JPH01112663A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH01112663A
JPH01112663A JP62271295A JP27129587A JPH01112663A JP H01112663 A JPH01112663 A JP H01112663A JP 62271295 A JP62271295 A JP 62271295A JP 27129587 A JP27129587 A JP 27129587A JP H01112663 A JPH01112663 A JP H01112663A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
hydroxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62271295A
Other languages
Japanese (ja)
Inventor
Kuniyasu Oya
邦泰 大矢
Hiroshi Ogata
博 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62271295A priority Critical patent/JPH01112663A/en
Publication of JPH01112663A publication Critical patent/JPH01112663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve initial discharge performance by using Ni hydroxide of grain sizes of specified values for a positive electrode. CONSTITUTION:An alkaline secondary battery is formed by combining a positive electrode can 1 where positive electrode active material 2 consisting of Ni hydroxide is installed with a negative electrode can 6 where negative electrode material 5 consisting of hydrogen occluded alloy through a separator, and closing the opening between the positive electrode can 1 and the negative electrode can 6 with a gasket 4. For this alkali secondary battery, Ni hydroxide of grain diameters of 3-30mum is used for a positive electrode. Disposed fine grains of Ni hydroxide, thus, have an increased contact efficiency to electrolyte, and charge and discharge reaction is performed actively. Initial discharge performance is improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水酸化ニッケルを正極活物質とするアルカリ
二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an alkaline secondary battery using nickel hydroxide as a positive electrode active material.

〔発明の概要〕[Summary of the invention]

本発明は、水酸化ニッケルを主体とする正極活物質と結
合剤と導電補助剤よりなる成形体を正極としたアルカリ
二次電池の上記正極活物質である水酸化ニッケルの粒径
を規定することにより、初期放電性能に優れ、且つ安価
なアルカリ二次電池を提供しようとするものである。
The present invention specifies the particle size of nickel hydroxide, which is the positive electrode active material, of an alkaline secondary battery in which a positive electrode is a molded body consisting of a positive electrode active material mainly composed of nickel hydroxide, a binder, and a conductive additive. The present invention aims to provide an alkaline secondary battery that has excellent initial discharge performance and is inexpensive.

〔従来の技術〕[Conventional technology]

−Cに水酸化ニッケル等のニッケル酸化物を正極活物質
としたアルカリ二次電池の正極の形式としては、焼結式
、ペースト式、粉末成形式の三方式が知られている。
There are three known positive electrode formats for alkaline secondary batteries in which -C is a nickel oxide such as nickel hydroxide as a positive electrode active material: a sintered type, a paste type, and a powder molded type.

上記焼結式は、急速充放電性能やサイクル寿命等の電池
時1世や機械的強度に優れている反面、ニッケル粉末を
極板芯材に焼結させたものにニッケル塩の含浸、アルカ
リ処理、水洗、乾燥の工程を繰り返すという煩雑な製造
方法を経なくてはならずかなり高価であるという欠点を
有している。
The above sintering type has excellent fast charge/discharge performance, cycle life, etc., and mechanical strength, but on the other hand, nickel powder is sintered into the electrode plate core material, which is then impregnated with nickel salt and treated with alkali. However, it has the disadvantage that it requires a complicated manufacturing process of repeating the steps of washing with water and drying, and is quite expensive.

また、ペースト式は近年改良が重ねられ電池特性はかな
り焼結式に近づいてきて高容量なものが得られるように
なってきたが、価格面において焼結式より幾分安価なも
のの電極芯けに高価な発泡ニッケル等の金属多孔体を使
用するので尚コスト低減の努力が必要とされる。
In addition, the paste type has been improved in recent years, and its battery characteristics have come close to those of the sintered type, making it possible to obtain high capacity batteries, but the electrode core is somewhat cheaper than the sintered type in terms of price. Since an expensive metal porous material such as foamed nickel is used for this purpose, efforts to reduce costs are still required.

