JPH01114092A - Buried-type semiconductor laser - Google Patents

Buried-type semiconductor laser

Info

Publication number
JPH01114092A
JPH01114092A JP27012887A JP27012887A JPH01114092A JP H01114092 A JPH01114092 A JP H01114092A JP 27012887 A JP27012887 A JP 27012887A JP 27012887 A JP27012887 A JP 27012887A JP H01114092 A JPH01114092 A JP H01114092A
Authority
JP
Japan
Prior art keywords
layer
buried
semiconductor laser
active layer
laser according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27012887A
Other languages
Japanese (ja)
Inventor
Makoto Okai
誠 岡井
Kazuhisa Uomi
魚見 和久
Shinji Tsuji
伸二 辻
Naoki Kayane
茅根 直樹
Kazuhide Harada
和英 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27012887A priority Critical patent/JPH01114092A/en
Publication of JPH01114092A publication Critical patent/JPH01114092A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser which facilitates extra-high speed modulation not lower than 20 GHz and has a high life reliability by a method werein the width of a burying layer outside a stripe is made to be 1.0mum or less and a parasitic capacitance is significantly reduced. CONSTITUTION:After a light guide layer 2, an undoped active layer 3, a buffer layer 4 and a p-type InP cladding layer 5 are successively built up on the surface of a substrate 1 by liquid growth, a mesa stripe 13 in which the active layer 3 with a width about 1mum is left is formed. After that, burying layers 6 and 7 are built up on both the sides of the mesa stripe 13 by liquid growth to form current blocking layers and a p-type InP cladding layer 8 and a p-type cap layer 9 are built up over the whole surface by liquid growth. Then electrodes 10 and 11 are formed on the upper and lower surfaces by evaporation. Then approximately vertical trenches 14 are formed near both the sides of the active layer by a method such as reactive ion etching with halogen system gas to reduce a parasitic capacitance to the extent of 1-3 pF.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に寄生容量が小さく、超高速変調に好適な
埋込み型半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention particularly relates to a buried semiconductor laser having small parasitic capacitance and suitable for ultra-high speed modulation.

(従来の技術〕 光フアイバー通信の大容量化のために、超高速変調(1
0〜30 G Hz )の可能な半導体レーザが望まれ
ている。これまでの光フアイバー通信に用いられている
半導体レーザは、埋込み型半導体レーザ(Buried
 Heterostructure : B H)であ
り。
(Prior technology) In order to increase the capacity of optical fiber communication, ultra-high-speed modulation (1
0-30 GHz) capable semiconductor lasers are desired. The semiconductor lasers used in conventional optical fiber communications are buried semiconductor lasers (Buried semiconductor lasers).
Heterostructure: BH).

これは、低しきい電流で、縦モード、横モード共に単一
であり、さらに他の半導体レーザに比べて寄生インピー
ダンスが小さいためである。しかし、このBHレーザに
おいても、その変調帯域は、ストライプ外部の寄生容量
により、約3 G Hzに制限されている。寄生容量を
低減するためには、ストライプ外部の半導体接合面積を
小さくすることが考えられる。その1つの方法として、
ストライブの近傍以外の埋込み層をエツチング等により
、除去することが、上手他により、昭和61年度電子通
信学会光・電波部門全国大会請演論文集NQ232にて
発表されている。この報告では、残存しているメサ幅は
5μmであり、ストライプ外部の埋込み層の残存してい
る幅は片側約2μmとなる。この寄生容量は89Fであ
り、これによる変調帯域は4〜5GHzに制限されてい
る。
This is because it has a low threshold current, a single longitudinal mode and a single transverse mode, and has a smaller parasitic impedance than other semiconductor lasers. However, even in this BH laser, the modulation band is limited to about 3 GHz due to parasitic capacitance outside the stripe. In order to reduce parasitic capacitance, it is conceivable to reduce the semiconductor junction area outside the stripe. One way to do this is to
Removal of the buried layer other than the vicinity of the stripe by etching or the like was published by Uge et al. in the Proceedings of the 1988 IEICE Optical and Radio Division National Conference, NQ232. In this report, the remaining mesa width is 5 μm, and the remaining width of the buried layer outside the stripe is about 2 μm on one side. This parasitic capacitance is 89F, and the modulation band due to this is limited to 4 to 5 GHz.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、ストライプ外部の寄生容量を低減する
ために、−度成長した埋込み層をエツチングにより除去
する方法である。10GHz以上の変調帯域を実現する
ためには、残存させる埋込み層の幅を0.5μm程度に
する必要があり、上記従来技術では、エツチングマスク
の合わせ精度・寸法精度、及びサイドエッチの点で不可
能であった。
The above-mentioned conventional technique is a method of removing the buried layer that has grown twice by etching in order to reduce the parasitic capacitance outside the stripe. In order to achieve a modulation band of 10 GHz or more, the width of the remaining buried layer must be approximately 0.5 μm, and the above conventional technology has disadvantages in terms of etching mask alignment accuracy, dimensional accuracy, and side etching. It was possible.

