JPH01119611A - Production of metal powder - Google Patents

Production of metal powder

Info

Publication number
JPH01119611A
JPH01119611A JP62277889A JP27788987A JPH01119611A JP H01119611 A JPH01119611 A JP H01119611A JP 62277889 A JP62277889 A JP 62277889A JP 27788987 A JP27788987 A JP 27788987A JP H01119611 A JPH01119611 A JP H01119611A
Authority
JP
Japan
Prior art keywords
metal
powder
starting
metals
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277889A
Other languages
Japanese (ja)
Inventor
Tadayoshi Hikosaka
彦坂 忠義
Kenichi Shono
庄野 健一
Hiroshi Terakado
寺門 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP62277889A priority Critical patent/JPH01119611A/en
Publication of JPH01119611A publication Critical patent/JPH01119611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To inexpensively and easily produce costly metal powder by using inexpensive low melting point metals as a starting raw material, pulverizing the metals to fine powder and subjecting the same to substitution reaction from the surface part toward the core part of the fine powder metal by a product metal having a lower ionization tendency. CONSTITUTION:The low melting point metals (metallic Zn, Cd) as the starting metals 6 are loaded into a crucible 3 in an evaporating/cooling device A where the metals are heated and evaporated by a burner 4. The evaporated metal is introduced into a cooling vessel 1 to form spheroidal metal powder 5 having about 5mu average grain size. This powder is added to any of a copper sulfate soln., nickel sulfate soln., silver nitrate soln. or gold cyanide soln. to substitute at least the surface of the powder 5 with the metal product selected from copper, nickel, silver, or gold. The metal powder suitable for applications to printed circuits, conductive paints, etc., is thereby inexpensively and easily obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば印刷回路、導?it、塗料等の用途に
使用される極めて微細な球状粉の製造等によく適した金
属粉末の製造法に関し、出発原料として安価な金属を用
いてt粉をつくり、該微粉金属粒子の全部又は一部を溶
液中での置換処理により製造目的とする金属で表面部か
ら芯部に向かって置換せしめることを特徴とするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is applicable to, for example, printed circuits, conductors, etc. Regarding the manufacturing method of metal powder, which is well suited for the production of extremely fine spherical powder used in IT, paints, etc., T-powder is made using an inexpensive metal as a starting material, and all or It is characterized in that part of the metal is replaced with the metal to be produced from the surface toward the core by a substitution treatment in a solution.

(従来技術) 従来、金属粉を製造する方法としては、高圧流体で吹き
飛ばす噴霧法、遠心作用を利用して吹き飛ばす遠心法、
溶液を電気分解して製造する電解法等が知られている。
(Prior art) Conventionally, methods for manufacturing metal powder include a spray method in which it is blown away using high-pressure fluid, a centrifugal method in which it is blown out using centrifugal action,
Electrolytic methods are known, in which a solution is produced by electrolysis.

しかしながら、これらの製違法によっては粒径が微細な
ものは容易に得難く、また、微細な粉末粒子を球状のも
のとして得ることは更に困難であった。
However, due to these manufacturing irregularities, it has been difficult to easily obtain particles with fine particle sizes, and it has been even more difficult to obtain fine powder particles in the form of spheres.

一方、微細な球状粉を製造する方法として、高温で溶解
し、気化させた金属を別の装置内で冷却させながら球状
粉を回収する技術が知られている。
On the other hand, as a method for producing fine spherical powder, a technique is known in which the spherical powder is recovered while melting and vaporizing metal at high temperature is cooled in a separate device.

この方法は溶融状態の金属液滴が表面張力によって球形
を保っているのをすばやく急冷して固化する原理による
ものであるが、カドミウムや亜鉛のような低沸点金属の
微粉末をつくる場合以外は通常成功裏に利用できない、
すなわち、銅、ニッケル、銀、金などの金属の球状微粉
末をこの方法でつくることは極めて困難である。
This method is based on the principle that molten metal droplets, which maintain their spherical shape due to surface tension, are quickly quenched and solidified. usually cannot be used successfully,
That is, it is extremely difficult to produce spherical fine powder of metals such as copper, nickel, silver, and gold using this method.

(発明が解決しようとする問題点) 上記のことに加えて、上述の従来方法によって製造され
る金属粉末は、出発原料として用いた金属そのものの粉
末であるから高価な金属を原料とするときは当然コスト
上高くつく欠点を有していた。
(Problems to be Solved by the Invention) In addition to the above, the metal powder produced by the conventional method described above is powder of the metal itself used as the starting material, so when using expensive metal as the raw material, Naturally, it had the disadvantage of being expensive.