これに対して粉末成形式は、正極合剤をプレス成形する
だけの非常に安価なものであるため実用性が高い。しか
しながら電池性能面では、初期放電性能、急速充放電性
能、サイクル寿命等で他の2方式に劣っている。なかで
も充放電サイクルを充分繰り返さないと放電容量が大き
くならないという初期充放電性能は大きな改良課題であ
る。
On the other hand, the powder molding method is highly practical because it is a very inexpensive method that involves simply press molding the positive electrode mixture. However, in terms of battery performance, this method is inferior to the other two methods in terms of initial discharge performance, rapid charge/discharge performance, cycle life, etc. Among these, the initial charging and discharging performance, in which the discharge capacity does not increase unless the charging and discharging cycles are repeated sufficiently, is a major issue to be improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、正極活物質として水酸化ニッケルを用い
たアルカリ二次電池のなかで、正極を最も安価に作製す
ることができる粉末成形式のものは、電池性能面からみ
たときに初期放電性能、急速充放電性能、サイクル寿命
等の点で不満を残しており、なかでも初期充放電性能は
大きな改良課題である。
As mentioned above, among alkaline secondary batteries that use nickel hydroxide as the positive electrode active material, powder molded batteries, where the positive electrode can be produced at the lowest cost, have poor initial discharge performance from a battery performance standpoint. , rapid charging/discharging performance, cycle life, etc. remain unsatisfied, with initial charging/discharging performance being a major issue for improvement.

そこで、本発明は上述の問題点を解決するために提案さ
れたものであって、初期放電性能に優れ且つ安価なアル
カリ二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems, and an object of the present invention is to provide an inexpensive alkaline secondary battery with excellent initial discharge performance.

c問題点を解決するための手段〕 本発明は、上述の目的を達成するために、水酸化ニッケ
ルを主体とする正極活物質と結合剤と導電補助剤よりな
る成形体を正極とし、前記正極活物質である水酸化ニッ
ケルの粒径が3〜30μmであることを特徴とするもの
である。
c. Means for Solving Problems] In order to achieve the above-mentioned object, the present invention uses a molded body made of a positive electrode active material mainly composed of nickel hydroxide, a binder, and a conductive auxiliary agent as a positive electrode, and It is characterized in that the particle size of nickel hydroxide, which is the active material, is 3 to 30 μm.

ここで、上記アルカリ二次電池の正極を構成する水酸化
ニッケルの粒径は3〜30umの範囲にあることが好ま
しい。従来のアルカリ二次電池に使用されていた水酸化
ニッケルの粒度は3〜100μm程度であったが、導電
性の低い水酸化ニンケルの大きな粒子が正極中に存在す
るとアルカリ電解液と充分に接触せず充放電反応が粒子
内部にまで及ばないこととなり、初期において放電性能
を劣化させる原因となっていた。そのため、水酸化ニッ
ケルの粒径を3〜30μmの範囲としたのである。これ
により微細となった水酸化ニッケルの粒子は、電解質液
との接触効率が増加し充放電反応が活発となる。
Here, the particle size of the nickel hydroxide constituting the positive electrode of the alkaline secondary battery is preferably in the range of 3 to 30 um. The particle size of nickel hydroxide used in conventional alkaline secondary batteries was approximately 3 to 100 μm, but if large particles of nickel hydroxide, which has low conductivity, were present in the positive electrode, they could not make sufficient contact with the alkaline electrolyte. However, the charge/discharge reaction does not reach inside the particles, which causes deterioration of discharge performance in the initial stage. Therefore, the particle size of nickel hydroxide was set in the range of 3 to 30 μm. As a result, the fine particles of nickel hydroxide increase the contact efficiency with the electrolyte solution, and the charging/discharging reaction becomes active.

上記水酸化ニッケルを主体とする正極活物質は粉末成形
方法によって成形されたものを使用する。
The positive electrode active material mainly composed of nickel hydroxide is molded by a powder molding method.

