JPH01125067A - Video device with automatic focussing function - Google Patents

Video device with automatic focussing function

Info

Publication number
JPH01125067A
JPH01125067A JP62282687A JP28268787A JPH01125067A JP H01125067 A JPH01125067 A JP H01125067A JP 62282687 A JP62282687 A JP 62282687A JP 28268787 A JP28268787 A JP 28268787A JP H01125067 A JPH01125067 A JP H01125067A
Authority
JP
Japan
Prior art keywords
maximum differential
lens
largest
data
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62282687A
Other languages
Japanese (ja)
Inventor
Yoshikazu Imazu
今津 吉一
Masaaki Nakamura
正昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62282687A priority Critical patent/JPH01125067A/en
Publication of JPH01125067A publication Critical patent/JPH01125067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To automatically focus with least error with a simple circuit constitution by calculating the maximum differential values at respective focal distances out of image data obtained by scanning an object vertically and horizontally into an on-plane disposition, and making the focal distance with the largest one of the maximum differential values at respective focal distances an optimum focal distance. CONSTITUTION:By driving a focussing motor 19, the farthest position infinity of a focus lens 3 is set. With the lens in this state, the temperature signal data of a focussing area is taken in on a plane extending in X-direction and Y-direction. In a CPU 32, the differential values of temperature variation are respectively obtained from the temperature signal data in both of the X-direction and the Y-direction, and the largest one of these values is stored in a RAM 22. Thereafter, the focus position is varied nearer to the lens in fine steps, and the maximum values in both directions are stored in the RAM 22 similarly to the above. And the largest value obtained in the first time and that in the second time are compared with each other, in case the second one, for instance, is larger, focal distance data is transmitted to a data conerter 20 in order to vary the focus position one step nearer. And, when the temperature variation of the object comes largest, the focussing action is stopped.

Description

【発明の詳細な説明】 〔概要〕 例えば赤外線映像装置等の映像装置において、集光レン
ズの一部を前後に移動させて被写体の焦点を合わせる機
能をもつ映像¥N置に関し、簡単な構成で、誤差なく自
動的に焦点合わせを行ない得ることを目的とし、 検知器によって得られたデータから、異なる焦点距離に
おける被写体の垂直方向及び水平方向での最大微分値を
求め、各焦点距離における最大微分値のうち大きい方の
最大微分値の焦点距離を最適焦点距離として設定する制
御手段と、制御手段にて得られた最適焦点距離のデータ
に基づいて焦点レンズを移動させる駆動手段とを設けた
構成とする。
[Detailed Description of the Invention] [Summary] For example, in an imaging device such as an infrared imaging device, the present invention relates to an imaging device having a function of moving a part of a condensing lens back and forth to focus on a subject, with a simple configuration. , with the aim of automatically performing focusing without error, the maximum differential value of the subject in the vertical and horizontal directions at different focal lengths is determined from the data obtained by the detector, and the maximum differential value at each focal length is calculated. A configuration including a control means for setting the focal length of the larger maximum differential value as the optimum focal length, and a driving means for moving the focusing lens based on data on the optimum focal length obtained by the control means. shall be.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えば赤外線映像装置等の映像装置において
、集光レンズの一部を前後に移動させて被写体の焦点を
合わせる機能をもつ映像装置に関する。
The present invention relates to an imaging device, such as an infrared imaging device, which has a function of moving a part of a condensing lens back and forth to focus on a subject.

赤外線胤像系によって撮像された映像を表示する赤外線
映像装置は、暗視装置或いは非接触温度計測器として医
用(例えば血行障害診断、痛み診断、がん診断)や産業
用(電力設備保守、ICやプリント板の熱設計及び検査
、建造物診断、侵入者監視、火災検知、救難)に広く利
用されている。
Infrared imaging devices that display images captured by infrared imaging systems are used as night vision devices or non-contact temperature measuring devices for medical purposes (e.g., blood circulation disorder diagnosis, pain diagnosis, cancer diagnosis) and industrial purposes (power equipment maintenance, IC It is widely used for thermal design and inspection of printed circuit boards, building diagnosis, intruder monitoring, fire detection, and rescue.

これらの応用を通じ、操作を簡便にする目的から被写体
の焦点合わせを自動的に行なう要求がある。
Through these applications, there is a demand for automatic focusing of a subject for the purpose of simplifying operations.