これに関し、本発明者等は次のことに着目した。In this regard, the present inventors paid attention to the following points.

印刷回路や導電塗料等の用途に用いられる金属粉末の場
合においては、各金属粒子の表面のみが使用目的に適し
た金属特性を示すものであれば使用目的を達するが、従
来これらの目的に用いられてきた銅粉、ニッケル粉、銀
粉、又は金粉の何れもが、完全なるその金属自体の粉末
であった。
In the case of metal powders used for applications such as printed circuits and conductive paints, the purpose of use is achieved if only the surface of each metal particle exhibits metallic properties suitable for the purpose of use. The copper powder, nickel powder, silver powder, and gold powder that have been produced are all powders of the metal itself.

本発明の目的は、安価な原料を用いて前駆体的金属粉末
をつくり、その金属粒子の少なくとも表面を、あるいは
芯部までのすべてを目的金属で置換させることによって
高価な金属の粉末を比較的安価にしかも容易に微粉や球
状粉の形で得ることを目的とするものである。
The object of the present invention is to produce precursor metal powder using inexpensive raw materials, and replace at least the surface or all of the metal particles up to the core with the target metal, thereby replacing relatively expensive metal powder. The purpose is to obtain it inexpensively and easily in the form of fine powder or spherical powder.

(問題点を解決するための手段) すなわち本発明者等は前記印刷回路や導電塗料用として
例えば銅粉を用いる場合、粒子表面が完全な銅であって
他の不純物を含まなければ、本来の使用目的が達成され
ることに着目した。
(Means for solving the problem) In other words, the present inventors believe that when copper powder is used for the printed circuit or conductive paint, if the particle surface is completely copper and does not contain any other impurities, the original We focused on achieving the purpose of use.

すな、わち金属粒子の芯部は他の金属であってもこれら
の用途においては何ら問題を生じないので、出発原料と
しては安価な金属で且つ微細な球状粉として得やすいも
のを用い、得られた金属粉の表面だけを均一に目的金属
で置換させることにより充分にその使用目的を達し得る
金属粉末が得られることを見い出した。
In other words, even if the core of the metal particles is other metal, it will not cause any problem in these applications, so the starting material is an inexpensive metal that is easily obtained as a fine spherical powder. It has been found that by uniformly substituting only the surface of the obtained metal powder with the target metal, a metal powder that can satisfactorily achieve its intended use can be obtained.

更に、本発明者等は種々実験を重ねた結果、安価な金属
としての亜鉛、カドミウム等は、本発明で粒子の表面部
を置換する目的に使用するニッケル、銅、銀、金などの
金属との間にイオン化傾向の大きさに適度な差があるた
め、適正条件の下で置換反応を行わせることによりすべ
ての粒子の形状及びサイズが所望の一定範囲内にある目
的金属の金属粉を比較的容易に得る事が出来ることも同
様に見い出した。
Furthermore, as a result of various experiments, the present inventors have found that zinc, cadmium, etc., which are inexpensive metals, are different from metals such as nickel, copper, silver, and gold used for the purpose of replacing the surface portion of particles in the present invention. Since there is a moderate difference in the size of the ionization tendency between the two, it is possible to compare the metal powders of the target metal whose shape and size are within the desired range by performing a substitution reaction under appropriate conditions. It was also found that the target can be easily obtained.

本発明の方法は、通常、微粉(極微粉を含む)あるいは
球状粉あるいは球状微粉(球状極微粉を含む)の形態の
粉末をつくり難い金属から、それらの形態の金属粉末を
つくる目的に特に好適であり、比較的容易にその目的を
達成することができる。
The method of the present invention is particularly suitable for producing metal powder in the form of fine powder (including ultrafine powder), spherical powder, or spherical fine powder (including spherical ultrafine powder) from metals that are normally difficult to produce. This goal can be achieved relatively easily.

(作用) 本明細書で例示する出発金属としての低沸点金属は、亜
鉛(沸点930℃)及びカドミウム(沸点767℃)で
あるが、発明の原理上低沸点(iooo°C以下)で且
つ被覆金属よりもイオン化傾向の高い金属であるならば
他の金属であっても当然使用出来る。
(Function) The low boiling point metals as starting metals exemplified in this specification are zinc (boiling point 930°C) and cadmium (boiling point 767°C); Of course, other metals can also be used as long as they have a higher ionization tendency than metals.