この粉末成形方法は、非常に安価に正極合剤を成形する
ことができるため実用性が高い。
This powder molding method is highly practical because the positive electrode mixture can be molded at a very low cost.

また、正極を形成するための結合剤としては、ポリテト
ラフルオロエチレン等を添加することが好ましい。
Further, as a binder for forming the positive electrode, it is preferable to add polytetrafluoroethylene or the like.

さらに、電池反応を促進させるための導電補助剤として
は、ニッケル粉、グラファイトやニッケル粉とグラファ
イトを併用したもの等が挙げられるが、特に水酸化ニッ
ケルを主体とする正極にはニッケル粉等を導電補助剤と
して用いることが好ましい。なお、使用するニッケル粉
の粒径ば50μm以下であることが好ましく、特に平均
粒径が20μ°m程度であることが好ましい。
Furthermore, examples of conductivity aids to promote battery reactions include nickel powder, graphite, and a combination of nickel powder and graphite.In particular, for positive electrodes that are mainly made of nickel hydroxide, nickel powder is used as a conductive agent. Preferably, it is used as an adjuvant. The particle size of the nickel powder used is preferably 50 μm or less, and particularly preferably the average particle size is about 20 μm.

上述のように正極を構成する水酸化ニッケル。Nickel hydroxide makes up the positive electrode as described above.

結合剤、導電補助剤はそれぞれ次に示す組成で正極を構
成することが好ましい。すなわち、水酸化ニッケルは3
5〜65重世%の範囲、好ましくは35〜50重量%程
度、結合剤は5重量%程度、導電補助剤は30〜60重
景%の範囲、好ましくむ苓45〜60重量%である。
It is preferable that the binder and the conductive auxiliary agent constitute the positive electrode with the following compositions. That is, nickel hydroxide is 3
The content of the binder is in the range of 5 to 65% by weight, preferably about 35 to 50% by weight, the binder is in the range of about 5% by weight, and the conductive aid is in the range of 30 to 60% by weight, preferably 45 to 60% by weight.

一方、アルカリ二次電池を構成するセパレータ中に含浸
させる電解液としては、アルカリ二次電池の電解液とし
て通常使用される電解液がいずれも挙げられる。
On the other hand, as the electrolytic solution to be impregnated into the separator constituting the alkaline secondary battery, any electrolytic solution commonly used as an electrolytic solution for alkaline secondary batteries can be mentioned.

また、アルカリ二次電池を構成する負極活物質としては
カドミウムや水素吸蔵合金等が挙げられるが、近年特に
電気化学的な方法により可逆的に水素を吸蔵放出する水
素吸蔵合金を電池の負極活物質として用いる水素吸蔵合
金電池が無公害で且つ高エネルギ密度が期待できるとし
て注目されている。
Cadmium and hydrogen storage alloys are examples of negative electrode active materials constituting alkaline secondary batteries, but in recent years, hydrogen storage alloys that reversibly absorb and release hydrogen using electrochemical methods have been used as negative electrode active materials for batteries. Hydrogen storage alloy batteries used for this purpose are attracting attention as they are non-polluting and can be expected to have high energy density.

ところで、この水素吸蔵合金を負極活物質とするアルカ
リ二次電池では、充放電サイクルを繰り返すと放電容量
が次第に減少するという欠点を有している。これは一般
に水素吸蔵合金電極は充放電を繰り返すと水素吸蔵合金
が水素の吸蔵放出に伴って歪んで割れて微粉末化すると
ともに、第4図に示すように、負極としての占有体積を
増大させる特徴があり、そのためにナイロンやポリプロ
ピレン等からなる不織布セパレータ(41)を押し潰し
てしまいその機能を損なわせることに起因している。
However, an alkaline secondary battery using this hydrogen storage alloy as a negative electrode active material has a drawback that the discharge capacity gradually decreases when charge/discharge cycles are repeated. Generally speaking, when a hydrogen storage alloy electrode is repeatedly charged and discharged, the hydrogen storage alloy becomes distorted and cracked into fine powder as it absorbs and releases hydrogen, and as shown in Figure 4, the volume occupied by the negative electrode increases. This is because the nonwoven fabric separator (41) made of nylon, polypropylene, etc. is crushed and its function is impaired.