本発明の目的は、ストライプ外部の埋込み層の幅を1.
0μm以下、寄生容量を3pF以下程度に形成すること
を容易にし、10〜30GHzの変調帯域を有する半導
体レーザを提供することにある。
The purpose of the present invention is to reduce the width of the buried layer outside the stripe to 1.
The object of the present invention is to provide a semiconductor laser that facilitates formation of a parasitic capacitance of 0 μm or less and a parasitic capacitance of about 3 pF or less, and has a modulation band of 10 to 30 GHz.

上記目的の第1の達成手段は、埋込み層の形状をメサス
トライプの両側に埋込んだ活性層より屈折率の小さい結
晶層中に設ける側面が垂直な溝により規定することであ
る。溝は臭素、塩素などのハロゲン系ガスを使用して反
応性イオンエツチング法あるいは反応性イオンビームエ
ツチング法により形成する。
A first means for achieving the above object is to define the shape of the buried layer by grooves with vertical sides provided in a crystal layer having a lower refractive index than the active layer buried on both sides of the mesa stripe. The grooves are formed by reactive ion etching or reactive ion beam etching using a halogen gas such as bromine or chlorine.

また、上記目的の第2の達成手段は、埋込み層をメサス
トライプに被着形成した膜厚3μm以下の活性層より屈
折率の小さい半導体薄膜とすることである。薄膜はMO
CVD法、ハライド系VPE法、クロライド系VPE法
、あるいはMBE法などにより形成する。
A second means for achieving the above object is to make the buried layer a semiconductor thin film having a refractive index smaller than that of the active layer, which is formed in a mesa stripe and has a thickness of 3 μm or less. Thin film is MO
It is formed by a CVD method, a halide VPE method, a chloride VPE method, an MBE method, or the like.

〔作用〕[Effect]

上記第1の達成手段においては、臭素、塩素などのハロ
ゲン系ガスを使用した。反応性イオンエツチング法ある
いは、反応性イオンビームエツチング法により、側面が
ほぼ垂直な溝を形成することができる。これにより、活
性層の両側1μm以内のところに、再現性よく基板結晶
に達する溝を作製することができる。その結果1例えば
電流ブロック層のpnpもしくはnpn接合よりなる埋
込み層の寄生容量を10〜40pFから1〜3pFにま
で低減することができる。従来の埋込み型半導体レーザ
の変調帯域は電気的特性により制限されており、接合容
量をC2直列抵抗をRとすると、遮断周波数fは、f=
L/C2πCR)で与えられる。本発明により、fを一
桁改善することができる。さらに、作製した溝の表面を
基板結晶材料と接着性がよく、熱膨張係数がほぼ等しい
In the first achievement means, a halogen gas such as bromine or chlorine was used. Grooves with substantially vertical sides can be formed by reactive ion etching or reactive ion beam etching. As a result, grooves reaching the substrate crystal can be formed within 1 μm on both sides of the active layer with good reproducibility. As a result 1, for example, the parasitic capacitance of the buried layer made of a pnp or npn junction of the current blocking layer can be reduced from 10 to 40 pF to 1 to 3 pF. The modulation band of conventional embedded semiconductor lasers is limited by electrical characteristics, and when the junction capacitance is C2 and the series resistance is R, the cutoff frequency f is f=
L/C2πCR). According to the present invention, f can be improved by one order of magnitude. Furthermore, the surface of the groove thus produced has good adhesion to the substrate crystal material and has approximately the same coefficient of thermal expansion.

基板結晶材料と同種の元素を少なくとも一種類含んだ酸
化物で被うことにより、寿命信頼性を向上させることが
できる。
By covering with an oxide containing at least one element of the same type as the substrate crystal material, lifetime reliability can be improved.

上記第2の達成手段においては、上記成長法によれば、
メサ形状をほぼ保存しながら埋込み層が成長するので、
活性層の両側にほぼ同様の膜厚の埋込み層が成長し、ま
たこの薄膜埋込み層の幅は、その成長時間のみにより、
厳密に制御できる。従って、0.5μm以下の埋込み層
形成が十分制御よく形成でき、その寄生容量は主に埋込
み層のキャリア濃度により決まる。埋込み層をアンドー
プ。
In the second achievement means, according to the growth method,
The buried layer grows while preserving the mesa shape, so
Buried layers of approximately the same thickness grow on both sides of the active layer, and the width of this thin buried layer depends only on the growth time.
Can be tightly controlled. Therefore, a buried layer of 0.5 μm or less can be formed with sufficient control, and its parasitic capacitance is mainly determined by the carrier concentration of the buried layer. Undope the buried layer.