低沸点金属の蒸発−冷却により第1次粉末を得る目的に
は例えば第1図に示す装置を用いることができる。実験
では、この方法により約5μmの球状粉末を得ることが
出来た。
For the purpose of obtaining a primary powder by evaporating and cooling a low boiling point metal, the apparatus shown in FIG. 1, for example, can be used. In experiments, it was possible to obtain spherical powder with a diameter of about 5 μm using this method.

一方、本発明者等は前記印刷回路や導電塗料等に用いる
銅粉、ニッケル粉、銀粉、金粉等の粒径としては約30
μm以下であれば充分に使用目的を達することを確認し
ている。
On the other hand, the present inventors have determined that the particle size of copper powder, nickel powder, silver powder, gold powder, etc. used for the printed circuits, conductive paints, etc. is approximately 30
It has been confirmed that if it is less than μm, it can sufficiently achieve the purpose of use.

従って上述の亜鉛またはカドミウムを出発原料金属(以
下単に「出発金属」という)として用い、まず目的の粒
度および形態を有する出発金属の粉末をつくり、次に目
的とする製品金属で少なくとも粒子の表面を置換させる
ことにより、最初に得られた亜鉛またはカドミウムの粉
末の粒子サイズ(実験では約5μm)の大きさと実質的
に同じ大きさの充分に使用できる目的金属の粉末を容易
に得ることができる。
Therefore, using the above-mentioned zinc or cadmium as a starting material metal (hereinafter simply referred to as "starting metal"), first make a starting metal powder having the desired particle size and morphology, and then coat at least the surface of the particles with the desired product metal. By substitution, it is possible to easily obtain a sufficiently usable target metal powder having a particle size substantially the same as that of the initially obtained zinc or cadmium powder (approximately 5 μm in experiments).

この場合、置換反応は出発金属である亜鉛又はカドミウ
ムの粒子の外面から内面へと目的金属によって置換され
ることとなる。置換させる程度を全部とするか又は一部
とするかは反応時間および撹拌条件によってコントロー
ルすることができる。
In this case, the substitution reaction results in substitution of the target metal from the outer surface to the inner surface of the starting metal particles of zinc or cadmium. Whether the degree of substitution is complete or partial can be controlled by the reaction time and stirring conditions.

(実施例) 以下、本発明にかかる金属粉の製造法について実施例に
より説明する。
(Example) Hereinafter, the method for producing metal powder according to the present invention will be explained with reference to Examples.

(実施例1) 金属亜鉛(99,99%)を出発金属として第1図発 に示す蒸スー冷却装MA内のルツボ3に装入し、プロパ
ンバーナー4にて902℃以上に加熱して発生させた亜
鉛蒸気を冷却缶1内に導き、凝固作用を利用して平均粒
径的5μmの球状亜鉛粉末5を得た。次いでこれ等の亜
鉛粉末を、5%il!!2銅溶液に添加して、液温20
℃にて、ビーカー底部に沈積が生じない程度の低速撹拌
で約10分間撹拌を行った。
(Example 1) Metallic zinc (99.99%) was used as a starting metal and charged into the crucible 3 in the steam cooling device MA shown in Figure 1, and heated to 902°C or higher with a propane burner 4. The zinc vapor thus produced was introduced into the cooling tank 1, and spherical zinc powder 5 with an average particle size of 5 μm was obtained by utilizing the coagulation effect. Then these zinc powders were added at 5% il! ! 2 Add to the copper solution and bring the solution temperature to 20
Stirring was carried out at a temperature of about 10 minutes at a low speed that did not cause sedimentation at the bottom of the beaker.

このようにして得られた表面被覆金属粉を純水で洗浄し
て脱水後、乾燥したものをエレクトロン・プローブ・マ
イクロアナライザーで調べたところ、亜鈴粉末の表面は
銅によって一様に置換されており製品は外見上鋼の微粉
末と区別できないものになっていた。
The surface-coated metal powder obtained in this way was washed with pure water, dehydrated, and then dried and examined using an electron probe microanalyzer. It was found that the surface of the dumbbell powder was uniformly replaced by copper. The product was visually indistinguishable from fine steel powder.

次いで球状粉の粒径を測定したところ、粒径の変化もほ
とんど見られず平均粒径は約5umであった。
Next, when the particle size of the spherical powder was measured, almost no change in particle size was observed, and the average particle size was about 5 um.

