JPH01122463A - Photoscanning module - Google Patents

Photoscanning module

Info

Publication number
JPH01122463A
JPH01122463A JP62280373A JP28037387A JPH01122463A JP H01122463 A JPH01122463 A JP H01122463A JP 62280373 A JP62280373 A JP 62280373A JP 28037387 A JP28037387 A JP 28037387A JP H01122463 A JPH01122463 A JP H01122463A
Authority
JP
Japan
Prior art keywords
light
lens
deflection
shutter array
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280373A
Other languages
Japanese (ja)
Inventor
Ken Yamashita
山下 建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP62280373A priority Critical patent/JPH01122463A/en
Publication of JPH01122463A publication Critical patent/JPH01122463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Optical Systems Of Projection Type Copiers (AREA)

Abstract

PURPOSE:To achieve high speed and high accuracy while improving durability, by a method wherein the title photoscanning module is composed of a photo shutter array in which shutter elements capable of switching over the shielding and transmission of light emitted from a semiconductor light emitting element are flatly arranged, and refractive index distribution type cylindrical lens deflecting those outgoing beams. CONSTITUTION:AlGaAs/GaAs semiconductor laser 1 as a light emitting element, a refractive index distribution type cylindrical lens 2 for collimating outgoing beams of the semiconductor laser 1, a light absorption type shutter array 3 for which GaAs/AlGaAs superlattice is used, and a refractive index distribution type cylindrical lens for deflection of light 4 are integrally formed. The semiconductor laser 1 selects wavelength and adheres to the center of an end face of the collimate lens 2. The light shutter array 3 is adhered on a straight line passing a center of an end face of the lens for deflection of light 4 symmetrically to the center, which is fixed to an outgoing side end surface of the collimate lens 2 to which an anti-reflection coating 9 is provided. This element is housed in a package 10 having a light outgoing window 7. By the above- mentioned structure, durability and accuracy can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光記録装置などに用いられる光ビーム走査
装置に閃し、全固体式で可動部がないため高精度で高速
の光走査ができる小型の光走査モジュールに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention was inspired by a light beam scanning device used in optical recording devices, etc., and is an all-solid-state type with no moving parts, which enables high-precision and high-speed optical scanning. The present invention relates to a compact optical scanning module that can be used.

〔従来の技術〕[Conventional technology]

従来より光走査装置は、感光体を光で走査する記録装置
をはじめ各種光学機器に利用されている。
2. Description of the Related Art Optical scanning devices have conventionally been used in various optical devices, including recording devices that scan photoreceptors with light.

光走査の方式は大別して、(1)光の偏向を利用するも
のと、(2)アレイ状に配列した光源を点滅することに
よるものとがある。
Optical scanning methods can be roughly divided into (1) methods that utilize the deflection of light, and (2) methods that use blinking light sources arranged in an array.

これらのうち(1)は、第2図のように光源j/から出
た光を光偏向器!−に入射させ、この光偏向器j2によ
る光ビームjlAの角度偏向によって受光面!3上の光
点を走査させる。
Among these, (1) is an optical deflector that directs the light emitted from the light source j/ as shown in Figure 2! -, and the light beam jlA is angularly deflected by the optical deflector j2 to the light receiving surface! Scan the light spot on 3.

光ビームの角度偏向を行う最も単純な手段は、鏡などの
光学素子を機械的に移動させる方法である。機械的可動
部のないものとしては、音物光学効果を用いたものが代
表的であり、この種の偏向器では表面弾性波を励振させ
て屈折率の周期的な変化をつくり出し、これと光とを相
互作用させることにより光ビームの偏向を行なう。
The simplest means of angular deflection of a light beam is to mechanically move an optical element such as a mirror. A typical example of a deflector without mechanically moving parts is one that uses acoustic optical effects, and this type of deflector excites surface acoustic waves to create periodic changes in the refractive index, and this and light The light beam is deflected by interacting with the light beam.

前記(2)のタイプでは、第り図のように受光面よ3に
対向して、該面に平行な面内に多数の光源要素j/が配
置されている。
In the type (2), a large number of light source elements j/ are arranged in a plane parallel to the light-receiving surface 3, facing the light-receiving surface 3, as shown in FIG.