あるいは意図的に不純物を導入して高抵抗化を行ったと
ころ、寄生容量は1pF程度に低減できた。
Alternatively, by intentionally introducing impurities to increase the resistance, the parasitic capacitance could be reduced to about 1 pF.

さらには、埋込み層を通り流れるリーク電流も1mA以
下に押さえることができた結果高出力動作も可能となり
、緩和振動周波数の増大も可能となった。また、ストラ
イプ外部の埋めこみ層と電極の間にS x Ox、 S
 i Nx膜等の絶縁膜を設けてストライプ内外の絶縁
を行うことにより、寄生容量の低減効果は、さらに顕著
となる。以上の構成により、20〜30GHzの変調帯
域を有する半導体レーザを可能ならしめた。
Furthermore, the leakage current flowing through the buried layer can be suppressed to 1 mA or less, making it possible to operate at high output and increase the relaxation oscillation frequency. In addition, between the buried layer outside the stripe and the electrode, S x Ox, S
By providing an insulating film such as an iNx film to insulate the inside and outside of the stripe, the effect of reducing parasitic capacitance becomes even more remarkable. With the above configuration, a semiconductor laser having a modulation band of 20 to 30 GHz has been made possible.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第1図は本発明の実施例の断面図である。n型InP基
板1の表面に、n型InGaAsP光ガイド層2、アン
ドープInGaAsP活性層3yP型InGaAsPバ
ツフアー層4tP型InPクラッド層5を順次液相成長
法により形成した後1幅1μm程度の活性層3を残した
メサストライプ13を形成する。
Embodiment 1 FIG. 1 is a sectional view of an embodiment of the present invention. After sequentially forming an n-type InGaAsP optical guide layer 2, an undoped InGaAsP active layer 3, a P-type InGaAsP buffer layer, a P-type InP cladding layer 5 on the surface of an n-type InP substrate 1 by liquid phase growth, an active layer 3 having a width of about 1 μm is formed. A mesa stripe 13 is formed with a remaining area.

その後、メサストライプ13の両側にp型In、P埋込
み層6.n型InP埋込み層7を液相成長法により成長
させて電流ブロック層を形成し、続いて全面にp型In
Pクラッド層ayP型InGaAsPキャップ層9を液
相成長法により形成する0次に。
Thereafter, p-type In and P buried layers 6. are formed on both sides of the mesa stripe 13. An n-type InP buried layer 7 is grown by a liquid phase growth method to form a current blocking layer, and then a p-type InP is grown on the entire surface.
A zero-order P cladding layer ayP type InGaAsP cap layer 9 is formed by liquid phase growth.

上面および下面にそれぞれp側電極10(Au/Cr)
およびn側電極11 (A u /AuGeN1)を蒸
着法により形成した6次に、臭素、塩素などのハロゲン
系ガスを用いた反応性イオンエツチング法あるいは反応
性イオンビームエツチング法に′より、活性層の両側近
傍に、側面が活性層に対し、はぼ垂直な溝14を形成し
た。エツチングのマスクには、5iOzもしくはホトレ
ジストを使用した。
P-side electrode 10 (Au/Cr) on the upper and lower surfaces respectively
Next, the active layer is etched by reactive ion etching using a halogen gas such as bromine or chlorine or by reactive ion beam etching. Grooves 14 were formed near both sides of the substrate, the side surfaces of which were substantially perpendicular to the active layer. For the etching mask, 5iOz or photoresist was used.

このように溝14を活性層3近傍に形成することにより
、寄生容量を10〜40PFから1〜39Fに低減する
ことができた。直列抵抗は5Ωであり、変調帯域20G
Hz (−3dBバンド幅)を得た。
By forming the groove 14 near the active layer 3 in this manner, the parasitic capacitance could be reduced from 10 to 40 PF to 1 to 39 PF. Series resistance is 5Ω, modulation band 20G
Hz (-3dB bandwidth) was obtained.

実施例2 第2図は本発明の実施例2の断面図である。実施例2は
、基板1に達する深さを有する溝14を設けた点に特徴
がある0本実施例では、寄生容量を10〜40pFから
1〜3pFに低減でき、変調帯域20GHz (−3d
Bバンド幅)を得た。
Embodiment 2 FIG. 2 is a sectional view of Embodiment 2 of the present invention. Embodiment 2 is characterized in that a groove 14 having a depth reaching the substrate 1 is provided. In this embodiment, the parasitic capacitance can be reduced from 10 to 40 pF to 1 to 3 pF, and the modulation band is 20 GHz (-3d
B band width) was obtained.