〔従来の技術〕[Conventional technology]

第6図は従来の装置のブロック図を示す。同図において
、垂直走査111及び水平走査鏡2によって被写体から
放射される赤外線は面状(垂直方向及び水平方向)に走
査され、焦点レンズ3、集光レンズ4を介して検知器5
に入射される。検知器5の出力は増幅器6を介してAD
変換器7にてAD変換され、CPU8の制御によって画
像データがフレームメモリ9に書込まれ、ここから読出
され、DA変換器10にてDA変換されてモニタ11に
映像表示される。
FIG. 6 shows a block diagram of a conventional device. In the figure, infrared rays emitted from the subject are scanned in a planar manner (in the vertical and horizontal directions) by a vertical scanning mirror 111 and a horizontal scanning mirror 2, and then passed through a focusing lens 3 and a condensing lens 4 to a detector 5.
is incident on the The output of the detector 5 is connected to AD via the amplifier 6.
The image data is AD converted by the converter 7, written into the frame memory 9 under the control of the CPU 8, read from there, DA converted by the DA converter 10, and displayed as an image on the monitor 11.

この場合、CPu8の制御はRAM12、ROH13に
メモリされている画像処理に必要なプログラムに従って
なされる。又、モニタ11にはキャラクタコント0−5
14からの制御によって文字、図形表示がなされる。
In this case, the CPU 8 is controlled according to programs necessary for image processing stored in the RAM 12 and ROH 13. Also, character controls 0-5 are displayed on the monitor 11.
Characters and figures are displayed under control from 14.

一方、同期発生器15からの同期信号は走査制御回路1
6に供給され・、垂直走査if!L水平走査112を同
期をとって振動させる一方、AD変換器7等に供給され
、AD変換の際のサンプリングのタイミングを合わせる
。又、スイッチ17は遠距離、近距離に応じた切換えを
人の手によって行なうもので、モータ制御回路18から
のモータ駆動信号によって焦点モータ19を駆動させて
焦点レンズ3を前後に移動させ、遠距離及び近距離に夫
夫最適の焦点を設定する。
On the other hand, the synchronization signal from the synchronization generator 15 is transmitted to the scan control circuit 1
6, vertical scan if! While the L horizontal scanning 112 is vibrated in synchronization, it is supplied to the AD converter 7, etc., and the timing of sampling during AD conversion is adjusted. The switch 17 is manually operated to switch between long distance and short distance, and the focus motor 19 is driven by a motor drive signal from the motor control circuit 18 to move the focus lens 3 back and forth. Set the optimal focus for distance and short distance.

このものは、焦点レンズ3の焦点合わせを人の手に頼っ
て行なっているので操作が煩わしく、実用的でない。
Since this device relies on manual focusing of the focusing lens 3, it is cumbersome to operate and is not practical.

そこで、焦点合わぜを自動的に行ない得る装置が開発さ
れている。以下、これを説明する。
Therefore, devices that can automatically perform focusing have been developed. This will be explained below.

従来、光学系とは別に超音波センサ等を設け、超音波を
用いて被写体までの距離ii1定してこれを電気信号に
変換し、この電気信号によって焦点モータを駆動して所
定焦点距離にレンズを自動的に設定する装置がある。
Conventionally, an ultrasonic sensor or the like is provided separately from the optical system, and the distance to the subject is determined using ultrasonic waves, and this is converted into an electrical signal.This electrical signal drives the focus motor to adjust the lens to a predetermined focal length. There is a device that automatically sets the

一方、例えば特開昭58−24103号公報或いは特開
昭58−24104号公報に夫々記載されている自動焦
点合わせ装置がある。前者のものは、像スポットを被写
体上で一方向に繰返し走査し、走査によって得られた検
知器出力の微分信号を求めてこれが最大になった時の焦
点距離を設定する。一方、後者のものは、被写体上の特
定点を指定してこの近傍に対応する映像信号を得、この
映像信号から焦点に関する情報信号を得てこれが最適値
を示す時の焦点距離を設定する。
On the other hand, there are automatic focusing devices described in, for example, Japanese Patent Application Laid-open No. 58-24103 and Japanese Patent Application Laid-Open No. 58-24104, respectively. In the former method, the image spot is repeatedly scanned in one direction on the subject, the differential signal of the detector output obtained by scanning is obtained, and the focal length at which this signal becomes the maximum is set. On the other hand, in the latter method, a specific point on the subject is specified, a video signal corresponding to this vicinity is obtained, an information signal regarding the focus is obtained from this video signal, and the focal length when this signal indicates the optimum value is set.

