JPH01124969A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH01124969A
JPH01124969A JP62284056A JP28405687A JPH01124969A JP H01124969 A JPH01124969 A JP H01124969A JP 62284056 A JP62284056 A JP 62284056A JP 28405687 A JP28405687 A JP 28405687A JP H01124969 A JPH01124969 A JP H01124969A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
electrolyte
dimethoxyethane
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284056A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Hiroshi Hattori
浩 服部
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62284056A priority Critical patent/JPH01124969A/en
Publication of JPH01124969A publication Critical patent/JPH01124969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a lithium secondary battery having excellent charge- discharge cycles by using an electrolyte prepared by dissolving LiBF4 in 1,2- dimethoxyethane in the high concentration from 4 mol/l to saturation. CONSTITUTION:An electrolyte prepared by dissolving LiBF4 in 1,2- dimethoxy-ethane in the high concentration from 4mol/l to saturation is used. In this electrolyte, almost all 1,2-dimethoxyethane of the solvent forms coordinate bond with lithium ions, and free 1,2-dimethoxyethane is almost zero. The reaction of active lithium deposited with the electrolyte solvent is retarded and a passivation film is not formed on the lithium deposited. The deterioration of a negative electrode is prevented and plasticity is increased. The charge- discharge cycle performance of a battery is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム二次電池に係わり、さらに詳しくはそ
の電解液の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a lithium secondary battery, and more particularly to improvement of its electrolyte.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池では、負極に金属リチウムを単
独で用いていたが、充放電サイクルの繰り返しにより、
負極が劣化するという間Nケあった。このような負極劣
化の大きな要因として、充電時に負極上に析出した電着
リチウムが非常に活性で電解液中の有機溶媒と反応して
その表面に不働態膜を形成して、次の放電時に負極活物
質として役立たなくなることがあげられる。
Conventionally, lithium secondary batteries used metallic lithium alone as the negative electrode, but due to repeated charging and discharging cycles,
There were N cases where the negative electrode deteriorated. One of the major causes of such negative electrode deterioration is that the electrodeposited lithium deposited on the negative electrode during charging is extremely active and reacts with the organic solvent in the electrolyte to form a passive film on its surface, which is then deposited on the negative electrode during the next discharge. One example of this is that it becomes useless as a negative electrode active material.

そのため、リチウム−アルミニウムなどのリチウム合金
を負極に用い、充電時の負極上に析出する活性な電着リ
チウムをアルミニウムなどとの電気化学的合金化反応を
利用して合金化させることにより活性な電着リチウムの
状態でとどまる時間を短(して負極の劣化を防止したり
 (例えば、米国特許第3.506.492号明細書)
、あるいは電解液中に添加剤を加えることによって負極
の劣化を防止することが行われているが(例えば、J、
PowerSources、 14.198(1985
))、それらのみによっては、充分に満足し得るほどの
改善効果が得られていない。
Therefore, a lithium alloy such as lithium-aluminum is used as the negative electrode, and active electrodeposited lithium, which is deposited on the negative electrode during charging, is alloyed with aluminum etc. using an electrochemical alloying reaction. Shorten the time that lithium remains in the state of deposited lithium (to prevent deterioration of the negative electrode (for example, U.S. Pat. No. 3,506,492))
Alternatively, the deterioration of the negative electrode has been prevented by adding additives to the electrolyte (for example, J,
PowerSources, 14.198 (1985
)), these alone have not produced a sufficiently satisfactory improvement effect.

(発明が解決しようとする問題点〕 この発明は従来のリチウム二次電池が持っていた負極の
可逆性が低いという問題点を解決し、それによって充放
電サイクル特性の優れたリチウム二次電池を提供するこ
とを目的とする。
(Problems to be Solved by the Invention) This invention solves the problem of low reversibility of the negative electrode of conventional lithium secondary batteries, thereby creating a lithium secondary battery with excellent charge-discharge cycle characteristics. The purpose is to provide.

【問題点を解決するための手段〕[Means to solve problems]

本発明は電解液を改良して、充電時の活性な電着リチウ
ムと電解液溶媒との反応を抑制して、負極の可逆性を高
め、充放電サイクル特性を高めたものである。
The present invention improves the electrolyte, suppresses the reaction between active electrodeposited lithium and the electrolyte solvent during charging, increases the reversibility of the negative electrode, and improves the charge-discharge cycle characteristics.