実施例3 第3図は本発明の実施例3の断面図である。実施例3は
、基板に達する深さを有する溝14を活性層3近傍に設
けた後、酸素およびリン気流の下で、200〜400℃
で熱処理することにより、溝14表面を基板結晶材料の
酸化物被膜12で覆ったことを特徴としている。本実施
例では、寄生容量は、1〜3pFと低く、変調帯域20
 G Hz(−3dBバンド幅)を得ることが出来た。
Embodiment 3 FIG. 3 is a sectional view of Embodiment 3 of the present invention. In Example 3, after providing a groove 14 having a depth reaching the substrate near the active layer 3, the temperature was heated at 200 to 400°C under an oxygen and phosphorus air flow.
It is characterized in that the surface of the groove 14 is covered with an oxide film 12 of the substrate crystal material by heat treatment. In this example, the parasitic capacitance is as low as 1 to 3 pF, and the modulation band is 20 pF.
GHz (-3dB bandwidth).

溝14の表面を、基板結晶材料と同種の元素を少なくと
も1種類含んだ酸化物で覆うことにより1表面の安定化
がなされた。この結果、温度50℃光出力10mW時間
1000hrの加速寿命試験を行なった後も変調帯域の
劣化は生じなかった。
One surface was stabilized by covering the surface of the groove 14 with an oxide containing at least one element of the same type as the substrate crystal material. As a result, no deterioration of the modulation band occurred even after performing an accelerated life test at a temperature of 50° C. and an optical output of 10 mW for 1000 hours.

上記実施例1〜3では、溝表面を高温・酸素およびリン
気流下で酸化することにより、酸化被膜を得たが、CV
D法もしくは光CVD法により溝表面に酸化被膜を形成
しても、同様に寿命信頼性を向上させることができた。
In Examples 1 to 3 above, an oxide film was obtained by oxidizing the groove surface at high temperature under a flow of oxygen and phosphorus, but CV
Even when an oxide film was formed on the groove surface by the D method or the photo-CVD method, the life reliability could be similarly improved.

実施例4 第4図は本発明の実施例4の断面図である。n型InP
基板101上にn型InPバッファ層102 、 In
GaAsP活性層(厚さ0.1−0.4um)103t
 p型InP層104.p型InGaAsP保護層10
5を順次成長する。その後、幅1μm程度の幅の活性層
103を残したメサストライプ113を形成する。この
時、突出したメサストライプ113の機械的保護のため
に、ストライプから両側に10μm以上離れた領域では
エツチングを行なわず、成長層を残しておく、この後、
MOCVD法により、アンドープInP層106を0.
3μm成長した。MOCVD法の非平衡な成長メカニズ
ムを有する成長法は、メサストライプ113の形状をほ
ぼ保存しながら膜成長するので活性層の両側にも0.3
μmのアンドープInP層106が成長する。この後、
SiOx膜7を4000人堆積して、ストライプ113
外部の電気絶縁を行ない、メサストライプ113上部の
S i Ox膜107を除去し、これをマスクにしてメ
サ上部の埋込みInP層106を除去し、Zn拡散領域
108を設けた。この後、p側電極109.n側電極1
10を形成したのち、へき開法により共振器長200μ
mの半導体レーザ装置を得た。
Embodiment 4 FIG. 4 is a sectional view of Embodiment 4 of the present invention. n-type InP
An n-type InP buffer layer 102 and an InP buffer layer 102 are formed on the substrate 101.
GaAsP active layer (thickness 0.1-0.4um) 103t
p-type InP layer 104. p-type InGaAsP protective layer 10
Grow 5 sequentially. Thereafter, a mesa stripe 113 is formed leaving the active layer 103 with a width of about 1 μm. At this time, in order to mechanically protect the protruding mesa stripe 113, etching is not performed in areas 10 μm or more away from the stripe on both sides, leaving the growth layer.
By MOCVD method, the undoped InP layer 106 is 0.0.
It grew to 3 μm. The MOCVD method, which has a non-equilibrium growth mechanism, grows a film while almost preserving the shape of the mesa stripe 113, so there is a 0.3% growth on both sides of the active layer.
A μm thick undoped InP layer 106 is grown. After this,
4,000 SiOx films 7 are deposited to form stripes 113.
External electrical insulation was performed, and the SiOx film 107 above the mesa stripe 113 was removed. Using this as a mask, the buried InP layer 106 above the mesa was removed, and a Zn diffusion region 108 was provided. After this, the p-side electrode 109. n-side electrode 1
After forming 10, the resonator length was 200μ by the cleavage method.
A semiconductor laser device of m was obtained.

