JPH01119628A - Heat treatment method for stainless steel cold rolled strip - Google Patents

Heat treatment method for stainless steel cold rolled strip

Info

Publication number
JPH01119628A
JPH01119628A JP27345387A JP27345387A JPH01119628A JP H01119628 A JPH01119628 A JP H01119628A JP 27345387 A JP27345387 A JP 27345387A JP 27345387 A JP27345387 A JP 27345387A JP H01119628 A JPH01119628 A JP H01119628A
Authority
JP
Japan
Prior art keywords
stainless steel
steel strip
carbon
radiant heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27345387A
Other languages
Japanese (ja)
Other versions
JPH0629457B2 (en
Inventor
Shunichiro Abe
俊一郎 阿部
Kazumi Nishimura
和美 西村
Koji Goto
宏二 後藤
Takashi Shirai
白井 尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62273453A priority Critical patent/JPH0629457B2/en
Publication of JPH01119628A publication Critical patent/JPH01119628A/en
Publication of JPH0629457B2 publication Critical patent/JPH0629457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To drastically improve transmitting efficiency of radiant heat by coating surface of a stainless steel strip with carbon at upstream side of radiant heat heating zone at the time of mainly heating with the radiant heat to the stainless steel strip. CONSTITUTION:The stainless steel strip 1 is passed through a heat-treatment furnace 2 having the radiant heat heating zone for mainly heating with the radiant heat in the inner part while running to the arrow mark direction from the upstream side. Then, the position coated with the carbon is at the upstream side from the heating zone. As the method coating the stainless steel strip 1 with carbon, the stainless steel strip 1 is coated with the carbon generated by incomplete combustion of hydrocarbon gas, etc., with a burner setting near the running stainless steel strip 1. The stainless steel strip 1 coated with the carbon is heated at the prescribed temp. with the radiant heat during passing through the radiant heat heating zone in the heating furnace 2 for mainly heating with the radiant heat at downstream side to execute the annealing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス冷延鋼帯を主として輻射熱により
所定温度に加熱して行う焼鈍において、輻射熱の吸収効
率良く熱処理炉で加熱することのできるステンレス冷延
鋼帯の熱処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an annealing method in which cold-rolled stainless steel strip is heated to a predetermined temperature mainly by radiant heat, which can be heated in a heat treatment furnace with high absorption efficiency of radiant heat. The present invention relates to a method for heat treatment of cold-rolled stainless steel strip.

〔従来の技術〕[Conventional technology]

一般にステンレス冷延鋼帯の製造工程においては、圧延
によって起こる加工硬化による加工歪などを除去するた
めに焼鈍工程が酸洗工程を伴って組み込まれており、か
かる焼鈍にはカテナリー炉に代表される連続式加熱装置
が広く使用されている。
Generally, in the manufacturing process of cold-rolled stainless steel strip, an annealing process is incorporated together with a pickling process in order to remove work distortion caused by work hardening caused by rolling. Continuous heating devices are widely used.

このような連続式加熱装置は、安価な天然ガス。This kind of continuous heating equipment uses inexpensive natural gas.

軽油9重油等をバーナで燃焼させ、加熱された炉壁、バ
ーナフレーム更には高温の燃焼ガス自体からそれぞれ発
生する輻射熱が主となって鋼帯を加熱するものである。
Light oil, heavy oil, etc. is burned in a burner, and the steel strip is mainly heated by radiant heat generated from the heated furnace wall, burner frame, and even the high-temperature combustion gas itself.