この問題を解消するためにアルカリ二次電池の負極側の
負極罐(42)に水素吸蔵合金(43)の体積膨張を見
込んで径方向に空間部(44)を設けているが、水素吸
蔵合金(43)の体積膨張は、厚み方向に多く径方向に
は少ないため、この空間部(44)を充分利用するに至
っていない。
To solve this problem, a space (44) is provided in the negative electrode can (42) on the negative electrode side of the alkaline secondary battery in the radial direction in anticipation of the volume expansion of the hydrogen storage alloy (43). Since the volume expansion of (43) is large in the thickness direction and small in the radial direction, this space (44) is not fully utilized.

そこで、水酸化ニッケルを主体とする正極と、水素吸蔵
合金を主体とする負極とをアルカリ電解液を含浸させた
セパレータを介して対向配置してなるアルカリ二次電池
において、上記負極を構成する水素吸蔵合金中に高分子
吸収剤と導電性カーボンを添加するとともに、負極側の
負極罐には水素吸蔵合金の充放電の繰り返しによる体積
膨張を緩衝するための空間を設けることとする。これに
より、水素吸蔵合金が径方向に膨張するようになり充放
電サイクル寿命を向上させることができるようになる。
Therefore, in an alkaline secondary battery in which a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy are arranged facing each other with a separator impregnated with an alkaline electrolyte interposed therebetween, the hydrogen constituting the negative electrode is A polymer absorbent and conductive carbon are added to the storage alloy, and a space is provided in the negative electrode can on the negative electrode side to buffer volume expansion due to repeated charging and discharging of the hydrogen storage alloy. As a result, the hydrogen storage alloy expands in the radial direction, making it possible to improve the charge/discharge cycle life.

ここで、上記負極活物質として用いられる水素吸蔵合金
としては例えばLaN1a、+ Aj!o、+が使用可
能であり、その他各種の水素吸蔵合金が使用できる。
Here, examples of the hydrogen storage alloy used as the negative electrode active material include LaN1a, +Aj! o, + can be used, and various other hydrogen storage alloys can also be used.

上記負極に添加される高分子吸収剤としては、例えばカ
ルボキシメチルセルロース、ポリビニルアルコール、ポ
リエチレンオキサイド、架橋でんぷん等が挙げられる。
Examples of the polymer absorbent added to the negative electrode include carboxymethyl cellulose, polyvinyl alcohol, polyethylene oxide, crosslinked starch, and the like.

これら高分子吸収剤の添加量は、負極罐側に予め用意さ
れた空間に水素吸蔵合金が充分に膨張しうる量を添加す
ることが好ましく、0.1〜5重量%程度であることが
好ましい。
The amount of these polymer absorbents added is preferably such that the hydrogen storage alloy can sufficiently expand in the space prepared in advance on the negative electrode can side, and is preferably about 0.1 to 5% by weight. .

高分子吸収剤の添加量がO,1重量%より少ない場合に
は高分子吸収剤を添加した効果が期待できず、5重世%
より多い場合には正極側に寄与する電解液までも負極側
に寄与せしめてしまい充分な充放電反応が進行しなくな
ってしまう。水素吸蔵合金に高分子吸収剤を添加するこ
とにより、水素吸蔵合金の厚み方向へ膨張するという特
性を径方向へ膨張する特性へと変化させることができる
If the amount of polymer absorbent added is less than 1% by weight, the effect of adding polymer absorbent cannot be expected, and 5%
If the amount is larger, the electrolyte that contributes to the positive electrode side will also contribute to the negative electrode side, and sufficient charging and discharging reactions will not proceed. By adding a polymer absorbent to the hydrogen storage alloy, the property of expanding in the thickness direction of the hydrogen storage alloy can be changed to the property of expanding in the radial direction.