、  試作した素子は波長1.3μmにおいてしきい°
電流10mAで発振した。室温における光出力10mW
時における小信号周波数特性の測定結果を第7図中の一
点鎖線で示す、緩和振動に伴う共振状ピークが15 G
 Hz付近に現われ、3dB低下周波数は20 G H
zまで達した。また素子の寄生インピーダンスによるロ
ールオフ3dB低下周波数は約16GHzであり、測定
により得られた寄生容量C=1.5pF 、直列抵抗R
=60から求まるf=(2πCR)−”の17GH2と
ほぼ一致した。またアンドープInP層106を通って
流れるリーク電流は約2mAであり、重大な問題は生じ
なかった0以上のように、MOCVD法により形成され
た薄膜InPによる埋込み型半導体レーザは、寄生容量
が大幅に低減でき、秀れた高周波特性を実現できた。
, The prototype device has a threshold at a wavelength of 1.3 μm.
It oscillated at a current of 10 mA. Light output 10mW at room temperature
The measurement results of the small signal frequency characteristics at 15 G are shown by the dot-dash line in Figure 7, and the resonant peak associated with relaxation vibration is
Appears around Hz, and the frequency is reduced by 3 dB to 20 GHz
It reached z. In addition, the roll-off 3 dB reduction frequency due to the parasitic impedance of the element is approximately 16 GHz, and the parasitic capacitance C = 1.5 pF and series resistance R obtained by measurement are approximately 16 GHz.
The leakage current flowing through the undoped InP layer 106 was approximately 2 mA, and no serious problem occurred. The buried-type semiconductor laser using the thin InP film formed by the above method was able to significantly reduce parasitic capacitance and achieve excellent high-frequency characteristics.

実施例5 第5図は本発明の実施例5の断面図である。本実施例の
構成及び製作方法は実施例4とほぼ同様であるが異なる
点は次の2点である。まず、活性層が厚さ10nmのI
 no、saG ao*4tPウェル層と厚さ10nm
のInPバリア層を各々1層層ずつ交互に積層した多重
量子井戸活性層111となっている。さらに、メサスト
ライプ113形成後の埋込み層112形成をハライド系
VPE法により行い、0.5μm厚さのFeドープIn
P層を形成したことである。この埋込み時には、メサス
トライプ113形成用のSi0gマスクを残しておいた
ために、メサストライプ113上部には埋込み層112
は成長していない。
Embodiment 5 FIG. 5 is a sectional view of Embodiment 5 of the present invention. The configuration and manufacturing method of this embodiment are almost the same as those of embodiment 4, but the following two points are different. First, the active layer is an I layer with a thickness of 10 nm.
no, saG ao*4tP well layer and thickness 10nm
The multi-quantum well active layer 111 is made by alternately stacking InP barrier layers, one layer each. Further, after forming the mesa stripe 113, a buried layer 112 is formed by a halide-based VPE method, and a Fe-doped In layer with a thickness of 0.5 μm is formed.
This is because a P layer was formed. At the time of this embedding, since the SiOg mask for forming the mesa stripe 113 was left, the buried layer 112 was formed above the mesa stripe 113.
is not growing.

本実施例においては、波長1.5μmにおいて、しきい
電流5 m Aで発振した。実施例4に比べてしきい電
流が低減した理由は2点であり、まず、第1点は多重量
子井戸活性層の量子サイズ効果により、低キヤリア密度
で発振可能となった。第2点は埋込み層112にFeド
ープInP層を用いたために高抵抗(ρ>106Ωc1
1)化したため、リーク電流が押さえられた(<0.1
mA)ためである。本素子の室温における光出力9mW
時の小信号周波数特性を第7図中の実線で示す。まず、
量子サイズ効果により、緩和振動周波数は25GHzま
で増大した。また、埋込み層が高抵抗化できたため、そ
の寄生容量はIpF程度に低減し、寄生インピーダンス
によるロールオフ3dB低下周波数は25 G Hzま
で達した。
In this example, oscillation was performed at a wavelength of 1.5 μm and a threshold current of 5 mA. There are two reasons why the threshold current was reduced compared to Example 4. First, oscillation was possible at a low carrier density due to the quantum size effect of the multi-quantum well active layer. The second point is that the buried layer 112 uses a Fe-doped InP layer, so the resistance is high (ρ>106Ωc1
1), the leakage current was suppressed (<0.1
mA). Optical output of this device at room temperature: 9mW
The small signal frequency characteristics at the time are shown by the solid line in FIG. first,
Due to the quantum size effect, the relaxation oscillation frequency increased to 25 GHz. Furthermore, since the buried layer was able to have a high resistance, its parasitic capacitance was reduced to about IpF, and the frequency at which the parasitic impedance roll-off decreased by 3 dB reached 25 GHz.

実施例6 第6図は本発明をGaA Q As系半導体レーザに適
用した場合の実施例6の断面図である。n型GaAs基
板121上にn型GaA (l Asクラッド層122
゜厚さ7層mのGaAsウェルとI X 10 ”am
−’のpドーピングを行った厚さ7層mのGao、aA
 ’n o、zAsバリヤを交互にそれぞれ5層ずつ積
層した変調ドープMQW活性層123.p型GaA Q
 Asクラッド層124.p型G a A sキャップ
層125を順次。
Example 6 FIG. 6 is a sectional view of Example 6 in which the present invention is applied to a GaA Q As semiconductor laser. An n-type GaAs cladding layer 122 is formed on an n-type GaAs substrate 121.
゜7 layer m thick GaAs well and I x 10” am
-' p-doped Gao, aA with a thickness of 7 m
A modulation doped MQW active layer 123 in which five layers of 'no and zAs barriers are alternately stacked. p-type GaA Q
As cladding layer 124. A p-type GaAs cap layer 125 is sequentially formed.