このような連続式加熱装置において、ステンレス冷延鋼
帯(以下、ステンレス鋼帯と略記することがある)はそ
の良好な表面光沢のために熱線を反射するので輻射熱の
吸収効率が小さく、昇温に時間がかかつて加熱装置の熱
処理能力が低い、そこでステンレス鋼帯に対する熱処理
能力を向上させるための種々な技術が提案されてきた6
例えば、銅帯を予熱するための予熱部分(予熱帯)を設
ける技術として、廃ガスのみで鋼帯を加熱できる予熱帯
域を設けた銅帯連続焼鈍炉(特公昭52−26723号
)、予熱帯域として対流予熱帯と放射型予熱帯とを設け
た直火式連続熱処理炉(特公昭54−42804号)、
加熱帯入側から均熱帯出側までの間に誘導加熱炉を配し
た銅帯連続加熱方式(特開昭60−2634号)等が知
られている。その他に、炉長を長くしてそれだけ通板速
度を速めることも知られている。
In such continuous heating equipment, cold-rolled stainless steel strips (hereinafter sometimes abbreviated as stainless steel strips) reflect heat rays due to their good surface gloss, so the absorption efficiency of radiant heat is low, and the temperature rise is low. In the past, the heat treatment capacity of heating equipment was low, and various techniques have been proposed to improve the heat treatment capacity of stainless steel strips6.
For example, as a technology to provide a preheating section (preheating zone) for preheating the copper strip, there is a copper strip continuous annealing furnace (Japanese Patent Publication No. 52-26723) equipped with a preheating zone that can heat the steel strip using only waste gas, and a preheating zone. Direct-fired continuous heat treatment furnace equipped with a convection preheating zone and a radiant preheating zone (Special Publication No. 1984-42804),
A copper strip continuous heating method (Japanese Patent Application Laid-Open No. 60-2634), in which an induction heating furnace is arranged between the input side of the heating zone and the output side of the soaking zone, is known. In addition, it is also known that the length of the furnace can be increased to increase the threading speed accordingly.

また、熱処理炉の炉内雰囲気温度を可及的に高くする方
法も考えられるが、ステンレス鋼帯の焼鈍では熱処理温
度が750℃〜1100℃と可成り高いため、炉壁の耐
熱温度に素材からくる制約(通常1300℃程度まで)
があってそれ程の成果は得られない。
Another option is to raise the temperature of the atmosphere inside the heat treatment furnace as high as possible, but since the heat treatment temperature for annealing stainless steel strips is quite high, at 750°C to 1100°C, the (usually up to about 1300℃)
However, you won't get that much results.

これらの従来技術における廃ガスによる予熱や誘導加熱
はステンレス鋼帯の加熱全体に消費される熱量の一部を
通常燃料以外のものでまかなったことになるにすぎず、
炉長を長くする技術も含めて加熱ゾーンにおけるステン
レス鋼帯への輻射熱の吸収効率の向上には直接寄与して
いない欠点があった。
Preheating using waste gas and induction heating in these conventional techniques only cover a portion of the amount of heat consumed in heating the stainless steel strip using something other than normal fuel.
There were drawbacks, including the technology of increasing the length of the furnace, which did not directly contribute to improving the absorption efficiency of radiant heat to the stainless steel strip in the heating zone.

輻射熱の吸収効率の向上に寄与する従来技術としては、
本発明者らの一部がなした先の発明、すなわち加熱炉に
導入される前の銅帯を酸素富化雰囲気に維持した誘導加
熱炉に通板して銅帯表面に黒色の酸化スケール層を強制
的に形成させる方法(特開昭61−257430号)が
ある。この方法は輻射熱の吸収効率を可成りの程度に向
上させるが必ずしも充分ではなく高価な電力を使用する
ので不経済でもあり、その上、装置としても簡単でない
欠点があった。
Conventional technologies that contribute to improving the absorption efficiency of radiant heat include:
The previous invention made by some of the present inventors is that the copper strip is passed through an induction heating furnace maintained in an oxygen-enriched atmosphere before being introduced into the heating furnace, and a black oxide scale layer is formed on the surface of the copper strip. There is a method (Japanese Unexamined Patent Application Publication No. 257430/1983) in which the formation of . Although this method improves the absorption efficiency of radiant heat to a considerable extent, it is not always sufficient and is uneconomical because it uses expensive electric power.Furthermore, it has the disadvantage that the device is not simple.