光源要素j/としては、単一光源と液晶あるいはPLZ
Tなどを用いた光シャッタアレイ、多数の発光素子なア
レイ状に配列したもの等が使用される。これらの各光源
要素!/は、電気信号により独立に制御、点滅され、受
光面j3上で光点の走査を行なう。
The light source element j/ includes a single light source and liquid crystal or PLZ
An optical shutter array using T or the like, a large number of light emitting elements arranged in an array, etc. are used. Each of these light source elements! / is independently controlled and blinked by an electric signal to scan a light spot on the light receiving surface j3.

”〔発明の解決しようとする問題点〕 光の偏向を利用する方式の走査装置のうち、可動部のあ
る機械式のものは、偏向点数は大きいが耐久性に問題が
あり、装置の調整が筆軸で走査のm度に限界がある。
” [Problems to be solved by the invention] Of the scanning devices that use light deflection, mechanical ones with moving parts have a large number of deflection points, but have problems with durability and are difficult to adjust. There is a limit to m degrees of scanning with the pen axis.

また音響光学効果を用いた偏向素子では偏向点数を大き
くするために、表面弾性波の励振のための高周波の周波
数を広範囲に変化させることが必要となる。
In addition, in a deflection element using an acousto-optic effect, in order to increase the number of deflection points, it is necessary to vary the frequency of a high frequency wave for excitation of a surface acoustic wave over a wide range.

光源アレイの点滅方式の場合は、必要な偏向点数を得る
ためにはその数に相当するLEDなどの光源、あるいは
液晶やPLZTなどを用いた光シャッタのアレイが必要
である。
In the case of the blinking method of a light source array, in order to obtain the required number of deflection points, a corresponding number of light sources such as LEDs or an array of optical shutters using liquid crystal, PLZT, etc. are required.

この場合、基本的に走査距離とアレイの大きさはt’H
tに対応するため、一般に走査装置は大型となり、消費
電力も大きい。また半導体レーザのアレイを用いれば高
い強度の光を利用できるが、実際には消費電力が大きく
、高価になるためあまり使用されていない。
In this case, basically the scanning distance and array size are t'H
In order to cope with t, the scanning device is generally large in size and consumes a large amount of power. Furthermore, although it is possible to utilize high-intensity light by using a semiconductor laser array, it is not often used because it consumes a large amount of power and is expensive.

〔問題点を解決するための手段〕[Means for solving problems]

光走査モジュールを、半導体発光素子と、この発光素子
の発する光を遮断、透過切り換え可能なシャッタ要素を
平面的に配列した光シャッタアレイと、シャッタアレイ
からの出射光を偏向する屈折率分布型円柱レンズとで構
成した。
The optical scanning module consists of a semiconductor light emitting element, an optical shutter array in which shutter elements are arranged in a plane that can switch between blocking and transmitting the light emitted by the light emitting element, and a gradient index cylinder that deflects the light emitted from the shutter array. It consists of a lens.

〔作 用〕[For production]

シャッタアレイを成す各シャッタを開閉することにより
、円柱レンズの端面上での光入射位置を変えると、上記
レンズからの出射位置が変化し、これにより光ビームを
走査させることができる。
When the light incident position on the end face of the cylindrical lens is changed by opening and closing each of the shutters forming the shutter array, the exit position from the lens changes, thereby making it possible to scan the light beam.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づき詳細に説明す
る。
The present invention will be described in detail below based on embodiments shown in the drawings.

第7図は光走査モジエールを示す平面図であり11は発
光素子としてAlGaAs / GaAs系半導体レー
ザ、コは半導体レーザlの出射光をコリメートするため
の屈折率分布型円柱レンズ(日本板硝子株式会社製:商
品名「セル7オツクレンズ」)、3はGaAS / a
lGaAs超格子を用いた光吸収型シャッタアレイ、≠
は光偏向用の屈折率分布型円柱レンズであり、これらは
一体に成形されたモジュールである。
FIG. 7 is a plan view showing the optical scanning module, where 11 is an AlGaAs/GaAs semiconductor laser as a light emitting element, and C is a gradient index cylindrical lens (manufactured by Nippon Sheet Glass Co., Ltd.) for collimating the emitted light of the semiconductor laser I. :Product name "Cell 7 Otsu Cleanse"), 3 is GaAS/a
Light-absorbing shutter array using lGaAs superlattice, ≠
is a graded index cylindrical lens for light deflection, and these are integrally molded modules.

