JPH01119735A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH01119735A
JPH01119735A JP62277444A JP27744487A JPH01119735A JP H01119735 A JPH01119735 A JP H01119735A JP 62277444 A JP62277444 A JP 62277444A JP 27744487 A JP27744487 A JP 27744487A JP H01119735 A JPH01119735 A JP H01119735A
Authority
JP
Japan
Prior art keywords
pair
pairs
fibers
fiber
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277444A
Other languages
Japanese (ja)
Inventor
Shigeru Matsui
繁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62277444A priority Critical patent/JPH01119735A/en
Publication of JPH01119735A publication Critical patent/JPH01119735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Integrated Circuits (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform stable measurement even under the environment such that the vibration is applied to a measuring meter, by dividing luminous flux to be measured into a pair of two luminous fluxes and respectively propagating both luminous fluxes through independent solid closed passages. CONSTITUTION:The luminous flux 2 to be measured emitted from a beam source 1 becomes parallel luminous flux 4 to be incident to an optical fiber bundle 5. The optical fiber bundle 5 is composed of (N) pairs of fiber pairs 6 each consisting of two fibers. One fiber 7 of each fiber pair has an equal beam path length (l) with respect to (N) pairs of fiber pairs 6 and the other fibers 8 are different at every pairs and the beam path length of one fiber of the n-th pair becomes l+(n-N/2)XDELTAl. By this constitution, there is beam path length difference of (n-N/2)XDELTAl between two fibers of the n-th pair and beam path difference is different by DELTAl between the n-th pair and the (n+1)-th pair. The beam from two fibers 7, 8 of each pair is again coupled by a beam coupler 9 to generate interference and detected by the corresponding pixel 11 of a unidimensional multichannel beam detector 10 composed of N-bit pixels. By this method, stable measurement can be performed even under the environ ment such that vibration is applied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は干渉計に係り、特に一次元または二次元のマル
チチャネル光検出器を干渉図形の検出部に用いる干渉計
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an interferometer, and more particularly to an interferometer that uses a one-dimensional or two-dimensional multichannel photodetector as an interferogram detection section.

〔従来の技術〕[Conventional technology]

従来の一次元または二次元のマルチチャネル光検知器を
干渉図計の検出部に用いる干渉計については、アプライ
ド・オプティックス、23,269(1984年)第2
69頁から第273頁(Appl・0ρt・23,26
9(1984)PP269−273) 、およびアプラ
イド・スペクトロスコピー、40,691(1986年
)第691頁から第695頁(Appl・5pecfr
osc・40,691 (1986) P P 691
−695)において論じられているように、ビームスプ
リッタ又は偏光プリズムによって被測定光束を2光束に
分割し、各光束が空間を伝播する間に各光束の断面内で
連続的に変化する光路差を発生させた後に結合させ、空
間上に形成された干渉図形を、一次元マルチチャネル検
知器で離散的にサンプリングするようになっていた。
Regarding interferometers that use conventional one-dimensional or two-dimensional multichannel photodetectors as the detection section of interferometers, see Applied Optics, 23, 269 (1984), No. 2.
From page 69 to page 273 (Appl・0ρt・23,26
9 (1984) PP269-273), and Applied Spectroscopy, 40, 691 (1986) pp. 691-695 (Appl.
osc・40,691 (1986) P P 691
-695), a beam splitter or a polarizing prism splits the measured beam into two beams, and the optical path difference that continuously changes within the cross section of each beam as it propagates through space is calculated. After generation, they were combined and the interferograms formed in space were sampled discretely using a one-dimensional multichannel detector.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、干渉計を構成する光学素子の配置が
振動や外力によって変化を受けた場合、2光束の断面内
における光路差の変化が正規の状態からずれる点につい
て配慮されておらず、振動が干渉計に加わる場合、安定
な測定ができない問題があった。
The above conventional technology does not take into account the fact that when the arrangement of the optical elements constituting the interferometer is changed due to vibration or external force, the change in the optical path difference in the cross section of the two light beams deviates from the normal state. When applied to the interferometer, there was a problem that stable measurements could not be made.

本発明の目的は、干渉計に振動が加わる環境下でも安定
に測定することのできる干渉計を提供することにある。
An object of the present invention is to provide an interferometer that can perform stable measurements even in an environment where vibrations are applied to the interferometer.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、被測定光束を複数の2光束の対に分割し、
各々を独立な固体閉路中を伝播させ、その間に各々の2
光束間に各2光束対毎に異なる光路差を生じさせること
によって達成される。
The above purpose is to divide the light flux to be measured into a plurality of pairs of two light fluxes,
Each is propagated through an independent solid circuit, while each 2
This is achieved by creating a different optical path difference between the light beams for each pair of two light beams.