(発明が解決しようとする問題点) 前述の超音波センサを用いたものは、光学系とは別に超
音波処理のための専用のハードを必要とし、回路規模が
大きくなる問題点があった。又、超音波によって測距さ
れる被写体はその指向性によって地面反射による誤差を
生じ易く、更に、被写体以外の障害物等を測距してしま
い、被写体に対する正しい焦点合わせを行ない得ない問
題点があった。
(Problems to be Solved by the Invention) The device using the ultrasonic sensor described above requires dedicated hardware for ultrasonic processing in addition to the optical system, which has the problem of increasing the circuit scale. Furthermore, objects whose distances are measured by ultrasonic waves are prone to errors due to reflections from the ground due to their directivity, and furthermore, there is a problem in that objects other than the object are measured, making it impossible to accurately focus on the object. there were.

一方、前述の特開昭58−24103号公報に記載され
たものは、一方向に繰返し走査を行なっているので、一
方向く例えば水平方向)に温度変化のない被写体に対し
ては焦点合わ牡誤差を生じる問題点があった。又、特開
昭58−24104号公報に記載されたものは、特定点
を指定して得た映像信号から焦点合わせを行なっている
だけであり、被写体そのものの映f&信号を得られない
ので正確な焦点合わせを行ない得ない問題点があった。
On the other hand, the method described in the above-mentioned Japanese Patent Application Laid-open No. 58-24103 repeatedly scans in one direction, so there is a focusing error when it comes to objects with no temperature change in one direction (for example, the horizontal direction). There was a problem that caused this. Furthermore, the method described in Japanese Patent Application Laid-Open No. 58-24104 only performs focusing from the video signal obtained by specifying a specific point, and cannot obtain the video f& signal of the subject itself, so it is not accurate. There was a problem in that it was not possible to achieve accurate focusing.

本発明は、簡単な構成で、誤差なく自動的に焦点合わせ
を行ない得る自動焦点合わせ機能付搬像装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an image carrier with an automatic focusing function that has a simple configuration and can automatically perform focusing without error.

(問題点を解決するための手段) 本発明は、第1図に示す如く、検知器5によって得られ
たデータから、異なる焦点距離における被写体の垂直方
向及び水平方向での最大微分値を求め、各焦点距離にお
ける最大微分値のうち大きい方の最大微分値の焦点距離
を最適焦点距離として設定する制御手段30と、制御手
段30にて得られた最適焦点距離のデータに基づいて焦
点レンズ3を移動させる駆動手段31とを設けてなる。
(Means for solving the problem) As shown in FIG. 1, the present invention calculates the maximum differential values in the vertical and horizontal directions of the subject at different focal lengths from the data obtained by the detector 5, The control means 30 sets the focal length of the larger maximum differential value among the maximum differential values at each focal length as the optimum focal length, and the focusing lens 3 is set based on the optimum focal length data obtained by the control means 30. A driving means 31 for moving is provided.

〔作用〕[Effect]

本発明では、被写体を垂直方向及び水平方向に走査して
得た画像データから各焦点距離における最大微分値を面
状に算出し、各焦点距離における最大微分値のうち大き
い方の最大微分値の焦点距離を最適焦点距離とする。こ
れにより、比較的簡単な回路構成で、誤差少なく自動的
に焦点合わせを行ない得る。
In the present invention, the maximum differential value at each focal length is calculated in a plane form from image data obtained by scanning the subject in the vertical and horizontal directions, and the larger maximum differential value among the maximum differential values at each focal length is calculated. Let the focal length be the optimal focal length. As a result, focusing can be performed automatically with a relatively simple circuit configuration and with little error.

〔実施例〕〔Example〕

第1図は本発明装置の一実施例のブロック図を示し、同
図中、第6図と同一構成部分には同一番号を付してその
説明を省略する。同図中、20はデータ変換器で、後述
のCPU21から得られた最大波高値データを電気信号
に変換してスイッチ17の出力と共にモータ制御回路1
8に供給する。
FIG. 1 shows a block diagram of an embodiment of the apparatus of the present invention, and in the figure, the same components as those in FIG. 6 are given the same numbers and the explanation thereof will be omitted. In the figure, 20 is a data converter that converts maximum wave height value data obtained from a CPU 21 (described later) into an electrical signal and sends it to the motor control circuit 1 along with the output of the switch 17.
Supply to 8.