上記のシャッタアレイ3の製作方法については、例えば
IEEE Journal of Quantum l
i;1ectronicsコ/巻//7頁(/91!年
) l T、 H,Wood他の論文に2験されている
。光シャッタアレイ3の構造例を第2図に断面図で示す
Regarding the manufacturing method of the above-mentioned shutter array 3, for example, IEEE Journal of Quantum l
i;1 electronics/volume//page 7 (/91!) l It has been tested twice in the paper by T. H. Wood et al. An example of the structure of the optical shutter array 3 is shown in cross section in FIG.

このシャッタアレイ素子の基本構造は、n型GaAS層
3/とAJGaAS層3jとから成る基板300上に、
n型とp型のAlyGa1−yAEiMIJJ、jj’
t’狭んだCTaAB / Alx Gap −:t 
As多重量子井戸層3ダを積層した構造となっている。
The basic structure of this shutter array element is that on a substrate 300 consisting of an n-type GaAS layer 3/ and an AJGaAS layer 3j,
n-type and p-type AlyGa1-yAEiMIJJ, jj'
t' narrowed CTaAB/Alx Gap −: t
It has a structure in which three As multiple quantum well layers are stacked.

結晶成長はMBEあるいはN0VPKなどの方法で一貫
して行う。
Crystal growth is consistently performed using methods such as MBE or N0VPK.

A1組成yは比較的小さい値(例えばy−O,/j)と
し、Xは使用する波長に応じて決定する。
The A1 composition y is set to a relatively small value (for example, y-O, /j), and X is determined depending on the wavelength used.

さらにフォトリングラフィな用いて上面WIK多数の円
柱状の突起3otを間隔をおいて配列形成するとともに
、下面側には上記各突起JO/に対応させて円柱状凹部
μ2を形成しである。さらに突起30/上面には、中央
部に光の入射窩3tを設けたAu電極37を蒸着し、基
板300の裏面にもAu系合金電極3jを蒸着する。
Further, a large number of cylindrical protrusions 3ot are arranged at intervals on the upper surface WIK using photolithography, and cylindrical recesses μ2 are formed on the lower surface side in correspondence with the respective protrusions JO/. Furthermore, an Au electrode 37 having a light entrance hole 3t in the center is deposited on the upper surface of the projection 30, and an Au-based alloy electrode 3j is also deposited on the back surface of the substrate 300.

そして上面側の突起30/間の凹部には、ボリイミyな
どの樹脂充填材3りを充填して素子表面を平坦化し、そ
の表面上に導電#ダOを付着させる。この基板300は
、第3図に示すように四辺形の一辺をレンズダの径より
も長くシ、その端部に導電端子μlを設ける。
Then, the concave portions between the projections 30 on the upper surface side are filled with a resin filler 3 such as Boliimi Y to flatten the element surface, and a conductive #daO is deposited on the surface. As shown in FIG. 3, this substrate 300 has a rectangular shape with one side longer than the diameter of the lens, and a conductive terminal μl is provided at the end thereof.

半導体レーザlは後述するように波長を選定し、これを
コリメートレンズコの端面中央に接着する。
The wavelength of the semiconductor laser l is selected as will be described later, and it is bonded to the center of the end face of the collimating lens.

一方、光シャッタアレイ3は光偏向用リング[の端面の
中心を通る直線上に、中心に対して対称になるように接
着する。
On the other hand, the optical shutter array 3 is adhered on a straight line passing through the center of the end surface of the optical deflection ring so as to be symmetrical with respect to the center.

さらにこれを反射防止膜りを設けたコリメートレンズ2
の出射側端面に固着する。
Furthermore, this is collimated lens 2 with an anti-reflection coating.
It is fixed to the end face of the output side.

この素子を、光出射用窓7をもったパッケージ10に納
めて光走査モジュールとする。
This element is housed in a package 10 having a light exit window 7 to form an optical scanning module.