(実施例2) 置換条件として液温30℃、撹拌時間30分としたこと
以外は実施例1と同じ条件で亜鉛粉末のWIW換処理を
行った。得られた置換銅粉を洗浄、乾燥後分析したとこ
ろ、亜鉛は検出されず、粉末各位子は全都銀で完全に置
換されたことが確認された。この場合においても、得ら
れた銅粉の平均粒径は約5μmで置換前の亜鉛末粒子に
比し変化が無いことがわかった。
(Example 2) Zinc powder was subjected to WIW exchange treatment under the same conditions as in Example 1 except that the exchange conditions were a liquid temperature of 30° C. and a stirring time of 30 minutes. When the obtained substituted copper powder was washed, dried, and analyzed, no zinc was detected, and it was confirmed that each element in the powder was completely replaced with Zentogin. In this case as well, it was found that the average particle size of the obtained copper powder was approximately 5 μm, which was not changed compared to the zinc dust particles before substitution.

(実施例3) 金属カドミウム(99,99%)を出発金属として第1
図に示す蒸発−冷却装置A内のルツボ3に装入し、プロ
パンバーナー4にて750℃以上に所定時間加熱して発
生したカドミウム蒸気を冷却缶1内に導き、カドミウム
蒸気を凝固させて平均粒径的5μmの球状カドミウム粉
末5を得た。
(Example 3) Using metallic cadmium (99,99%) as a starting metal, the first
The cadmium vapor is charged into the crucible 3 in the evaporation-cooling device A shown in the figure and heated to 750°C or higher for a predetermined period of time using a propane burner 4, and the generated cadmium vapor is guided into the cooling can 1, where the cadmium vapor is solidified and averaged. Spherical cadmium powder 5 having a particle size of 5 μm was obtained.

次いでこれ等のカドミウム粉末を、5%WL酸ニッケル
溶液に添加して、液温20℃でビーカー底部に沈積が生
じない程度の低速撹拌を行いながら約10分間置換反応
を行わせた。
Next, these cadmium powders were added to a 5% WL nickel acid solution, and a substitution reaction was carried out for about 10 minutes at a liquid temperature of 20° C. while stirring at a low speed that did not cause sedimentation at the bottom of the beaker.

次いで得られた金属粉を純水で洗浄して脱水後、乾燥し
たものをエレクトロン・プローブ・マイクロアナライザ
ーで調べたところ、カドミウム粉の表面はニッケルによ
って一様に置換されていることが確認された。この球状
粉の粒径を測定したところ置換前に比し、粒径の変化は
見られず平均粒径的5μmであった。
The obtained metal powder was then washed with pure water and dehydrated, and the dried powder was examined using an electron probe microanalyzer, and it was confirmed that the surface of the cadmium powder was uniformly replaced by nickel. . When the particle size of this spherical powder was measured, no change in particle size was observed compared to before replacement, and the average particle size was 5 μm.

(実施例4) 置換条件として液温30℃、撹拌時間30分としたこと
以外は実施例3と同じ条件で置換処理を行い、得られた
ニッケル粉を洗浄、乾燥後分析したところ、カドミウム
は検出されず、粒子全部が完全にニッケルで置換された
ことが確認された。
(Example 4) Replacement treatment was performed under the same conditions as in Example 3 except that the replacement conditions were a liquid temperature of 30°C and a stirring time of 30 minutes, and the obtained nickel powder was washed and dried and then analyzed, and it was found that cadmium was No nickel was detected, confirming that all particles were completely replaced with nickel.

製品ニッケル粉の粒径についても同様に変化は見られな
かった。
Similarly, no change was observed in the particle size of the product nickel powder.

(実施例5) 実施例1で得られた亜鉛粉末を、5%硝酸銀溶液に添加
して、液温20℃においてビーカー底部に沈積が生じな
い程度の低速撹拌で約1o分間置換処理を行った。
(Example 5) The zinc powder obtained in Example 1 was added to a 5% silver nitrate solution, and a displacement treatment was performed for about 10 minutes at a liquid temperature of 20 ° C. with slow stirring that did not cause sedimentation at the bottom of the beaker. .

次いで得られた金属粉を洗浄して脱水後、乾燥させたも
のをエレクトロン・プローブ・マイクロアナライザーで
調べたところ、亜鉛粉粒子の表面は銀によって一様に置
換されていることを確認した。
The obtained metal powder was then washed, dehydrated, dried, and examined using an electron probe microanalyzer, and it was confirmed that the surface of the zinc powder particles was uniformly replaced with silver.