また、表面光沢の良好なステンレス鋼帯の輻射熱吸収効
率を上げるためにステンレス鋼帯表面に黒色塗料を塗布
することも提案されたが、この方法はステンレス鋼帯表
面に塗料との化合物を生成させるために製品品質に悪い
影響を及ぼすという欠点があった。
It has also been proposed to apply black paint to the surface of the stainless steel strip in order to increase the radiant heat absorption efficiency of the stainless steel strip, which has a good surface gloss, but this method creates a compound with the paint on the surface of the stainless steel strip. Therefore, there was a drawback that it had a negative effect on product quality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来技術のような欠点のないステンレス
冷延鋼帯の熱処理方法の提供を目的とする。この目的を
達成するためには、如何番として簡単な方法でステンレ
ス鋼帯の表面を高い輻射熱吸収効率を有するように且つ
ステンレス鋼帯表面に悪い影響を残さないように構成す
るかについて解決困難な問題点があった。
The object of the present invention is to provide a method for heat treating cold rolled stainless steel strips that does not have the drawbacks of the prior art described above. In order to achieve this objective, it is difficult to solve the problem of how to configure the surface of the stainless steel strip in the simplest way to have high radiant heat absorption efficiency and not to leave any negative effects on the surface of the stainless steel strip. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題点を解決すべく鋭意研究の結果、
主として輻射熱により加熱する熱処理炉の輻射熱加熱ゾ
ーンより上流側で完全黒体に近い物質としてカーボンを
ステンレス鋼帯に付着させて被覆すれば、その輻射熱の
吸収効率が著しく向上すると共にステンレス鋼帯表面に
悪い影響を残さないことを究明して本発明を完成した。
As a result of intensive research by the present inventors to solve the above problems,
If a stainless steel strip is coated with carbon, which is a substance close to a completely black body, on the upstream side of the radiant heating zone of a heat treatment furnace that is heated mainly by radiant heat, the absorption efficiency of the radiant heat will be significantly improved, and the surface of the stainless steel strip will be coated with carbon. The present invention was completed by determining that it does not leave any negative effects.

すなわち本発明は、主として輻射熱により加熱する熱処
理炉にステンレス冷延鋼帯を通板して所定温度に加熱す
るに際し、該熱処理炉の輻射熱加熱ゾーンより上流側で
該ステンレス冷延鋼帯をカーボンで被覆してから加熱ゾ
ーンで加熱することを特徴するステンレス冷延鋼帯の熱
処理方法に関するものである。
That is, in the present invention, when passing a cold-rolled stainless steel strip through a heat treatment furnace that is heated mainly by radiant heat and heating it to a predetermined temperature, the cold-rolled stainless steel strip is coated with carbon on the upstream side of the radiant heat heating zone of the heat treatment furnace. The present invention relates to a heat treatment method for cold rolled stainless steel strip, which is characterized in that it is coated and then heated in a heating zone.

以下に本発明方法を図面により詳細に説明する。The method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明方法の実施に好適な連続熱処理装置の1
例の配置系統図、第2図はオーステナイト系ステンレス
冷延鋼帯そのままとカーボン被覆したものとを大気中で
各種温度に加熱した後の熱吸収率と鋼帯温度の関係を示
す比較図、第3図はカーボン被覆したオーステナイト系
ステンレス冷延鋼帯を各種温度に加熱した後の加熱温度
とカーボン被覆率との関係図である。
Figure 1 shows one of the continuous heat treatment apparatus suitable for carrying out the method of the present invention.
An example layout system diagram, Figure 2, is a comparison diagram showing the relationship between heat absorption rate and steel strip temperature after heating an austenitic stainless steel cold-rolled steel strip as it is and a carbon-coated one in the atmosphere to various temperatures. FIG. 3 is a diagram showing the relationship between heating temperature and carbon coverage after heating a carbon-coated austenitic stainless cold-rolled steel strip to various temperatures.

〔構成の説明〕[Explanation of configuration]

本発明の最も特徴とするところは、主として輻射熱によ
り加熱する熱処理炉の輻射熱加熱ゾーンよりも上流側で
ステンレス鋼帯をカーボンで被覆することにより、鋼帯
表面に均一な黒色被覆(カーボン被覆層)を強制的に形
成させ、引き続く加熱ゾーンでの輻射熱の吸収効率を良
くして昇温速度を速くした点にある。
The most distinctive feature of the present invention is that the stainless steel strip is coated with carbon on the upstream side of the radiant heat heating zone of the heat treatment furnace, which is heated mainly by radiant heat, thereby creating a uniform black coating (carbon coating layer) on the surface of the steel strip. The point is that the rate of temperature rise is increased by forcibly forming radiant heat in the subsequent heating zone to improve absorption efficiency of radiant heat.