次に、半導体超格子を用いた光シャッタ3の動作原理に
ついて説明する。なおこのような光シャッタの原理ニツ
イては、例えばPhysical ReviewB 3
2巻/ 0113頁(15’J’j年)のり、 A、 
B、 Miller他による論文に詳細に説明されてい
る。前述の多重量子井戸層3ダを狭んだpin構造に逆
バイアスを印加する。このときp層、n層を高キャリア
濃度にしておくと、印加電界はほとんど全て多重量子井
戸層3μにかかる。量子井戸の光吸収端付近の光吸収特
性は室温で第弘図のように電界により変化する(量子と
じ込めシュタルク効果)。
Next, the operating principle of the optical shutter 3 using a semiconductor superlattice will be explained. The principle of such an optical shutter is described in, for example, Physical Review B 3.
Volume 2/page 0113 (15'J'j) Nori, A,
B, is explained in detail in the paper by Miller et al. A reverse bias is applied to the pin structure in which the multi-quantum well layer 3 is narrowed. At this time, if the p-layer and n-layer are made to have a high carrier concentration, almost all of the applied electric field is applied to the multiple quantum well layer 3μ. The optical absorption characteristics near the optical absorption edge of a quantum well change depending on the electric field at room temperature, as shown in Figure 1 (quantum confinement Stark effect).

従って図中破線で示した波長の光を用いれば、この光の
透過率は印加電界によって制御できる。
Therefore, by using light having the wavelength shown by the broken line in the figure, the transmittance of this light can be controlled by the applied electric field.

アレイ状の各素子への電圧印加を独立に制御すれば、光
シャッタアレイとして動作させることができる。
By independently controlling the voltage application to each element in the array, it can be operated as an optical shutter array.

次に光偏向素子としての動作を説明する。Next, the operation as a light deflection element will be explained.

屈折率分布型レンズの光線方程式は次式で与えI−−−
−m−− またrl、r3は第!図に示したようにレンズへの光の
入射位置、レンズ出射端面からLの1離にある受光面上
に光の到達する位置であり、φ1.φ3はそれぞれの位
置での光線の角度(ラジアン)である。
The ray equation of a gradient index lens is given by the following equation: I---
-m-- Again, rl and r3 are the th! As shown in the figure, the incident position of the light into the lens is the position where the light reaches the light receiving surface located 1 distance L from the lens output end surface, and φ1. φ3 is the angle (radian) of the ray at each position.

また2はレンズ長である。Further, 2 is the lens length.

いまZ−O,,2tp(1)−,2π/□)のレンズを
採用すると、(1)式は簡単化され、 となる。この式から明らかなように、出射ビームの角度
φ3は入射光の位置r1に比例して変化する。したがっ
て−状態の光シャッタの位置の変化に対応して出射光が
偏向される。
Now, if a lens of Z-O,, 2tp(1)-, 2π/□) is adopted, equation (1) is simplified and becomes the following. As is clear from this equation, the angle φ3 of the emitted beam changes in proportion to the position r1 of the incident light. Therefore, the emitted light is deflected in response to a change in the position of the optical shutter in the - state.

偏向用レンズ≠として直径aO−/ax+g、 Z−m
O,λjp。
Diameter aO-/ax+g, Z-m as deflection lens ≠
O, λjp.

Vτ−に+、5mm−1.n□−/、j6のものを採用
すると、rlとφ3の関係は第6図のようになり、かな
り大きな偏向角が得られる。
+5mm-1 to Vτ-. If n□-/, j6 is adopted, the relationship between rl and φ3 becomes as shown in FIG. 6, and a considerably large deflection angle can be obtained.

上記のように偏向用レンズμの直径doを7ms程度と
すると、シャッタアレイの/チップ当りの要素数は10
素子程度以下とするのが製作が容易である。したがって
/モジュール当りの偏向点数は少なく、これを多くする
ためにはモジュールを複数配列する。
As mentioned above, if the diameter do of the deflection lens μ is about 7 ms, the number of elements per chip in the shutter array is 10.
Manufacturing is easier if the size is smaller than that of an element. Therefore, the number of deflection points per module is small, and in order to increase this number, a plurality of modules are arranged.

lチップ上のシャッタアレイの両端間の距離をdとする
と、これは受光面上では(2)式より、D−LnOv′
Tdl 拡大される。ただしL>>//nov’Tにとると>>
d’となる。前述vI値例ではn□VT−0,7J’ニ
ー1である。
If the distance between both ends of the shutter array on the l chip is d, then on the light receiving surface it is D-LnOv' from equation (2).
Tdl will be expanded. However, if we take L>>//nov'T>>
It becomes d'. In the vI value example mentioned above, n□VT-0, 7J' knee 1.