CPU21はAD変換器7からの出力を微分演算し、後
述の焦点合わせエリア内での最大微分値をRAM22に
記憶させ、各ステップ毎の最大微分値を比較して最大微
分値が得られる焦点距離データをデータ変換器20に送
る。
The CPU 21 performs differential calculation on the output from the AD converter 7, stores the maximum differential value within the focusing area (described later) in the RAM 22, compares the maximum differential value for each step, and determines the focal length at which the maximum differential value is obtained. Send the data to data converter 20.

この場合、CPU21の制御はRAM22゜ROM23
にメモリされている画像処理に必要なブOグラムに従っ
てなされ、第5図に示すフローチャートに従った動作を
行なうものとする。
In this case, the CPU 21 controls the RAM 22° and the ROM 23.
It is assumed that the processing is performed according to the block diagram necessary for image processing stored in the memory, and the operation is performed according to the flowchart shown in FIG.

次に、本発明装置の動作について説明する。Next, the operation of the device of the present invention will be explained.

CPU21の制御によりモニター1上に第2図に示すよ
うにXカーソル24 、Yカーソル24゜を表示し、併
せて焦点合わせエリアマーク25を表示する(第5図ス
テップ50)。Xカーソル24 、Yカーソル24.は
被写体26の位置に応じて自由に左右方向、上下方向に
移動でき、エリアマーク25も被写体26に合わせて適
宜カーソル上を移動できる。先ず、焦点モーター9の駆
動により、焦点レンズ3を最遠像1I(oo)又は最近
位W1(近)のいずれかに設定する。ここでは例えばω
とする(ステップ51)。
Under the control of the CPU 21, an X cursor 24 and a Y cursor 24° are displayed on the monitor 1 as shown in FIG. 2, and a focusing area mark 25 is also displayed (step 50 in FIG. 5). X cursor 24, Y cursor 24. can be freely moved horizontally and vertically according to the position of the subject 26, and the area mark 25 can also be moved on the cursor as appropriate in accordance with the subject 26. First, by driving the focus motor 9, the focus lens 3 is set to either the farthest image 1I (oo) or the most proximal image W1 (near). Here, for example, ω
(Step 51).

この状態において、焦点合わせエリアの温度信号データ
をX方向及びY方向の面状に取込む(ステップ52)。
In this state, temperature signal data of the focusing area is captured in a planar manner in the X direction and the Y direction (step 52).

いま、第3図に示す如く、X方向のエリアマーク25に
よって決定される焦点合ねせ用画像データ範囲×1にお
いて温度信号波形a1Y方向のエリアマーク25によっ
て決定される焦点合わせ用画像データ範囲Y1において
温度信号波形すが夫々得られたとする。このとき、第4
図に示す如く、CPU21において、X方向及びY方向
の双方について濃度信号データから濃度変化の微分値(
微分係数)が夫々求められ、焦点合わせエリア内でのX
方向及びY方向の最大微分値がRAM22にメモリされ
る(ステップ53)。なお、第4図では微分の様子を明
らかにするためにAD変換された値をアナログ値に直し
て示しである。
Now, as shown in FIG. 3, in the focusing image data range x1 determined by the area mark 25 in the X direction, the temperature signal waveform a1 is determined by the area mark 25 in the Y direction. Assume that temperature signal waveforms are obtained in each case. At this time, the fourth
As shown in the figure, in the CPU 21, the differential value (
The differential coefficient) is calculated respectively, and the X
The maximum differential values in the direction and Y direction are stored in the RAM 22 (step 53). In addition, in FIG. 4, the AD-converted values are converted into analog values in order to clarify the state of differentiation.

次に、焦点位置を微小ステップで近方向に1ステツプ変
化させ(ステップ54)、ステップ52゜53と同様に
X方向及びY方向の最大微分値がRAM22にメモリさ
れる(ステップ55.56)。
Next, the focal point position is changed in minute steps in the near direction (step 54), and the maximum differential values in the X and Y directions are stored in the RAM 22 (steps 55 and 56), as in steps 52 and 53.

ここで、ステップ53の1回目における最大微分値とス
テップ56の2回目における最大微分値とが比較され(
ステップ57.58>、例えば2回目の方が大であれば
焦点距離データをデータ変換器20に送って更に1ステ
ツプ近方向に変化させ(ステップ59)、逆に2回目の
方が小であれば元の■の位置に戻す(ステップ60)。
Here, the maximum differential value at the first step 53 and the maximum differential value at the second step 56 are compared (
Steps 57 and 58>, for example, if the second time is larger, the focal length data is sent to the data converter 20 and further changed by one step in the near direction (step 59); conversely, if the second time is smaller, If so, return it to the original position of ■ (step 60).