MOCVD法あるいはMBE法により成長する。It is grown by MOCVD method or MBE method.

本実施例では特に緩和振動周波数を増大するために、活
性層に変調ドープMQWを導入した。、この後、実施例
4と同様のメサストライプ113を形成し、MOCVD
法により、アンドープである高抵抗GaA n As層
126を0.3 μm成長する。この後、5ift層1
27を3000人堆積し、その上にポリイミド膜128
を塗布し、表面を平坦化する。その後、メサストライプ
113上部の5ins膜127とポリイミド膜128を
除去して、これをマスクにして、GaA Q As埋込
み層126をエツチングにより除去し、p側電極129
.n側電極130を形成する。素子はへき間長150μ
mとした。
In this example, a modulation-doped MQW was introduced into the active layer in order to particularly increase the relaxation oscillation frequency. , After that, a mesa stripe 113 similar to that in Example 4 is formed, and MOCVD is performed.
An undoped high-resistance GaA n As layer 126 is grown to a thickness of 0.3 μm by a method. After this, 5ift layer 1
27 was deposited by 3,000 people, and a polyimide film 128 was deposited on top of it.
and flatten the surface. After that, the 5ins film 127 and the polyimide film 128 on the upper part of the mesa stripe 113 are removed, and using this as a mask, the GaA Q As buried layer 126 is removed by etching, and the p-side electrode 129 is removed.
.. An n-side electrode 130 is formed. The gap length of the element is 150μ
It was set as m.

′試作した素子は波長830nmにおいて、しきい電流
4mAで発振した。光出力13mWにおける緩和振動周
波数は、変WRpドープの効果により、30 G Hz
を超え、測定不能であった。また、素子の寄生容量は約
1.5pF 、直列抵抗は4Ωで、これらの寄生インピ
ーダンスによるロールオフ3dB低下周波数は約22 
G Hzであった。
'The prototype device oscillated at a wavelength of 830 nm and a threshold current of 4 mA. The relaxation oscillation frequency at an optical output of 13 mW is 30 GHz due to the effect of variable WRp doping.
exceeded and was not measurable. In addition, the parasitic capacitance of the element is approximately 1.5 pF, and the series resistance is 4 Ω, and the roll-off 3 dB reduction frequency due to these parasitic impedances is approximately 22
It was GHz.

また、上記実施例4〜6において、ストライプ外部の絶
縁は5ins膜のみを示したが、他の絶縁膜(SiNつ
膜)を用いても、はぼ同様の効果が得られた。
Further, in Examples 4 to 6, only the 5-ins film was used as the insulation outside the stripe, but even if other insulation films (SiN films) were used, similar effects could be obtained.

以上のように本発明による薄膜の埋込み層を有する半導
体レーザは高速変調特性に秀れ、しかもリーク電流を低
減できることがわかった。また。
As described above, it has been found that the semiconductor laser having a thin buried layer according to the present invention has excellent high-speed modulation characteristics and can reduce leakage current. Also.

本発明は、グレーティングのブラッグ反射を用いたDF
BあるいはDBRレーザに対しても適用できることは言
うまでもない。
The present invention is a DF using Bragg reflection of a grating.
Needless to say, the present invention can also be applied to B or DBR lasers.

また、上記各実施例1〜6において導電型を反対にした
構造(pをnに、nをpに)においてもほぼ同様の効果
が得られた。
Moreover, almost the same effect was obtained even in the structures in which the conductivity types were reversed in each of Examples 1 to 6 (p to n, n to p).

