツダ株式会社 Engine intake system
JP2771175B2 (en) * 1988-05-02 1998-07-02 マツダ株式会社 Engine intake system
JP2586164B2 (en) * 1990-02-03 1997-02-26 トヨタ自動車株式会社 Exhaust system of internal combustion engine
JPH03281924A (en) * 1990-03-29 1991-12-12 Mazda Motor Corp Air intake piping structure of multiple-cylinder engine
US6932189B2 (en) * 2001-09-24 2005-08-23 Daimlerchrysler Ag Device for noise structuring in a motor vehicle
JP2009281197A (en) 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd Mixed flow turbine
JP5382541B2 (en) * 2010-05-20 2014-01-08 株式会社デンソー Resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924822U (en) * 1982-08-09 1984-02-16 大和ハウス工業株式会社 Mounting structure for plates such as gypsum board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924822U (en) * 1982-08-09 1984-02-16 大和ハウス工業株式会社 Mounting structure for plates such as gypsum board

Also Published As

Publication number Publication date
JPS57148024A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
JPH0112927B2 (en)
JP2863927B2 (en) Engine intake system
JPS6234927B2 (en)
JPS6256325B2 (en)
JPS6318756Y2 (en)
JPH0452377B2 (en)
JPH0337009B2 (en)
JPS6014891Y2 (en) supercharged engine
JPS6326261B2 (en)
US4471615A (en) Turbo and inertia supercharger
JPH0337012B2 (en)
JPS6030430Y2 (en) Internal combustion engine starting accelerator
JPS6332327Y2 (en)
JPH0559249B2 (en)
JPS609375Y2 (en) Inertial supercharging intake system for multi-cylinder engines
JPH0320497Y2 (en)
JPH0315779Y2 (en)
JPH078814Y2 (en) Engine intake and exhaust pipe structure
JPS6325310Y2 (en)
JPH0635835B2 (en) Internal combustion engine intake system
JPS5970833A (en) Intake device of rotary piston engine
JPH0337013B2 (en)
JPS60222524A (en) Suction device of engine
JPS6340252B2 (en)
JPH0517377B2 (en)