ステップ59の後は、以下これと同様の動作を繰返し行
ない、被写体の11度変化が最大となった時に焦点位置
合わせを停止する。
After step 59, the same operation as this is repeated, and the focus positioning is stopped when the 11 degree change in the subject reaches the maximum.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、画像データから被
写体の最大微分値を面状に算出しているので、超音波セ
ンサ等の特別の装置を用いた従来装置に比して回路を簡
単に構成し得、しかも、指向性等による誤差等の問題も
なく、又、被写体以外の障害物を測距してしまうことも
なく、更に、一方向にのみ走査を行なう従来装置に比し
て例えば横方向のみに温度変化のない被写体に対しても
焦点合わせ誤差を生じることはなく、又、被写体データ
を面状に取込んで処理しているので、特定点の映像信号
を用いた従来装置に比して誤差の少ない焦点合わぜを行
ない得る。
As explained above, according to the present invention, since the maximum differential value of the subject is calculated from image data in a planar manner, the circuit can be easily constructed compared to conventional devices that use special devices such as ultrasonic sensors. Moreover, there are no problems such as errors due to directivity, etc., and there is no need to measure the distance to obstacles other than the subject.Furthermore, compared to conventional devices that scan only in one direction, for example, Focusing errors do not occur even for objects with no temperature change only in the lateral direction, and since object data is captured and processed in a planar manner, it is far superior to conventional devices that use video signals from specific points. In comparison, focusing can be performed with less error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例のブロック図、第2図は
カーソル及びエリアマークを示す図、第3図は赤外画像
を表示した図、 第4図は焦点合わせエリア温度信号波形図、第5図は本
発明の動作フローチャート、第6図は従来装置の一例の
ブロック図である。 図において、 1は垂直走査鏡、 2は水平走査鏡、 3は焦点レンズ、 5は赤外線検知器、 7はAD変換器、 9はフレームメモリ、 10はDA変換器、 11はモニタ、 19は焦点モータ、 20はデータ変換器、 21はCPU1 22はRAM。 23はROM。 30は制御手段、 31は焦点レンズ駆動手段 を示す。 方−ソ11/及ダニJlアマー2t↑オ図第2図 ^4図 寸ζ砕iβ9の1力A判70−4−資一ト第5図
Figure 1 is a block diagram of an embodiment of the device of the present invention, Figure 2 is a diagram showing a cursor and area mark, Figure 3 is a diagram displaying an infrared image, and Figure 4 is a diagram of a focusing area temperature signal waveform. , FIG. 5 is an operation flowchart of the present invention, and FIG. 6 is a block diagram of an example of a conventional device. In the figure, 1 is a vertical scanning mirror, 2 is a horizontal scanning mirror, 3 is a focusing lens, 5 is an infrared detector, 7 is an AD converter, 9 is a frame memory, 10 is a DA converter, 11 is a monitor, 19 is a focus 20 is a data converter, 21 is a CPU 1, and 22 is a RAM. 23 is ROM. 30 is a control means, and 31 is a focusing lens driving means. Direction - So 11/And Dani Jl Amer 2t ↑ O Figure 2 ^ 4 Figure Dimensions

Claims (1)

【特許請求の範囲】[Claims] 被写体を垂直方向及び水平方向に走査して得た光を焦点
レンズ(3)を介して検知器(5)に供給して電気信号
にし、該被写体の映像を表示する映像装置において、上
記検知器(5)によって得られたデータから、異なる焦
点距離における上記被写体の垂直方向及び水平方向での
最大微分値を求め、該求められた各焦点距離における最
大微分値のうち大きい方の最大微分値の焦点距離を最適
焦点距離として設定する制御手段(30)と、該制御手
段(30)にて得られた最適焦点距離のデータに基づい
て上記焦点レンズ(3)を移動させる駆動手段(31)
とを設けてなることを特徴とする自動焦点合わせ機能付
映像装置。
In an imaging device that displays an image of the object by supplying light obtained by scanning the object in the vertical and horizontal directions to the detector (5) through the focusing lens (3) and converting it into an electrical signal, the detector comprises: From the data obtained in (5), calculate the maximum differential values of the subject in the vertical and horizontal directions at different focal lengths, and calculate the larger maximum differential value of the maximum differential values at each of the calculated focal lengths. A control means (30) for setting the focal length as the optimum focal length, and a driving means (31) for moving the focusing lens (3) based on the optimum focal length data obtained by the control means (30).
An imaging device with an automatic focusing function, characterized by comprising:
JP62282687A 1987-11-09 1987-11-09 Video device with automatic focussing function Pending JPH01125067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282687A JPH01125067A (en) 1987-11-09 1987-11-09 Video device with automatic focussing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282687A JPH01125067A (en) 1987-11-09 1987-11-09 Video device with automatic focussing function