第1図により説明すると、ステンレス鋼帯1は上流から
矢印方向に走行して来て内部に主として輻射熱により加
熱する輻射熱加熱ゾーンを有する熱処理炉2に通板され
る。このときカーボンで被覆される位置は加熱ゾーンよ
りも上流側であり。
To explain with reference to FIG. 1, a stainless steel strip 1 runs from upstream in the direction of the arrow and is passed through a heat treatment furnace 2 which has a radiant heating zone therein which is heated mainly by radiant heat. At this time, the position covered with carbon is on the upstream side of the heating zone.

例えば第1図に示すカーボン被覆装置3の設置位置の如
く熱処理炉2の上流側に隣接する位置でも良いし、熱処
理炉2の入口2aに続く炉内の輻射熱加熱ゾーンより上
流側の位置であっても良い、カーボンでステンレス鋼帯
1を被覆するには、走行しているステンレス鋼帯1の近
くに設置したバーナにより、炭化水素ガス、殊にカーボ
ン含有率が高く且つ燃焼性の良好な炭化水素ガスを空気
比(炭化水素ガス1に対する空気量) 0.01〜1で
不完全燃焼させることにより生成するカーボン(スス)
で被覆するのが良い。また、カーボン被覆装置3の出側
でカーボンのステンレス鋼帯被覆率(ステンレス鋼帯の
単位面積に対するカーボンにより被覆された面積の比率
)又は黒色度を例えば光沢針などで検出し、これをバー
ナ燃焼条件やステンレス鋼帯走行速度にフィードバック
して制御することもできる。
For example, the installation position of the carbon coating device 3 shown in FIG. 1 may be a position adjacent to the upstream side of the heat treatment furnace 2, or a position upstream of the radiant heat heating zone in the furnace following the inlet 2a of the heat treatment furnace 2. In order to coat the stainless steel strip 1 with carbon, which may be carried out, a burner installed near the running stainless steel strip 1 is used to coat the stainless steel strip 1 with hydrocarbon gas, especially carbonized gas with a high carbon content and good combustibility. Carbon (soot) produced by incomplete combustion of hydrogen gas at an air ratio (amount of air to 1 hydrocarbon gas) of 0.01 to 1.
It is better to cover it with In addition, the stainless steel strip coverage ratio of carbon (the ratio of the area covered by carbon to the unit area of the stainless steel strip) or the degree of blackness of carbon is detected at the outlet side of the carbon coating device 3 using a glossy needle, etc., and this is detected by the burner combustion. It can also be controlled by feeding back the conditions and the running speed of the stainless steel strip.

上記の如くカーボンで被覆されたステンレス鋼帯1はそ
の下流側の主として輻射熱により加熱する熱処理炉2の
輻射熱加熱ゾーンを通過する間に輻射熱により鋼帯温度
で普通750℃から1100℃までの温度範囲内の所定
温度に加熱されて焼鈍が行われるのである。
As mentioned above, while the stainless steel strip 1 coated with carbon passes through the radiant heat heating zone of the heat treatment furnace 2 on the downstream side, which is heated mainly by radiant heat, the steel strip temperature normally ranges from 750°C to 1100°C due to radiant heat. The annealing process is performed by heating the steel to a predetermined temperature.

〔発明の作用〕[Action of the invention]