(実施例6) 置換条件として液温30℃、撹拌時間30分としたこと
以外は実施例5と同様の処理を行ったところ実施例1の
ときと同様に各粒子の全部が完全に銀で直換されている
銀の粉末が得られた。
(Example 6) The same process as in Example 5 was performed except that the replacement conditions were a liquid temperature of 30°C and a stirring time of 30 minutes. As in Example 1, all of the particles were completely covered with silver. Directly converted silver powder was obtained.

(実施例7) 実施例3で得られたカドミウム粉末を、5%シアン化金
溶液に添加して、液温20℃においてビーカー底部に沈
積が生じない程度の低速撹拌で約10分間置換処理を行
った。
(Example 7) The cadmium powder obtained in Example 3 was added to a 5% gold cyanide solution, and a displacement treatment was performed for about 10 minutes at a liquid temperature of 20°C with slow stirring at a speed that did not cause sedimentation at the bottom of the beaker. went.

次いで得られた金属粉を洗浄して脱水後、乾燥させたも
のをエレクトロン・プローブ・マイクロアナライザーで
調べたところ、カドミウム粉粒子の表面は金によって一
様に置換されていることを確認した。
The obtained metal powder was then washed, dehydrated, dried, and examined using an electron probe microanalyzer, and it was confirmed that the surface of the cadmium powder particles was uniformly replaced with gold.

(実施例8) 置換条件として液温30℃、撹拌時間30分としたこと
以外は実施例7の処理を行ったところ、各粒子の全部が
完全に金で置換されている金の粉末が得られた。
(Example 8) When the process of Example 7 was carried out except that the replacement conditions were that the liquid temperature was 30°C and the stirring time was 30 minutes, gold powder in which all of the particles were completely replaced with gold was obtained. It was done.

(発明の効果) 本発明方法は、従来極微細な粒子として、あるいは球状
粉として、あるいは球状微粉粒子として得られにくかっ
た銅、ニッケル、銀、金などの金属から籠易な方法によ
って比較的容易に球状および/または微細粒子を得るこ
とを可能としたものである。
(Effects of the Invention) The method of the present invention is relatively easy to obtain from metals such as copper, nickel, silver, and gold, which have conventionally been difficult to obtain as ultrafine particles, spherical powder, or spherical fine powder particles. This makes it possible to obtain spherical and/or fine particles.

しかも出発金属としては価格の安い低沸点金属を用い目
的金属で置換させて表面被覆した金属粉末であるため、
従来製品よりもコスト的に安く製造できるという利点を
有し、特性的には真の目的金属の微細および/又は球状
粉末と実質的に差がないと期待される特徴を有するもの
である。
Moreover, since the starting metal is a low-boiling point metal that is inexpensive and is substituted with the target metal to form a surface-coated metal powder,
It has the advantage that it can be manufactured at a lower cost than conventional products, and has characteristics that are expected to be substantially the same as those of the fine and/or spherical powder of the target metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法で使用する蒸発−冷却装置の断面
略図である。 符号の説明 A:蒸発−冷却装置 1:冷却缶     2:冷却水 3ニルツボ     4:バーナー 5:亜鉛又はカドミウム粉 6:金属亜鈴又は金属カドミウム
FIG. 1 is a schematic cross-sectional view of an evaporative-cooling device used in the method of the invention. Explanation of symbols A: Evaporation-cooling device 1: Cooling can 2: Cooling water 3 Nil pot 4: Burner 5: Zinc or cadmium powder 6: Metallic dumbbell or metal cadmium

Claims (6)