〔作用〕[Effect]

本発明の干渉計の構成を第1図に示す。被測定光源1を
出た被測定光束2はコリメーター3によって平行光束4
となり、光フアイバー束5に入射する。この光フアイバ
ー束5は、各々2本のファイバーから成るN対のファイ
バ一対6から成る。
The configuration of the interferometer of the present invention is shown in FIG. The light beam 2 to be measured that exits the light source 1 to be measured is converted into a parallel light beam 4 by the collimator 3.
and enters the optical fiber bundle 5. The optical fiber bundle 5 consists of N pairs of fibers 6 each consisting of two fibers.

各ファイバ一対の一方のファイバー7はN対について全
て等しい光路長Qで、他方のファイバー8は6対で異な
り、n番目の対については光路長がQ+ (n−N、/
2)XΔQ となっている。これにより、n番目の対の2本のファイ
バー間には(n−N/2)XΔQだけの光路差があり、
n番目とn 41番目の対の間では光路差がΔQだけ異
なる。6対の2本のファイバー7゜8から出た光は光結
合器9で再結合されて干渉を起こし、Nビットの絵素か
ら成る一次元マルチチャネル光検知器1oの対応する絵
素11にて検出される。これにより一次元マルチチャネ
ル光検出器1oの出力として、被測定光束2によって生
じる干渉図形を光路差ΔQ毎にサンプリングした信号が
得られる。
One fiber 7 of each pair of fibers has the same optical path length Q for all N pairs, the other fiber 8 has different optical path lengths for 6 pairs, and the optical path length for the nth pair is Q+ (n-N, /
2) XΔQ. As a result, there is an optical path difference of (n-N/2)XΔQ between the two fibers of the n-th pair,
The optical path difference between the nth and n41st pairs differs by ΔQ. The light emitted from the six pairs of two fibers 7°8 is recombined by the optical coupler 9, causing interference, and is transmitted to the corresponding picture element 11 of the one-dimensional multichannel photodetector 1o consisting of N-bit picture elements. detected. As a result, a signal obtained by sampling the interference pattern generated by the measured light beam 2 for each optical path difference ΔQ is obtained as the output of the one-dimensional multichannel photodetector 1o.

この干渉計によれば、各ファイバ一対における光路差は
振動によって変化することが無いため、安定な測定を行
うことができる。
According to this interferometer, since the optical path difference between each pair of fibers does not change due to vibration, stable measurements can be performed.

また、前記の光フアイバー束のかわりに、第2図に示す
先導波路を用いることもできる。これは半導体等の基板
1上に透明材料から成る先導波路2を前記光ファイバー
東同様にN本設ける。各先導波路は光2分岐部3を有し
、この部分で2本の先導波路に分れ、光再結合部4で再
び1本の先導波路となる。この2分岐した部分の2本の
先導波路の間の光路長差を前記光ファイバー束同様N本
毎に異なるようにし、光再結合後、同一基板上に形成し
たNビットのフォトダイオード5にて検知する。この場
合にも、各ビット毎の光路差は振動によって変化するこ
とは無い。
Furthermore, instead of the optical fiber bundle described above, a guiding waveguide shown in FIG. 2 can also be used. In this case, N leading waveguides 2 made of a transparent material are provided on a substrate 1 made of a semiconductor or the like, similar to the optical fiber east described above. Each leading waveguide has an optical two-branching section 3, where it splits into two leading waveways, and becomes one leading wavepath again at an optical recombining section 4. The optical path length difference between the two leading waveguides of this two-branched portion is made to be different for each N optical fiber bundle as in the above-mentioned optical fiber bundle, and after optical recombination, it is detected by an N-bit photodiode 5 formed on the same substrate. do. In this case as well, the optical path difference for each bit does not change due to vibration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、干渉計に振動が加わる環境下でも安定
に測定することのできる干渉計を提供できる効果がある
According to the present invention, it is possible to provide an interferometer that can perform stable measurements even in an environment where vibrations are applied to the interferometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバーを用いた干渉計の構成図
、第2図は基板上に形成した先導波路及びフォトダイオ
ードアレイの構造図である。 1・・・被測定光源、2・・・被測定光束、3・・・コ
リメータ、4・・・平行光束、5・・・光フアイバー束
、6・・・光フアイバ一対、7及び8・・・光ファイバ
ー、9・・・光結合器、10・・・一次元マルチチャネ
ル光検出器、11・・・前記光検出器の一絵素、12・
・・基板、13・・・先導波路、14・・・光2分岐部
、15・・・光再結合部、16・・・フォトダイオード
FIG. 1 is a block diagram of an interferometer using an optical fiber according to the present invention, and FIG. 2 is a structural diagram of a leading waveguide and a photodiode array formed on a substrate. DESCRIPTION OF SYMBOLS 1... Light source to be measured, 2... Light flux to be measured, 3... Collimator, 4... Parallel light flux, 5... Optical fiber bundle, 6... Pair of optical fibers, 7 and 8... - Optical fiber, 9... Optical coupler, 10... One-dimensional multi-channel photodetector, 11... One pixel of the photodetector, 12.
. . . Substrate, 13 . . . Guide wave path, 14 . . . 2-light branching section, 15 . . .