一般に、主として輻射熱により加熱が行われる熱処理炉
においては、被熱処理物が吸収する輻射熱量は、その表
面放射率E (熱吸収率とも呼ばれる)及び炉内温度(
T工)と銅帯温度(T2)との差(TニーT2)に大き
く影響されることは、ステファンボルツマンの法則から
知られている。ところでステンレス鋼や普通鋼の冷延鋼
帯のεは通常0.2〜0.4程度であって比較的小さく
、またステンレス鋼に必要な高温熱処理と炉構築素材上
の制限とから(’rz−’ri)も大きくとれない。こ
こで本発明方法によれば、ステンレスt+q帯1が未だ
昇温していない状態においてはカーボン被覆装置3によ
りカーボンの微粒子をステンレス鋼帯1に付着させて表
面を被覆することが可能であって、しかもこのカーボン
の熱吸収率εが完全黒体のそれ(E=1)に近い0.9
5であることから、上記カーボン被覆された状態でのス
テンレス!帯1の熱吸収率従って輻射熱の吸収効率を従
来低かった低温のうちから格段に高めて、所定温度まで
の昇温時間を大幅に短縮するのである。その結果として
熱処理能力を大幅に向上させることができると共に熱処
理に必要な炉長を大幅に短くさせることがで曇るのであ
る。
Generally, in a heat treatment furnace where heating is performed mainly by radiant heat, the amount of radiant heat absorbed by the object to be heat treated is determined by its surface emissivity E (also called heat absorption rate) and the furnace temperature (
It is known from Stefan Boltzmann's law that the temperature is greatly influenced by the difference between the copper zone temperature (T2) and the copper zone temperature (T2). By the way, the ε of cold-rolled steel strips made of stainless steel or ordinary steel is usually about 0.2 to 0.4, which is relatively small. -'ri) cannot be made large. Here, according to the method of the present invention, when the temperature of the stainless steel t+q band 1 has not yet risen, it is possible to apply carbon fine particles to the stainless steel band 1 using the carbon coating device 3 to coat the surface thereof. , and the heat absorption coefficient ε of this carbon is 0.9, which is close to that of a perfect black body (E = 1).
5, so it is stainless steel in the above carbon coated state! The heat absorption rate and therefore the radiant heat absorption efficiency of the band 1 is significantly increased from a conventionally low low temperature, and the time required to raise the temperature to a predetermined temperature is significantly shortened. As a result, the heat treatment capacity can be greatly improved, and the furnace length required for heat treatment can be significantly shortened.

このようなことは第2図により裏付けされる。This fact is supported by Figure 2.

第2図はオーステナイト系ステンレス鋼冷延鋼帯をその
まま(カーボン被覆なし)か又はカーボン被覆をしてか
ら大気雰囲気中で各種温度に加熱した後、その熱吸収率
ξを測定してそれと銅帯温度との関係を示したものであ
る。カーボン被覆なしの場合(従来の熱処理方法におけ
るステンレス鋼帯の状態)は銅帯温度の低温側において
熱吸収率εが低い値となっているのに対し、カーボン被
覆のある場合は鋼帯温度の高低にかかわらず熱吸収率ε
は高い値を示している。この結果、カーボン被覆された
ステンレス鋼帯は、加熱ゾーンに導入されると同時にカ
ーボン被覆なしの場合の(1,4から最高)約2倍以上
の熱量を受熱する。従って、ステンレス鋼帯を所定温度
にまで加熱するのに最高約半分の時間で済むから、従来
の炉長を保てば通板速度を最高約2倍に高めて熱処理能
力を増大せしめることが出来、また炉長を従来の最高約
半分に短縮して設備費の削減を図ることが出来るのであ
る。
Figure 2 shows the heat absorption rate ξ of cold-rolled austenitic stainless steel strips that are heated as they are (without carbon coating) or coated with carbon and then heated to various temperatures in the atmosphere. This shows the relationship with temperature. In the case without carbon coating (the state of stainless steel strip in the conventional heat treatment method), the heat absorption rate ε is low at the low temperature side of the copper strip, whereas in the case of carbon coating, the heat absorption rate ε is low at the low temperature side of the steel strip. Heat absorption rate ε regardless of high or low
shows a high value. As a result, the carbon-coated stainless steel strip receives approximately twice the amount of heat (from 1.4 to maximum) as it is introduced into the heating zone, as it would without the carbon coating. Therefore, it takes at most about half the time to heat the stainless steel strip to the specified temperature, so if the conventional furnace length is maintained, the strip passing speed can be increased up to about twice and the heat treatment capacity can be increased. Furthermore, the length of the furnace can be shortened to about half of the conventional length, thereby reducing equipment costs.