Publications (1)

Publication Number Publication Date
JPH01125067A true JPH01125067A (en) 1989-05-17

Family

ID=17655751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282687A Pending JPH01125067A (en) 1987-11-09 1987-11-09 Video device with automatic focussing function

Country Status (1)

Country Link
JP (1) JPH01125067A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824103A (en) * 1981-07-08 1983-02-14 Jeol Ltd Focusing device of thermography device
JPS58194473A (en) * 1982-05-08 1983-11-12 Matsushita Electric Ind Co Ltd Image pickup device
JPS58219505A (en) * 1982-06-14 1983-12-21 Nippon Seimitsu Kogyo Kk Automatic focusing device capable of varying area for detecting focus
JPS5987415A (en) * 1982-11-11 1984-05-21 Toshiba Corp Automatic focusing device
JPS59105773A (en) * 1982-12-08 1984-06-19 Sanyo Electric Co Ltd Display circuit of focus control position
JPS59107685A (en) * 1982-12-10 1984-06-21 Sanyo Electric Co Ltd Setting circuit of focus control area
JPS59111479A (en) * 1982-12-17 1984-06-27 Matsushita Electric Ind Co Ltd Automatic focusing device
JPS6097784A (en) * 1983-11-01 1985-05-31 Sanyo Electric Co Ltd Automatic focus controlling circuit
JPS60256278A (en) * 1984-06-01 1985-12-17 Matsushita Electric Ind Co Ltd Automatic focusing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824103A (en) * 1981-07-08 1983-02-14 Jeol Ltd Focusing device of thermography device
JPS58194473A (en) * 1982-05-08 1983-11-12 Matsushita Electric Ind Co Ltd Image pickup device
JPS58219505A (en) * 1982-06-14 1983-12-21 Nippon Seimitsu Kogyo Kk Automatic focusing device capable of varying area for detecting focus
JPS5987415A (en) * 1982-11-11 1984-05-21 Toshiba Corp Automatic focusing device
JPS59105773A (en) * 1982-12-08 1984-06-19 Sanyo Electric Co Ltd Display circuit of focus control position
JPS59107685A (en) * 1982-12-10 1984-06-21 Sanyo Electric Co Ltd Setting circuit of focus control area
JPS59111479A (en) * 1982-12-17 1984-06-27 Matsushita Electric Ind Co Ltd Automatic focusing device
JPS6097784A (en) * 1983-11-01 1985-05-31 Sanyo Electric Co Ltd Automatic focus controlling circuit
JPS60256278A (en) * 1984-06-01 1985-12-17 Matsushita Electric Ind Co Ltd Automatic focusing device

Similar Documents

Publication Publication Date Title
JP2000002518A (en) Three dimensional input device
JP2005216160A (en) Image generating apparatus, intruder monitoring apparatus and image generating method
CN101883198A (en) Scanner capable of detecting in real time and physically adjusting frame and scanning method thereof
US6330066B1 (en) Height measuring apparatus and method and testing apparatus using the height measuring apparatus
JP2000039310A (en) Method and device for measuring shape
US5128777A (en) Image reading apparatus
JPH01125067A (en) Video device with automatic focussing function
US6297881B1 (en) Three-dimensional measurement method and three-dimensional measurement device
JPS61259170A (en) Apparatus for adjusting inclination of specimen
JPH10210327A (en) Camera equipment
JPH08226805A (en) Method for focusing imaging device and non-contact measuring device utilizing the method
JPH0365973B2 (en)
JPH0538541U (en) Detected temperature display device
JPH0531537Y2 (en)
JP3027674B2 (en) Laser emission angle detection method
JPH0599623A (en) Displacement measuring apparatus
JPH09139806A (en) Image information reader
JP3670788B2 (en) 3D shape measuring device
JPS60194302A (en) Measuring apparatus for object to be photographed
JPH0442747Y2 (en)
JPH04158229A (en) Heat image monitoring apparatus
JP2000105111A (en) Three-dimensional input device
KR100317961B1 (en) How to measure the plate real time
JPH09225884A (en) Measuring method for position of electric wire of manupulator for distribution work
JPH1039019A (en) Laser radar equipment