また、水素吸蔵合金に添加する導電性カーボンとしては
、グラファイト、アセチレンブラック等が挙げられる。
Furthermore, examples of the conductive carbon added to the hydrogen storage alloy include graphite and acetylene black.

これら導電性カーボンを添加することによって作製され
る電池の内部抵抗が低下し、放電容量の増大とサイクル
寿命の延長が図れる。
By adding these conductive carbons, the internal resistance of the manufactured battery is lowered, and the discharge capacity and cycle life can be increased.

さらに、このアルカリ二次電池の負極罐には、上記水素
吸蔵合金が径方向に膨張した場合にも該水素吸蔵合金を
充分収容可能なように空間が設けられている。
Furthermore, a space is provided in the negative electrode can of this alkaline secondary battery so that the hydrogen storage alloy can be sufficiently accommodated even if the hydrogen storage alloy expands in the radial direction.

〔作用〕[Effect]

本発明においては、アルカリ二次電池の正極として粒度
が3〜30μmの小径の水酸化ニッケルを使用している
ので、アルカリ電解液が正極内部にまで及び比表面積の
大きな粒子と充分接触することができ、充放電反応が良
好に進行するため、初期放電性能が向上する。
In the present invention, since small-diameter nickel hydroxide with a particle size of 3 to 30 μm is used as the positive electrode of an alkaline secondary battery, the alkaline electrolyte does not reach inside the positive electrode and sufficiently contacts particles with a large specific surface area. Since the charging and discharging reaction progresses well, the initial discharge performance is improved.

〔実施例〕〔Example〕

以下、本発明を適用したアルカリ二次電池の実施例につ
いて図面を参考にして説明する。
Examples of alkaline secondary batteries to which the present invention is applied will be described below with reference to the drawings.

先ず、正極活物質の水酸化ニッケルの粒度の違いによる
影響を検討した。
First, we investigated the effects of differences in particle size of nickel hydroxide, the positive electrode active material.

大施貫上 本発明に係るアルカリ二次電池は、第1図に示すように
、水酸化ニッケルからなる正極活物質(2)を装着した
正極罐(1)と水素吸蔵合金からなる負極活物質(5)
を装着した負極罐(6)とを間にセパレータ(3)を介
して重ねあわせ、正極罐(1)と負極罐(6)の開口部
をガスケット(4)によって封止し、正極罐(1)をか
しめることによって構成されるものである。
As shown in FIG. 1, the alkaline secondary battery according to the present invention comprises a positive electrode can (1) equipped with a positive electrode active material (2) made of nickel hydroxide, and a negative electrode active material made of a hydrogen storage alloy. (5)
The openings of the positive electrode can (1) and negative electrode can (6) are sealed with a gasket (4), and the positive electrode can (1) is stacked with a separator (3) in between. ) is constructed by caulking.