一方、ステンレス鋼帯に付着されたカーボンは個体の状
態を呈している。そして、加熱ゾーンを通過中にステン
レス鋼帯と共に被覆していたカーボンも昇温するに従っ
て炉内で気化(CO□となる)してステンレス鋼帯の表
面から消散する。従って、加熱ゾーン通過後の銅帯表面
にはカーボンは既に付着しておらず、ステンレス鋼帯表
面への浸炭等の影響は全くない。また、前記カーボン被
覆はステンレス鋼帯が未だ加熱されていない低温側でバ
ーナ燃焼により積極的にカーボンを付着させて行うため
、ステンレス鋼帯表面に残存している油類や摩耗粉など
の付着物もカーボン付着層中に取り込むことができ、カ
ーボンの消散と共に付着物を容易に剥離し易くなってい
て後の工程で脱スケール処理した際に表面品質の良好な
製品を得ることができ1品質向上の点からも有益である
。カーボンのステンレス鋼帯被覆率は、第3図に示す如
く鋼帯温度が700℃〜800℃になると著しく低下す
る(第3図は被覆率100%にカーボン被覆したステン
レス鋼帯を各種温度に加熱した後の加熱温度とカーボン
被覆率との関係を示すものである)。熱処理炉内におい
てステンレス鋼帯の温度が未だ低くてそれ自体の熱吸収
率εが低い領域ではカーボンのステンレス鋼帯被覆率は
高くて熱吸収率εを高め、ステンレス鋼帯の温度が高く
なって所定温度(750〜l 、 100℃)になると
、カーボンの気化現象によりカーボンのステンレス鋼帯
被覆率が激減する。しかしこのような高温ではステンレ
ス鋼帯表面の酸化が進行しているため、第2図に示す如
く熱吸収率εは大きく低下しないのである6〔実施例及
び比較例〕 第1図の如く横型の熱処理炉2及びカーボン被覆装置3
が配置された連続熱処理装置を使用してオーステナイト
系ステンレス冷延鋼帯(SUS304) 1を熱処理し
た。カーボン被覆装置3は、バーナからの輝炎によるカ
ーボンのステンレス鋼帯表面への付着が均一となるよう
に配置した。熱処理炉2の炉内温度は800℃〜1,1
00℃に保った。
On the other hand, the carbon attached to the stainless steel strip is in a solid state. Then, as the temperature rises, the carbon that was coated with the stainless steel strip while passing through the heating zone vaporizes (becomes CO□) in the furnace and dissipates from the surface of the stainless steel strip. Therefore, no carbon is already attached to the surface of the copper strip after passing through the heating zone, and there is no effect of carburization or the like on the surface of the stainless steel strip. In addition, since the carbon coating is performed by actively depositing carbon by burner combustion at a low temperature side where the stainless steel strip has not yet been heated, deposits such as oil and abrasion powder remaining on the surface of the stainless steel strip may be removed. can also be incorporated into the carbon adhesion layer, and as the carbon dissipates, the adhesion can be easily peeled off, making it possible to obtain a product with good surface quality when descaling in the subsequent process, improving quality. It is also beneficial from this point of view. The carbon coverage of the stainless steel strip decreases significantly when the steel strip temperature reaches 700°C to 800°C, as shown in Figure 3. (This figure shows the relationship between the heating temperature and carbon coverage after heating.) In the heat treatment furnace, in the region where the temperature of the stainless steel strip is still low and its own heat absorption rate ε is low, the coverage of the stainless steel strip with carbon is high, increasing the heat absorption rate ε, and the temperature of the stainless steel strip becomes high. When the temperature reaches a predetermined temperature (750 to 100° C.), the carbon coverage of the stainless steel strip is drastically reduced due to the vaporization phenomenon of carbon. However, at such high temperatures, the oxidation of the stainless steel strip surface progresses, so the heat absorption rate ε does not decrease significantly as shown in Figure 2.6 [Example and Comparative Example] As shown in Figure 1, the horizontal type Heat treatment furnace 2 and carbon coating device 3
An austenitic stainless steel cold-rolled steel strip (SUS304) 1 was heat-treated using a continuous heat treatment apparatus equipped with the following. The carbon coating device 3 was arranged so that carbon was evenly attached to the surface of the stainless steel strip by the bright flame from the burner. The temperature inside the heat treatment furnace 2 is 800℃~1.1
The temperature was maintained at 00°C.

実施例 カーボン被覆装置3には炭化水素ガスとしてプロパンガ
スを使用し、空気比を0.1として不完全燃焼させなが
らステンレス鋼帯1を熱処理炉2に通板して炉出口で銅
帯温度が所定の800℃に昇温しでいるように加熱され
る最高通板速度を求めたところ15m/分であった。
Example Propane gas was used as the hydrocarbon gas in the carbon coating device 3, and the stainless steel strip 1 was passed through the heat treatment furnace 2 while incompletely combusted at an air ratio of 0.1, so that the temperature of the copper strip at the furnace outlet was increased. The maximum sheet passing speed at which the sheet was heated to a predetermined temperature of 800° C. was determined to be 15 m/min.