第7図のように、このとき偏向用レンズ弘それぞれの間
にD−dQの厚みのスペーサ12を挟んで配列すれば、
受光面j上で連続的に任意の偏向点数だけ走査が可能で
ある。ただし第7図ではモジュールの偏向用レンズ≠以
外の部分は図示を省略している。
As shown in FIG. 7, if spacers 12 with a thickness of D-dQ are placed between each of the deflection lenses, then
It is possible to continuously scan an arbitrary number of deflection points on the light receiving surface j. However, in FIG. 7, the parts other than the deflecting lens of the module are omitted.

以上本発明を一実施例について説明したが、本発明は上
記実施例以外に種々変更可能であることは言うまでもな
い。
Although the present invention has been described above with reference to one embodiment, it goes without saying that the present invention can be modified in various ways other than the above embodiment.

例えば、発光素子/として半導体レーザを用いたが、L
EDなど他の発光素子であってもよい。
For example, although a semiconductor laser was used as a light emitting element/
Other light emitting elements such as ED may also be used.

また使用する波長も量子井戸層であるGaAs Jul
にAIを加え、その組成を制御することによっである稈
度変化させることができる。さらにInGaAsP /
 InP系量子井戸を用いればへJ〜/、jμm帯でも
使用できる。ただし発光素子の波長はそれに応じて変え
る必要がある。また前述実施例では、光シャッタアレイ
3として量子井戸の量子とじ込めシェタルク効果を利用
したものを使用したが、屈折率分布型円柱レンズの直径
の長さの範囲に複数個の要素が形成可能であれば、フラ
ンツ−ケルデイツシュ効果など他の原理を利用したもの
でもよい。
Also, the wavelength used is GaAs Jul, which is a quantum well layer.
By adding AI to and controlling its composition, the culm can be changed to a certain degree. Furthermore, InGaAsP/
If an InP-based quantum well is used, it can also be used in the ~J~/jμm band. However, the wavelength of the light emitting element needs to be changed accordingly. Furthermore, in the above embodiment, an optical shutter array 3 that utilizes the quantum confinement Shetarck effect of a quantum well was used, but it is possible to form a plurality of elements within the length range of the diameter of the gradient index cylindrical lens. If available, other principles such as the Franz-Kjeldetsch effect may be used.