また、本発明はその技術的手段から判断して、室温連続
発振ができる全範囲の半導体レーザの構成に対して適用
できることは当業者が容易に理解し得るところである。
Further, those skilled in the art can easily understand that the present invention can be applied to a wide range of semiconductor laser configurations capable of continuous oscillation at room temperature, judging from its technical means.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ストライプ外部の埋込み層の幅を制御
良く簡便に1.0μm以下特には0.5μm程度にでき
、寄生容量を大幅に低減できるので、従来の半導体レー
ザに比べてはるかに秀れた20G Hz以上の超高速変
調可能で、寿命信頼性の高い半導体レーザを作製するこ
とができる。
According to the present invention, the width of the buried layer outside the stripe can be easily controlled and reduced to 1.0 μm or less, particularly about 0.5 μm, and the parasitic capacitance can be significantly reduced, making it far superior to conventional semiconductor lasers. It is possible to fabricate a semiconductor laser that is capable of ultra-high-speed modulation of 20 GHz or more and has a highly reliable lifetime.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図および第6図
は各々本発明の実施例1.実施例2.実施例3.実施例
4.実施例5および実施例6の半導体レーザ装置の断面
図である。第7図は本発明の実施例4および実施例5の
半導体レーザ装置の高速変調特性の測定結果を示す図で
ある。 1−n型InP基板、2− n型InGaAsP光ガイ
ド層、3・・・アンドープInGaAsP活性層、4・
・・p型InGaAsPバアファー層、5・・・p型I
nPクラッド層、6・・・p型1.nP埋込み層、7・
・・n型InP埋込み層、8・・・p型InPクラッド
層、9・・・p型InGaAsPキャップ層、10− 
p側電極、11− n側電極、12・・・酸化被膜、1
3・・・メサストライプ、14−・・溝、103−In
GaAsP活性層、106−・・MoCVD法によるア
ンドープInP層、107゜127−8 i Ox膜、
109”’P電極、111 ・・・多重量子井戸活性層
、112・・・FeドープInP層、113・・・メサ
ストライプ、123・・・変調ドープMQW層、126
−MoCVDによる高抵抗第1図 第2図 ′$41¥1 第5図 118メ1八r74ノ 周仮牧 (G)(z) 128不′リイミトliI喪
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 each illustrate embodiment 1 of the present invention. Example 2. Example 3. Example 4. FIG. 7 is a cross-sectional view of semiconductor laser devices of Examples 5 and 6. FIG. 7 is a diagram showing measurement results of high-speed modulation characteristics of semiconductor laser devices according to Examples 4 and 5 of the present invention. 1-n-type InP substrate, 2-n-type InGaAsP light guide layer, 3... undoped InGaAsP active layer, 4...
...p-type InGaAsP buffer layer, 5...p-type I
nP cladding layer, 6...p type 1. nP buried layer, 7.
... n-type InP buried layer, 8... p-type InP cladding layer, 9... p-type InGaAsP cap layer, 10-
p-side electrode, 11- n-side electrode, 12... oxide film, 1
3... Mesa stripe, 14-... Groove, 103-In
GaAsP active layer, 106-... undoped InP layer by MoCVD method, 107°127-8 i Ox film,
109'''P electrode, 111...multi-quantum well active layer, 112...Fe-doped InP layer, 113...mesa stripe, 123...modulation doped MQW layer, 126
- High resistance due to MoCVD Fig. 1 Fig. 2 '$41 yen Fig. 5

Claims (1)

【特許請求の範囲】 1、埋込み型半導体レーザにおいて、埋込み層はメサス
トライプの両側に埋込んだ活性層より屈折率の小さい半
導体結晶層中に設けた溝により形状が規定されているこ
とを特徴とする埋込み型半導体レーザ。 2、上記溝は、基板に達する深さを有する特許請求の範
囲第1項記載の埋込み型半導体レーザ。 3、上記溝の表面を基板結晶材料と同様の元素を少なく
とも1種類含んだ酸化物によつて被つた特許請求の範囲
第1項または第2項記載の埋込み型半導体レーザ。 4、埋込み型半導体レーザにおいて、埋込み層はメサス
トライプに被着形成した膜厚3μm以下の活性層より屈
折率の小さい半導体薄膜であることを特徴とする埋込み
型半導体レーザ。 5、上記埋込み層は、MOCVD法、MBE法、ハライ
ド系VPE法、クロライド系VPE法、光CVD法のい
ずれかの成長法により形成した特許請求の範囲第1項記
載の埋込み型半導体レーザ。 6、上記埋込み層は、アンドープもしくはFe、Cr、
O等の不純物を導入して高抵抗化し、半絶縁化したもの
である特許請求の範囲第4項記載の埋込み型半導体レー
ザ。 7、上記埋込み層は、GaAlAs系半導体レーザでは
GaAlAs、InP/InGaAsP系半導体レーザ
ではInPである特許請求の範囲第4項記載の埋込み型
半導体レーザ。 8、上記活性層は、電子のドウ・ブロイ波長以下の厚さ
のウェル層と、該ウェル層よりも禁制帯幅の大きいバリ
ア層とを交互に重ね合わせた多重量子井戸活性層である
特許請求の範囲第4項記載の埋込み型半導体レーザ。 9、上記埋込みメサストライプの上部以外の領域の上記
埋込み層上にSiO_2あるいはSiN_x膜等の絶縁
膜を堆積した特許請求の範囲第4項記載の埋込み型半導
体レーザ。
[Claims] 1. In a buried semiconductor laser, the shape of the buried layer is defined by a groove provided in a semiconductor crystal layer having a lower refractive index than the active layer buried on both sides of the mesa stripe. An embedded semiconductor laser. 2. The embedded semiconductor laser according to claim 1, wherein the groove has a depth that reaches the substrate. 3. The buried semiconductor laser according to claim 1 or 2, wherein the surface of the groove is covered with an oxide containing at least one element similar to the substrate crystal material. 4. A buried semiconductor laser, characterized in that the buried layer is a semiconductor thin film having a refractive index smaller than that of the active layer and having a thickness of 3 μm or less formed on the mesa stripe. 5. The buried semiconductor laser according to claim 1, wherein the buried layer is formed by any one of MOCVD, MBE, halide VPE, chloride VPE, and photo-CVD. 6. The buried layer is undoped or made of Fe, Cr,
5. The buried semiconductor laser according to claim 4, which is made semi-insulating by introducing impurities such as O to increase the resistance. 7. The buried semiconductor laser according to claim 4, wherein the buried layer is GaAlAs in a GaAlAs-based semiconductor laser and InP in an InP/InGaAsP-based semiconductor laser. 8. A patent claim in which the active layer is a multi-quantum well active layer in which well layers having a thickness equal to or less than the Doe-Broglie wavelength of electrons and barrier layers having a wider forbidden band width than the well layers are alternately stacked. 4. The embedded semiconductor laser according to item 4. 9. The buried semiconductor laser according to claim 4, wherein an insulating film such as SiO_2 or SiN_x film is deposited on the buried layer in a region other than the upper part of the buried mesa stripe.
JP27012887A 1987-10-28 1987-10-28 Buried-type semiconductor laser Pending JPH01114092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27012887A JPH01114092A (en) 1987-10-28 1987-10-28 Buried-type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27012887A JPH01114092A (en) 1987-10-28 1987-10-28 Buried-type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01114092A true JPH01114092A (en) 1989-05-02