すなわち、本発明は、LiBF4(ホウフッ化リチウム
)を1.2−ジメトキシエタンに4モル/1以上飽和濃
度までの高濃度に溶解した電解液を用いたことを特徴と
するリチウム二次電池に関する。
That is, the present invention relates to a lithium secondary battery characterized by using an electrolytic solution in which LiBF4 (lithium borofluoride) is dissolved in 1,2-dimethoxyethane at a high concentration of 4 mol/1 or more up to a saturation concentration.

上記のようなL i B F 4濃度が4モル/I1.
以上の高濃度電解液は、電解液溶媒である1、2−ジメ
トキシエタンのほとんどがリチウムイオンに配位した状
態になっており、フリーの1.2−ジメトキシエタンが
ほとんどないため、活性な電着リチウムと電解液溶媒と
の反応が抑制され、電着リチウム上への不働態膜の形成
が生じなくなり、負極の劣化が防止され、可逆性が向上
する。
When the L i B F 4 concentration as above is 4 mol/I1.
In the above highly concentrated electrolyte, most of the 1,2-dimethoxyethane, which is the electrolyte solvent, is coordinated with lithium ions, and there is almost no free 1,2-dimethoxyethane, so there is no active charge. The reaction between the deposited lithium and the electrolyte solvent is suppressed, the formation of a passive film on the electrodeposited lithium is prevented, the deterioration of the negative electrode is prevented, and the reversibility is improved.

本発明において、負極にはリチウムまたはリチウム合金
が用いられるが、その際のリチウム合金としては、例え
ばリチウム−アルミニウム、リチウム−鉛、リチウム−
インジウム、リチウム−ガリウム、リチウム−ビスマス
、リチウム−マグネシウム、リチウム−インジウム−ガ
リウムなどや、それらにさらに他の金属が少量添加され
たリチウム合金などがあげられる。
In the present invention, lithium or a lithium alloy is used for the negative electrode, and examples of the lithium alloy include lithium-aluminum, lithium-lead, and lithium-lead.
Examples include indium, lithium-gallium, lithium-bismuth, lithium-magnesium, lithium-indium-gallium, and lithium alloys to which small amounts of other metals are added.

正極活物質としては、遷移金属のカルコゲン化合物が用
いられる。これは遷移金属のカルコゲン化合物は結晶構
造が層状で、その内部でのリチウムイオンの拡散定数が
大きく、正極側における充放電反応がスムーズに進行す
ることによるものである。そして、このような遷移金属
のカルコゲン化合物としては、例えば二硫化チタン(T
iSx)、二硫化モリブデン(M o S り、三硫化
モリブデン(M o S s)、二硫化鉄(FeSり、
硫化ジルコニウム(ZrSg)、二硫化ニオブ(NbS
t)、三硫化ニッケル(N I P S、)、バナジウ
ムセレナイド(VSg)などがあげられる。
A transition metal chalcogen compound is used as the positive electrode active material. This is because the transition metal chalcogen compound has a layered crystal structure, and the diffusion constant of lithium ions inside it is large, so that the charge/discharge reaction on the positive electrode side proceeds smoothly. Examples of transition metal chalcogen compounds include titanium disulfide (T
iSx), molybdenum disulfide (MoS), molybdenum trisulfide (MoS), iron disulfide (FeS),
Zirconium sulfide (ZrSg), niobium disulfide (NbS)
t), nickel trisulfide (NIPS), vanadium selenide (VSg), and the like.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに説明する。 Next, the present invention will be further explained with reference to Examples.

実施例1 電解液としては、56.25gのLiBFnをアルゴン
雰囲気中で1.2−ジメトキシエタンに溶解し、全量を
100mj!としたLiBFn濃度が6モル/lのもの
を用いた。
Example 1 As an electrolytic solution, 56.25 g of LiBFn was dissolved in 1,2-dimethoxyethane in an argon atmosphere, and the total amount was 100 mj! A LiBFn concentration of 6 mol/l was used.

負極には厚さ200μmのリチウムホイルを直径10m
−の円形に打ち抜いたものを用い、正極には二硫化チタ
ンとその5重量%に相当するポリテトラフルオロエチレ
ン粉末との混合物を厚さ220μm。
The negative electrode is a lithium foil with a thickness of 200 μm and a diameter of 10 m.
The positive electrode was made of a mixture of titanium disulfide and polytetrafluoroethylene powder corresponding to 5% by weight of titanium disulfide in a thickness of 220 μm.