比較例 カーボン被覆装置3を作動させなかったこと以外は実施
例と同様に行ったところ、炉出口で鋼帯温度が上記同じ
800℃に昇温されているように加熱される最高通板速
度は9m/分であった。
Comparative Example The same procedure as in the example was carried out except that the carbon coating device 3 was not activated. The speed was 9m/min.

〔効果〕〔effect〕

本発明方法によれば、ステンレス鋼帯の主として輻射熱
による加熱処理に当って輻射熱加熱ゾーンの上流側でカ
ーボンによりその表面を被覆することにより、加熱ゾー
ンに入ったばかりの未だ低温のときからステンレス鋼帯
の熱吸収率を高め従って輻射熱の吸収効率を高めて高温
の所定温度までの昇温時間を短縮することが出来、そし
て高温ではカーボンは気化してしまってステンレス鋼帯
の表面に何ら影響も残すことがない、その結果、加熱処
理能力を大幅に向上させることができると共にランニン
グコストの低減を図ることができ、合わせて炉長を短く
してスペースの縮小化や設備費用の低減を図ることがで
きる。しかも前記カーボン被覆は、既存の装置を利用し
て極めて簡単に実施することができる。このような本発
明方法は。
According to the method of the present invention, when the stainless steel strip is heated mainly by radiant heat, the surface of the stainless steel strip is coated with carbon on the upstream side of the radiant heat heating zone. This increases the heat absorption rate of the stainless steel strip, thus increasing the absorption efficiency of radiant heat and shortening the heating time to a specified high temperature.At high temperatures, carbon vaporizes and leaves no effect on the surface of the stainless steel strip. As a result, it is possible to significantly improve heat treatment capacity and reduce running costs.In addition, the length of the furnace can be shortened to reduce space and equipment costs. can. Moreover, the carbon coating can be carried out extremely easily using existing equipment. This method of the present invention is as follows.

従来のステンレス鋼帯連続加熱方法にはない効果を発揮
することができる画期的な方法であり、その工業的価値
は非常に大きなものがある。
This is an epoch-making method that can exhibit effects not found in conventional continuous heating methods for stainless steel strips, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に適当な連続熱処理装置の1
例の配置系統図、第2図はオーステナイト系ステンレス
冷延鋼帯そのままとカーボン被覆したものとを大気中で
各種温度に加熱した後の熱吸収率と鋼帯温度の関係を示
す比較図、第3図はカーボン被覆したオーステナイト系
ステンレス冷延鋼帯を各種温度に加熱した後の加熱温度
とカーボン被覆率との関係図である。 1・・・・鋼帯 2・・・・熱処理炉 2a・・・・入口 3・・・・カーボン被覆装置
Figure 1 shows one of the continuous heat treatment apparatus suitable for carrying out the method of the present invention.
An example layout system diagram, Figure 2, is a comparison diagram showing the relationship between heat absorption rate and steel strip temperature after heating an austenitic stainless steel cold-rolled steel strip as it is and a carbon-coated one in the atmosphere to various temperatures. FIG. 3 is a diagram showing the relationship between heating temperature and carbon coverage after heating a carbon-coated austenitic stainless cold-rolled steel strip to various temperatures. 1...Steel strip 2...Heat treatment furnace 2a...Inlet 3...Carbon coating device

Claims (1)

【特許請求の範囲】 1 主として輻射熱により加熱する熱処理炉にステンレ
ス冷延鋼帯を通板して所定温度に加熱するに際し、該熱
処理炉の輻射熱加熱ゾーンより上流側で該ステンレス冷
延鋼帯をカーボンで被覆してから加熱ゾーンで加熱する
ことを特徴するステンレス冷延鋼帯の熱処理方法。 2 ステンレス冷延鋼帯のカーボンによる被覆を、炭化
水素ガスを不完全燃焼させたバーナの輝炎により行う特
許請求の範囲第1項に記載のステンレス冷延鋼帯の熱処
理方法。
[Scope of Claims] 1. When passing a cold-rolled stainless steel strip through a heat treatment furnace that is heated mainly by radiant heat and heating it to a predetermined temperature, the cold-rolled stainless steel strip is passed upstream from the radiant heat heating zone of the heat treatment furnace. A heat treatment method for cold-rolled stainless steel strip, which is characterized by coating it with carbon and then heating it in a heating zone. 2. The heat treatment method for a cold-rolled stainless steel strip according to claim 1, wherein the cold-rolled stainless steel strip is coated with carbon using the bright flame of a burner that incompletely burns hydrocarbon gas.
JP62273453A 1987-10-30 1987-10-30 Heat treatment method for cold rolled stainless steel strip Expired - Lifetime JPH0629457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273453A JPH0629457B2 (en) 1987-10-30 1987-10-30 Heat treatment method for cold rolled stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273453A JPH0629457B2 (en) 1987-10-30 1987-10-30 Heat treatment method for cold rolled stainless steel strip