Claims (1)

【特許請求の範囲】 1、一次元または二次元のマルチチャネル光検出器を干
渉図形検出部にもつ干渉計において、被測定光束を複数
の2光束の対に分割し、分割された各光束を独立な閉路
中を伝播させ、その間に各々の2光束間に各2光束の対
毎で異なる光路差を生じさせ、然る後、各2光束を再び
結合して干渉を起こさせ、一次元または二次元のマルチ
チャネル光検出器の各絵素に導いて検出するようにした
ことを特徴とする干渉計。 2、特許請求の範囲第1項において、複数に分割された
各2光束の伝播媒体として、光路長が互いに異なる一対
の光ファイバを用いることを特徴とする干渉計。 3、特許請求の範囲第1項において、複数に分割された
各2光束の伝播媒体として、半導体等の基板上に形成し
た光路長が互いに異なる一対の光導波路を用いることを
特徴とする干渉計。 4、特許請求の範囲第1項において、光導波路と同一基
板上に、マルチチャネル光検出器を形成させ、その各絵
素に光導波路を接続して検知することを特徴とする干渉
計。
[Claims] In an interferometer having a one-dimensional or two-dimensional multi-channel photodetector in an interferogram detection section, a beam to be measured is divided into a plurality of pairs of two beams, and each divided beam is divided into two pairs. The light beams are propagated through independent closed paths, during which a different optical path difference is created for each pair of two light beams, and then the two light beams are combined again to cause interference, resulting in one-dimensional or An interferometer characterized by detecting by guiding each picture element of a two-dimensional multichannel photodetector. 2. An interferometer according to claim 1, characterized in that a pair of optical fibers having different optical path lengths are used as propagation media for each of the two divided beams. 3. An interferometer according to claim 1, characterized in that a pair of optical waveguides formed on a substrate such as a semiconductor and having different optical path lengths are used as propagation media for each of the two divided beams. . 4. An interferometer according to claim 1, characterized in that a multichannel photodetector is formed on the same substrate as the optical waveguide, and the optical waveguide is connected to each picture element of the multichannel photodetector for detection.
JP62277444A 1987-11-04 1987-11-04 Interferometer Pending JPH01119735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277444A JPH01119735A (en) 1987-11-04 1987-11-04 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277444A JPH01119735A (en) 1987-11-04 1987-11-04 Interferometer

Publications (1)

Publication Number Publication Date
JPH01119735A true JPH01119735A (en) 1989-05-11

Family

ID=17583658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277444A Pending JPH01119735A (en) 1987-11-04 1987-11-04 Interferometer

Country Status (1)

Country Link
JP (1) JPH01119735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
US9127929B2 (en) 2007-09-14 2015-09-08 Leica Geosystems Ag Method and measuring device for gauging surfaces

Similar Documents

Publication Publication Date Title
CN101634571B (en) Optical pulse raster distributed fiber sensing device
US20050030544A1 (en) Parallel interferometric measurements using an expanded local oscillator signal
JP4241252B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
JPH01238297A (en) Optical fiber hydrophone and antenna connected to a series of hydrophones
US20140347659A1 (en) Stationary Waveguide Spectrum Analyser
JP2003322588A (en) Reflection type method and instrument for measuring brillouin spectrum distribution
JP2007132727A5 (en)
JP6094300B2 (en) White interference measurement method and white interference measurement apparatus
US7253906B2 (en) Polarization state frequency multiplexing
JP2605385B2 (en) Optical wavelength resolution measurement device
JP3339656B2 (en) Optical circuit evaluation method
JPH01119735A (en) Interferometer
JPH067071B2 (en) Optical spectrum measuring device
JP3063138B2 (en) Waveguide type wavelength measuring device
JP6585410B2 (en) Optical correlator
JPS6263833A (en) Method and instrument for measuring optical transmission loss
JPS59166873A (en) Optical applied voltage and electric field sensor
WO2022142966A1 (en) Wavelength measurement chip and wavelength measurement system
JPS6147533A (en) Method and apparatus for measuring group delay time difference of optical fiber
RU2036419C1 (en) Fibre-optical indicator of outside action
JP2004245731A (en) Photoelectric field sensor
JPH03100422A (en) Minimal displacement sensor
JPH02245622A (en) Polarization interference spectroscope
JP4770913B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
JPH02128126A (en) Light frequency encoder