直径10.8gg−のペレット状に成形したものを用い
、第1図に示す構造のリチウム二次電池を作製した。
A lithium secondary battery having the structure shown in FIG. 1 was fabricated using pellets having a diameter of 10.8 gg.

第1図において、■は前記リチウムホイルからなる負極
で、2は前記した二硫化チタンを正極活物質とするペレ
ット状成形体からなる正極である。
In FIG. 1, ``■'' is a negative electrode made of the lithium foil described above, and 2 is a positive electrode made of a pellet-shaped molded body containing the above-mentioned titanium disulfide as a positive electrode active material.

3は微孔性ポリブロピレツからなるセパレータ、4はポ
リプロピレン不織布からなる電解液吸収体、5はステン
レス鋼製の負極毎、6はステンレス鋼製網からなる負極
集電体、7はステンレス鋼製の正極缶、8はステンレス
鋼製網よりなる正極集電体、9はポリプロピレン製のガ
スケットである。
3 is a separator made of microporous polypropylene, 4 is an electrolyte absorber made of polypropylene nonwoven fabric, 5 is a negative electrode made of stainless steel, 6 is a negative electrode current collector made of a stainless steel mesh, and 7 is a positive electrode made of stainless steel. The can, 8 is a positive electrode current collector made of a stainless steel mesh, and 9 is a gasket made of polypropylene.

この電池における負極の理論電気量は約32.6mAh
で、正極の理論電気量は約8mAhであり、電解液の注
入量は45μ!である。
The theoretical amount of electricity of the negative electrode in this battery is approximately 32.6mAh
So, the theoretical amount of electricity of the positive electrode is about 8mAh, and the amount of electrolyte injected is 45μ! It is.

実施例2 37.5gのLiBFaをアルゴン雰囲気中で1.2−
ジメトキシエタンに溶解し、全量を100mj!とじた
LiBF41度度が4モル/1のものを電解液として用
いたほかは実施例1と同様の電池を作製した。
Example 2 37.5 g of LiBFa was added to 1.2-
Dissolve in dimethoxyethane and bring the total amount to 100mj! A battery was produced in the same manner as in Example 1, except that a closed LiBF with a ratio of 4 mol/1 was used as the electrolyte.

実施例3 93.75 gのLiBFnをアルゴン雰囲気中で1.
2−ジメトキシエタンに熔解し、全量をLoom j!
     ′とじて、LiBF41度が10モル/1.
の電解液を得ようとしたが、飽和量を超え、沈澱を生じ
たため、その上澄み液を採取し、このL i B F 
aが飽和濃度の電解液を用いたほかは実施例1と同様の
電池を作製した。
Example 3 93.75 g of LiBFn was dissolved in an argon atmosphere for 1.5 g.
Dissolve in 2-dimethoxyethane and transfer the entire amount to Loom j!
', LiBF41 degree is 10 mol/1.
An attempt was made to obtain an electrolytic solution of
A battery was produced in the same manner as in Example 1, except that an electrolytic solution having a saturation concentration was used.

比較例1 9.375gのLiBF、をアルゴン雰囲気中で1.2
−ジメトキシエタンに溶解し、全量を100mj!とし
たLiBFn:a度が1モル/lのものを電解液として
用いたほかは実施例1と同様の電池を作製した。
Comparative Example 1 9.375g of LiBF was heated to 1.2g in an argon atmosphere.
-Dissolve in dimethoxyethane and make the total amount 100mj! A battery was produced in the same manner as in Example 1, except that LiBFn:A with a degree of 1 mol/l was used as the electrolyte.

上記実施例1〜3の電池および比較例1の電池を25°
C,500μAで0.5mAhの電気量を充放電し、放
電電圧が1.8vに低下するまでに0.5mAhの放電
容量が得られたサイクル数を調べ、その結果を第1表に
示した。
The batteries of Examples 1 to 3 and the battery of Comparative Example 1 were heated at 25°
C, 0.5 mAh of electricity was charged and discharged at 500 μA, and the number of cycles at which a discharge capacity of 0.5 mAh was obtained before the discharge voltage decreased to 1.8 V was investigated, and the results are shown in Table 1. .