Publications (2)

Publication Number Publication Date
JPH01119628A true JPH01119628A (en) 1989-05-11
JPH0629457B2 JPH0629457B2 (en) 1994-04-20

Family

ID=17528125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273453A Expired - Lifetime JPH0629457B2 (en) 1987-10-30 1987-10-30 Heat treatment method for cold rolled stainless steel strip

Country Status (1)

Country Link
JP (1) JPH0629457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306354A (en) * 1991-07-10 1994-04-26 Nisshin Steel Co., Ltd. Method of blackening treating a stainless steel strip surface
CN111906142A (en) * 2020-06-24 2020-11-10 浙江博星工贸有限公司 Process for controlling mechanical property of cold-rolled stainless steel strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128529A (en) * 1979-03-28 1980-10-04 Nippon Steel Corp Method and apparatus for continuously annealing steel plate
JPS568092A (en) * 1979-06-29 1981-01-27 Pfaff Ind Masch Sewing machine with guide apparatus for sewn article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128529A (en) * 1979-03-28 1980-10-04 Nippon Steel Corp Method and apparatus for continuously annealing steel plate
JPS568092A (en) * 1979-06-29 1981-01-27 Pfaff Ind Masch Sewing machine with guide apparatus for sewn article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306354A (en) * 1991-07-10 1994-04-26 Nisshin Steel Co., Ltd. Method of blackening treating a stainless steel strip surface
US5360202A (en) * 1991-07-10 1994-11-01 Chugai Ro Co., Ltd. Blackening Treating furnace for treating stainless steel strip surface
CN111906142A (en) * 2020-06-24 2020-11-10 浙江博星工贸有限公司 Process for controlling mechanical property of cold-rolled stainless steel strip

Also Published As

Publication number Publication date
JPH0629457B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JP5268650B2 (en) Heat treatment method for steel strip in a continuous heat treatment furnace equipped with an oxy-fuel burner
US3109877A (en) Apparatus for modifying the composition of strip metal
CA3021015C (en) Method and furnace plant for heat treatment of metal strip
JP2003183799A (en) Method for hot-dip galvanizing metal strip made of high- tensile steel
JPH01119628A (en) Heat treatment method for stainless steel cold rolled strip
EP0233944B1 (en) Continuous strip steel processing line having direct firing furnace
JPS6056213B2 (en) Continuous annealing method and equipment for steel plates
JP2001294941A (en) Improvement of pre-heating of metal strip, particularly improvement of pre-heating on galvanizing or annealing of it
JP4636798B2 (en) Stainless steel processing method
CA1103569A (en) Preheat and cleaning system
JPS55110735A (en) Method and equipment for producing galvanized steel plate for deep drawing use
SU1525219A1 (en) Method of heat treatment of cold-deformed pipes of pearlitic steels
JPS63130718A (en) Continuous annealing method for steel strip
JPS58213820A (en) Heat treatment device
JPH0230720A (en) Method for heating steel sheet
JPS63157819A (en) Heat treatment of steel strip
JP2665431B2 (en) Vertical open flame heating furnace
JPH0466615A (en) Method for heat-treating steel material
Johnen et al. Method and arrangement for reduction annealing of iron powder
JPS55104432A (en) Continuous annealing treating method of cold rolled steel plate
KR850000348B1 (en) Process for continuously annealing a cold-rolled low carbon steel strip
Hu Continuous Annealing Technique of Tinning Black Plate
Adachi et al. Enhancing heat absorption in continuous annealing line for stainless steel
JPH0472023A (en) Direct firing type continuous annealing method for steel strip and apparatus thereof
JPS6254035A (en) Continuous heat treatment of steel strip