またレンズの直径をさらに大きなものとし、より大きな
要素数の光シャッタアレイと組み合せてもよい。さらに
、レンズ長2は0.2!p 以下であってもよい。
Furthermore, the lens may have a larger diameter and be combined with an optical shutter array having a larger number of elements. Furthermore, lens length 2 is 0.2! It may be less than p.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光走査モジュールを半導体発光素子、
屈折率分布型円柱レンズ、光シャッタアレイから構成し
たので、耐久性があり、高速で且つ高精度の光走査がで
きる小型の光走査モジュールが得られ、偏向点数を大き
くしても消費ヱカが少ないという効果がある。
According to the present invention, the optical scanning module includes a semiconductor light emitting device,
Since it is composed of a gradient index cylindrical lens and an optical shutter array, a compact optical scanning module that is durable, capable of high-speed and highly accurate optical scanning is obtained, and consumes less energy even when the number of deflection points is increased. It has the effect of being small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面断面図、第2図は
第1図の光走査モジュールの光シャッタアレイの構造例
を示す側断面図、第3図は第1図の光走査モジエールの
A−AilJに沿う断面正面図、第eHは光シャッタア
レイに使用したGaAs/AA’GaAS量子井戸の光
吸収スペクトルの印加電圧依存性を示すグラフ、第5図
は屈折率分布型円柱レンズ中を進行する光線の軌跡を示
す側断面図、第を図は偏向用レンズの偏向特性の例を示
すグラフ、第7図は光走査モジュールのアレイを示す概
略側断面図、第r図は従来の光偏向式の光走査方法を示
す概°念図、第り図は従来の光源アレイによる光走査方
法を示す概念図である。 l・・・・・・半導体発光素子 2・・・・・・フリメ
ートレンズ3・・・・・・光シャッタアレイ 帽・・・・・光偏向用円柱レンズ !・・・・・・受光面 6・・・・・・光ビーム7・・
・・・・光出射用窓 ?・・・・・・反射防止膜IO・
・・・・・パッケージ 32 、 j j −−Aly
Ga1− yA8層 34!・・・・・・多重量子井戸
層 36・・・・・・光入射窓37・・・・・・電極 第4図 光のエネルギー (eV) 第5図 第6図 r+(mm) 第7図 第 8 図 (従来例) 咽 手続補正書 昭和62年//月19日 / 事件の表示/2−ンダo373 特公昭  −号 2 発明の名称 光走査モジュール 3 補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市東区道修町4丁目8番地名 称 
(<1oo) 日本板硝子株式会社代表者  刺 賀 
信 雄 Z代理人 7 補正の内容 (1)明細書簡j頁第1弘行ないし第1!行に、「Ga
AS層3/と1GaAs層3jとから蔽る基板300上
に」とあるのを、 「GaAS結晶基iI!1.3/上にA IGaA s
層3!を形成し、さらにその上に」 と補正する。 (21明細書第6頁第3行ないし第μ行に、「対応させ
て円柱状」とあるのを、 「対応させてAlGaAs層35に達する円柱状」と補
正する。 (3)明細、書箱6貞第1/行に[基板300Jとある
のを、「基板3/」 と補正する。 (4)明細書箱r−自第j行に r n frl −n□ (/−A/2r2 ) Jと
あるのを、[n(rl−n□(/−Ar2/J )Jと
補正する。 (5)明細書第1O貞第7行及び第2行にrd’Jとあ
るのを「dJと補正する。 (6)図面中筒2図を刷新の通り(参照番号300の削
除)補正する。
FIG. 1 is a plan sectional view showing one embodiment of the present invention, FIG. 2 is a side sectional view showing an example of the structure of the optical shutter array of the optical scanning module shown in FIG. 1, and FIG. A cross-sectional front view taken along A-AilJ of Mosier, No. eH is a graph showing the applied voltage dependence of the light absorption spectrum of the GaAs/AA'GaAS quantum well used in the optical shutter array, and No. 5 is a gradient index cylindrical lens. Fig. 7 is a graph showing an example of the deflection characteristics of a deflection lens; Fig. 7 is a schematic side sectional view showing an array of optical scanning modules; Fig. r is a conventional one. FIG. 1 is a conceptual diagram showing a light deflection type optical scanning method; FIG. 2 is a conceptual diagram showing a conventional optical scanning method using a light source array. l...Semiconductor light emitting element 2...Flimate lens 3...Light shutter array cap...Cylindrical lens for light deflection! ... Light receiving surface 6 ... Light beam 7 ...
...Light exit window?・・・・・・Anti-reflection film IO・
...Package 32, j j --Aly
Ga1-yA8 layer 34! ...Multi-quantum well layer 36...Light entrance window 37...Electrode Fig. 4 Light energy (eV) Fig. 5 Fig. 6 r+ (mm) Fig. 7 Fig. 8 (Conventional example) Written amendment to the legal proceedings dated 1980//Month 19/ Showa of the case/2-nda o373 Special Publication Sho-No. 2 Name of the invention Optical scanning module 3 Person making the amendment Relationship with the case Patent application Address: 4-8 Doshomachi, Higashi-ku, Osaka City, Osaka Prefecture Name:
(<1oo) Nippon Sheet Glass Co., Ltd. Representative Saiga
Nobuyuki Z Agent 7 Contents of amendment (1) Specification letter page J No. 1 Hiroyuki to No. 1! In the line “Ga
``On the substrate 300 covering the AS layer 3/ and the 1GaAs layer 3j'' is replaced with ``On the GaAS crystal base iI!1.3/
Layer 3! , and further amend it by saying ``. (In the 3rd line to the μth line of page 6 of the 21 Specification, the phrase "corresponding columnar shape" is corrected to "corresponding columnar shape reaching the AlGaAs layer 35". (3) Specification, In box 6, 1st/line, [board 300J] is corrected to ``board 3/.'' ) J is corrected to [n(rl-n□(/-Ar2/J)J). (5) The text rd'J in the seventh and second lines of Part 1 of the specification is corrected as "rd'J". dJ. (6) Correct the second cylinder in the drawing as revised (reference number 300 deleted).