Family

ID=17481942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27012887A Pending JPH01114092A (en) 1987-10-28 1987-10-28 Buried-type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01114092A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
JPH0685405A (en) * 1992-01-24 1994-03-25 American Teleph & Telegr Co <Att> Embedded heterostructure laser
JP2008000694A (en) * 2006-06-22 2008-01-10 Chugoku Electric Power Co Inc:The Cleaning device
JP2008227287A (en) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd Method of fabricating semiconductor optical device
JP2011077221A (en) * 2009-09-30 2011-04-14 Oki Electric Industry Co Ltd Semiconductor laser and high-frequency characteristic measuring method thereof
JP2013214762A (en) * 2008-09-19 2013-10-17 Fujitsu Ltd Optical waveguide
JP2016213323A (en) * 2015-05-08 2016-12-15 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139084A (en) * 1984-12-11 1986-06-26 Fujitsu Ltd Manufacture of semiconductor device
JPS61194889A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Semiconductor laser
JPS6218782A (en) * 1985-07-18 1987-01-27 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser of buried structure
JPS6425494A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Semiconductor laser device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139084A (en) * 1984-12-11 1986-06-26 Fujitsu Ltd Manufacture of semiconductor device
JPS61194889A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Semiconductor laser
JPS6218782A (en) * 1985-07-18 1987-01-27 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser of buried structure
JPS6425494A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Semiconductor laser device and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
JPH0685405A (en) * 1992-01-24 1994-03-25 American Teleph & Telegr Co <Att> Embedded heterostructure laser
JP2008000694A (en) * 2006-06-22 2008-01-10 Chugoku Electric Power Co Inc:The Cleaning device
JP2008227287A (en) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd Method of fabricating semiconductor optical device
JP2013214762A (en) * 2008-09-19 2013-10-17 Fujitsu Ltd Optical waveguide
JP2011077221A (en) * 2009-09-30 2011-04-14 Oki Electric Industry Co Ltd Semiconductor laser and high-frequency characteristic measuring method thereof
JP2016213323A (en) * 2015-05-08 2016-12-15 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
US10116121B2 (en) 2015-05-08 2018-10-30 Mitsubishi Electric Corporation Semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
JP4387472B2 (en) Semiconductor laser
JP2004179274A (en) Optical semiconductor device
JPS6124838B2 (en)
US5319661A (en) Semiconductor double heterostructure laser device with InP current blocking layer
JPH01114092A (en) Buried-type semiconductor laser
JPH0677587A (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2871635B2 (en) Semiconductor laser and method of manufacturing the same
JPH0834336B2 (en) Semiconductor laser device and manufacturing method thereof
JP3084264B2 (en) Semiconductor laser device
JP2000183458A (en) Semiconductor device and its production
JPS6124839B2 (en)
JP2708949B2 (en) Method of manufacturing semiconductor laser device
JPH0529703A (en) Semiconductor laser device
JPH0697591A (en) Manufacture of semiconductor laser
JPH06104527A (en) Fabrication of semiconductor laser
JPH02283085A (en) Semiconductor laser
JP2725449B2 (en) Method for manufacturing optical semiconductor device
EP0493125B1 (en) Semiconductor laser device
JPH01132191A (en) Semiconductor laser element
JPH08316584A (en) Semiconductor optical element and fabrication thereof
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63288082A (en) Semiconductor laser device
JP4024319B2 (en) Semiconductor light emitting device
JPH03183182A (en) Semiconductor laser device and its manufacture