第   1   表 第1表に示すように、実施例1〜3の電池は、従来電池
に相当する比較例1の電池に比べて、サイクル数が多く
、充放電サイクル特性が優れていた。
Table 1 As shown in Table 1, the batteries of Examples 1 to 3 had a greater number of cycles and had better charge-discharge cycle characteristics than the battery of Comparative Example 1, which corresponds to the conventional battery.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、L i B F a
を1.2−ジメトキシエタンに4モル/1以上飽和濃度
までの高濃度に溶解して、フリーの1.2−ジメトキシ
エタンを少なくすることにより、充電時の活性な電着リ
チウムと電解液溶媒との反応を抑制して、負極の可逆性
を高め、充放電サイクル特性の優れたリチウム二次電池
を提供することができた。
As explained above, in the present invention, L i B Fa
By dissolving 1,2-dimethoxyethane at a high concentration of 4 mol/1 or more up to saturation concentration to reduce free 1,2-dimethoxyethane, active electrodeposited lithium and electrolyte solvent during charging can be reduced. We were able to suppress the reaction with the negative electrode, increase the reversibility of the negative electrode, and provide a lithium secondary battery with excellent charge-discharge cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のリチウム二次電池の一実施例を示す断
面図である。 1・・・負極、 2・・・正極、 3・・・セパレータ
、4・・・電解液吸収体 特許出願人 日立マクセル株式会社 igl”、s−遺
FIG. 1 is a sectional view showing an embodiment of the lithium secondary battery of the present invention. 1... Negative electrode, 2... Positive electrode, 3... Separator, 4... Electrolyte absorber patent applicant Hitachi Maxell Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質として遷移金属のカルコゲン化合物を
用い、負極にリチウムまたはリチウム合金を用いるリチ
ウム二次電池において、LiBF_4を1、2−ジメト
キシエタンに4モル/l以上飽和濃度まで溶解した電解
液を用いたことを特徴とするリチウム二次電池。
(1) In a lithium secondary battery that uses a transition metal chalcogen compound as the positive electrode active material and lithium or lithium alloy as the negative electrode, an electrolytic solution in which LiBF_4 is dissolved in 1,2-dimethoxyethane to a saturation concentration of 4 mol/l or more A lithium secondary battery characterized by using.
JP62284056A 1987-11-10 1987-11-10 Lithium secondary battery Pending JPH01124969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284056A JPH01124969A (en) 1987-11-10 1987-11-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284056A JPH01124969A (en) 1987-11-10 1987-11-10 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH01124969A true JPH01124969A (en) 1989-05-17

Family

ID=17673718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284056A Pending JPH01124969A (en) 1987-11-10 1987-11-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH01124969A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527662A (en) * 2005-01-18 2008-07-24 オクシス・エナジー・リミテッド Improvements related to electrolyte compositions for batteries using sulfur or sulfur compounds
JP2010073489A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Electrolyte excellent in thermal stability and secondary battery prepared using the same
WO2016079919A1 (en) * 2014-11-18 2016-05-26 国立大学法人東京大学 Electrolyte solution
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527662A (en) * 2005-01-18 2008-07-24 オクシス・エナジー・リミテッド Improvements related to electrolyte compositions for batteries using sulfur or sulfur compounds
JP2010073489A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Electrolyte excellent in thermal stability and secondary battery prepared using the same
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell
WO2016079919A1 (en) * 2014-11-18 2016-05-26 国立大学法人東京大学 Electrolyte solution

Similar Documents

Publication Publication Date Title
JP2597091B2 (en) Lithium secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JPH01124969A (en) Lithium secondary battery
JPH0630246B2 (en) Button type lithium organic secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0724219B2 (en) Lithium secondary battery
JPS60175375A (en) Lithium organic secondary cell
JPH0210666A (en) Nonaqueous electrolyte secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPH0810605B2 (en) Lithium secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPH0349166A (en) Lithium secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JP3021526B2 (en) Electrolyte for lithium secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPS6326951A (en) Lithium secondary battery
JPH0773050B2 (en) Organic electrolyte secondary battery
JPH0523016B2 (en)
JPS6220249A (en) Nonaqueous electrolyte secondary battery
JPS6174258A (en) Lithium organic secondary battery
JPS6166370A (en) Lithium secondary battery