【特許請求の範囲】[Claims] (1)低沸点金属からなる出発金属を揮発、凝固させる
ことにより出発金属の粉末をつくり、次に該粉末よりも
イオン化傾向の小さい金属からなる製品金属のイオンを
含む溶液中に入れて置換反応させることからなる、少な
くとも表面が完全に製品金属によって置換されている粒
子の集合体からなり、全体として実質的に製品金属の特
性を示す金属粉末の製造方法。
(1) A starting metal powder is created by volatilizing and solidifying a starting metal consisting of a low-boiling point metal, and then placed in a solution containing ions of a product metal consisting of a metal with a smaller ionization tendency than the powder for a substitution reaction. A method for producing a metal powder consisting of an aggregate of particles having at least the surface completely replaced by a product metal, and exhibiting substantially the characteristics of a product metal as a whole.
(2)出発金属がカドミウムまたは亜鉛であり、製品金
属が銅、ニッケル、銀、及び金からなる群より選ばれる
金属である特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the starting metal is cadmium or zinc, and the product metal is a metal selected from the group consisting of copper, nickel, silver, and gold.
(3)出発金属の粉末が球状粉、微粉(極微粉を含む)
または球状微粉(球状極微粉を含む)である特許請求の
範囲第1項または第2項のいずれかに記載の方法。
(3) Starting metal powder is spherical powder or fine powder (including ultrafine powder)
or the method according to claim 1 or 2, which is a spherical fine powder (including a spherical ultrafine powder).
(4)芯部に出発金属の核が実質的に残存する程度に製
品金属による置換を行う特許範囲第1〜3項のいずれか
に記載の方法。
(4) The method according to any one of patent scope items 1 to 3, in which the replacement with the product metal is carried out to the extent that the core of the starting metal substantially remains in the core.
(5)芯部に出発金属の核が実質的に残存しなくなるま
で製品金属による置換を行う特許範囲第1〜3項のいず
れかに記載の方法。
(5) The method according to any one of patent scope items 1 to 3, in which replacement with the product metal is performed until substantially no core of the starting metal remains in the core.
(6)置換反応を行うための溶液が硫酸銅溶液、硫酸ニ
ッケル溶液、硝酸銀溶液またはシアン化金溶液のいずれ
かである特許請求の範囲第1〜4項のいずれかに記載の
方法。
(6) The method according to any one of claims 1 to 4, wherein the solution for carrying out the substitution reaction is any one of a copper sulfate solution, a nickel sulfate solution, a silver nitrate solution, or a gold cyanide solution.
JP62277889A 1987-11-02 1987-11-02 Production of metal powder Pending JPH01119611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277889A JPH01119611A (en) 1987-11-02 1987-11-02 Production of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277889A JPH01119611A (en) 1987-11-02 1987-11-02 Production of metal powder

Publications (1)

Publication Number Publication Date
JPH01119611A true JPH01119611A (en) 1989-05-11

Family

ID=17589698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277889A Pending JPH01119611A (en) 1987-11-02 1987-11-02 Production of metal powder

Country Status (1)

Country Link
JP (1) JPH01119611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
JP2011012332A (en) * 2009-07-06 2011-01-20 Nissan Motor Co Ltd Method for manufacturing plated substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141809A (en) * 1983-12-28 1985-07-26 Kagakuhin Kensa Kyokai Manufacture of nickel powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141809A (en) * 1983-12-28 1985-07-26 Kagakuhin Kensa Kyokai Manufacture of nickel powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
JP2011012332A (en) * 2009-07-06 2011-01-20 Nissan Motor Co Ltd Method for manufacturing plated substrate

Similar Documents

Publication Publication Date Title
US6746510B2 (en) Processing of nanocrystalline metallic powders and coatings using the polyol process
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
WO2016124073A1 (en) Method for preparing micrometer and nanometer composite metallic spherical powder having core-shell structure
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
US2304130A (en) Process for the conversion of metals into finely divided form
RU2714151C1 (en) Method of applying graphene coating on metal powders
US4482374A (en) Production of electrically conductive metal flake
US3434831A (en) Fabrication of spherical powders
DE1817499A1 (en) Aluminum alloys
JPH01119611A (en) Production of metal powder
JP2021017639A (en) Cu-based alloy powder
US4405535A (en) Preparation of rapidly solidified particulates
JPH0623405B2 (en) Method for producing spherical copper fine powder
EP0344324B1 (en) Process for producing particulate metal powder
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP4675053B2 (en) Method for producing high purity diamond particles
CN102825556B (en) Zinc base alloy pellet
JPS61174301A (en) Ultrafine copper powder and its production
US20220176447A1 (en) Method of producing solid spherical powder,and method of producing shaped product
JPS59107914A (en) Manufacture of diamond powder
US5135567A (en) Method for producing metal powders from liquid phase containing metal ions
Shenoy et al. Direct synthesis of nanofluids containing novel hexagonal disc shaped copper nanoparticles
JPS63266003A (en) Flaked platinum powder and production thereof
JP2613279B2 (en) Production method of gold fine particles
JPS6342700B2 (en)