Claims (1)

【特許請求の範囲】[Claims] 半導体発光素子と、該発光素子の発する光を遮断、透過
切り換え可能な複数のシャッタ要素を平面的に配列した
光シャッタアレイと、この光シャッタアレイの後方に配
置した屈折率分布型円柱レンズとを少くとも1組備え、
前記シャッタ要素の選択的開閉切り換えで前記レンズへ
の光入射位置を変えることにより出射光ビームを偏向さ
せるようにした光走査モジュール。
A semiconductor light-emitting element, an optical shutter array in which a plurality of shutter elements capable of blocking and transmitting light emitted by the light-emitting element are arranged in a plane, and a gradient index cylindrical lens arranged behind the optical shutter array. Prepare at least one set,
An optical scanning module that deflects an emitted light beam by changing the position of light incidence on the lens by selectively opening and closing the shutter element.
JP62280373A 1987-11-06 1987-11-06 Photoscanning module Pending JPH01122463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280373A JPH01122463A (en) 1987-11-06 1987-11-06 Photoscanning module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280373A JPH01122463A (en) 1987-11-06 1987-11-06 Photoscanning module

Publications (1)

Publication Number Publication Date
JPH01122463A true JPH01122463A (en) 1989-05-15

Family

ID=17624108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280373A Pending JPH01122463A (en) 1987-11-06 1987-11-06 Photoscanning module

Country Status (1)

Country Link
JP (1) JPH01122463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133761A (en) * 1989-10-12 1991-06-06 Sumitomo Bakelite Co Ltd Carrier tape for semiconductor device
FR2682520A1 (en) * 1991-10-11 1993-04-16 Titra Film Sa PROCESS FOR SUBTITLING CINEMATOGRAPHIC FILMS
WO2003029011A1 (en) * 2001-09-28 2003-04-10 Nippon Sheet Glass Co.,Ltd. Resin lens array and optical writing head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133761A (en) * 1989-10-12 1991-06-06 Sumitomo Bakelite Co Ltd Carrier tape for semiconductor device
FR2682520A1 (en) * 1991-10-11 1993-04-16 Titra Film Sa PROCESS FOR SUBTITLING CINEMATOGRAPHIC FILMS
US5367348A (en) * 1991-10-11 1994-11-22 Titra Film Method of subtitling motion picture films
WO2003029011A1 (en) * 2001-09-28 2003-04-10 Nippon Sheet Glass Co.,Ltd. Resin lens array and optical writing head
US7187501B2 (en) 2001-09-28 2007-03-06 Nippon Sheet Glass Company, Limited Resin lens array and optical writing head

Similar Documents

Publication Publication Date Title
JP3212153B2 (en) Device for spot position control in optical output device using variable wavelength light source
US7285769B2 (en) Optical encoder with reduced reflected light error having a light non-transparent portion with inclined surfaces
JPH0634437A (en) Integrated nonlinear waveguide type spectrometer
US4730331A (en) Superluminescent LED source
EP0550095B1 (en) Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
JP2015162663A (en) laser device
US4767170A (en) Optical deflector device
US4638334A (en) Electro-optic line printer with super luminescent LED source
US5282219A (en) Semiconductor laser structure having a non-reflection film
JP3212152B2 (en) Spot position control method in optical output device using variable wavelength light source
JPH02179626A (en) Light wavelength converter
JPH01122463A (en) Photoscanning module
US5173915A (en) Semiconductor laser device
US4778991A (en) Light beam scanning read-out apparatus and recording apparatus
JPS58153388A (en) Monitoring method for semiconductor laser output beam
US4040722A (en) Light beam controller
JPH0680443B2 (en) Protected Luneburg lenses
US5208827A (en) Semiconductor laser device having a transparent waveguide and a large second harmonic generation output
JP2854672B2 (en) Optical scanning device
EP0486357A1 (en) Light beam deflector comprising a Bragg grating
JP2783806B2 (en) Optical output monitor
JPH06252489A (en) External resonator laser
US4480913A (en) Fine positioning beam director system
JPS63158887A (en) Semiconductor laser having optical deflection function
JPH05323404A (en) Optical wavelength conversion element