上述のアルカリ二次電池を作製するにあたっては、次の
ようにして行う。即ち、先ず正極罐(1)に30重量%
の水酸化カリウム水溶液に20g/lの水酸化リチウム
を加えたアルカリ電解液を滴下した後、水酸化ニッケル
を主体とした粒度3〜30μmの水酸化ニッケル45%
、ニッケル50%、ポリテトラフルオロエチレン5%と
からなる水酸化ニッケル合剤を5トン/dの圧力で加圧
成形した高さ1.05龍、直径7.3mm、重さ0.2
 gの正極活物質(2)を装着した。これにナイロン製
不織布よりなるセパレータ(3)を介し、封ロガスケソ
ト(4)を設置した。そして、LAN !n、、Aj!
o、z97重量%、ポリテトラフルオロエチレン3重量
%からなる水素吸蔵合金を主体としてなる高さ1゜7龍
、直径411重さ0.12 gのペレット型水素吸蔵合
金負極活物質(5)を30重量%の水酸化カリウム水溶
液に20g/Rの水酸化リチウムを加えたアルカリ電解
液を負極罐(6)中に滴下した後に装着した。このよう
に負極活物質(5)を装着した負極罐(1)を前記正極
罐(2)上に重ね合わせガスケット部をかしめて直径7
.84mm、1tlljさ3.52nのボタン型ニッケ
ルー水素吸蔵合金よりなる実施例サンプル電池1を作製
した。
The above-mentioned alkaline secondary battery is manufactured as follows. That is, first, 30% by weight was added to the positive electrode can (1).
After dropping an alkaline electrolyte in which 20 g/l of lithium hydroxide was added to an aqueous potassium hydroxide solution, 45% nickel hydroxide with a particle size of 3 to 30 μm, mainly composed of nickel hydroxide, was added.
, a nickel hydroxide mixture consisting of 50% nickel and 5% polytetrafluoroethylene, was pressure-molded at a pressure of 5 tons/d.Height: 1.05 mm, diameter: 7.3 mm, weight: 0.2 mm
The cathode active material (2) of 1 g was attached. A sealing log gasket (4) was placed thereon with a separator (3) made of a nylon nonwoven fabric interposed therebetween. And LAN! n,,Aj!
A pellet-type hydrogen storage alloy negative electrode active material (5) with a height of 1°7, a diameter of 411, and a weight of 0.12 g, which is mainly made of a hydrogen storage alloy consisting of 97% by weight of o, z, and 3% by weight of polytetrafluoroethylene. An alkaline electrolyte prepared by adding 20 g/R of lithium hydroxide to a 30% by weight aqueous potassium hydroxide solution was dropped into the negative electrode can (6) and then installed. The negative electrode can (1) fitted with the negative electrode active material (5) is stacked on top of the positive electrode can (2) and the gasket part is caulked to form a diameter 7
.. Example sample battery 1 was prepared from a button-shaped nickel-hydrogen storage alloy having a length of 84 mm and a length of 3.52 nm.

十六   1〜    六   2 実施例1で使用した水酸化ニッケルの粒度を比較例1で
は3〜100μmのものを使用し、比較例2では30〜
100μmのものを使用し、他は実施例1と同様の方法
により比較例サンプル電池1〜比較例サンプル電池2を
作製した。
16 1 to 6 2 The particle size of the nickel hydroxide used in Example 1 was 3 to 100 μm in Comparative Example 1, and 30 to 100 μm in Comparative Example 2.
Comparative Example Sample Battery 1 to Comparative Example Sample Battery 2 were prepared in the same manner as in Example 1 except that a 100 μm cell was used.

上述のようにして作製した各サンプル電池について2.
5 m Aで8時間充電し、1.2にΩの定抵抗で放電
する充放電サイクモ−試験を行った。その結果を第2回
に示す。
2. Regarding each sample battery produced as described above.
A charge/discharge cycle test was conducted in which the battery was charged at 5 mA for 8 hours and discharged at a constant resistance of 1.2 Ω. The results will be shown in Part 2.

第2図から明らかなように、充放電サイクルを繰り返し
、20サイクル目程になると第2図中・印で示す実施例
サンプル電池1も第2図中O印で示す比較例サンプル電
池1及びΔ印で示す比較例サンプル電池2もその容量に
差はなくなってくる。
As is clear from FIG. 2, the charge/discharge cycle is repeated, and when the 20th cycle is reached, the example sample battery 1 indicated by the mark in FIG. Comparative example sample battery 2, indicated by the mark, also has no difference in capacity.

しかしながら、充放電サイクルの初期の段階においては
実施例サンプル電池である水酸化ニッケルの粒度3〜3
0I!mとしたものがもっとも優れた高容量を示してお
り、比較例サンプル電池1として示した水酸化ニッケル
粒度3〜100μmと広い範囲のものを用いたものは中
程度、30〜100μmの水酸化ニッケル粒度のものを
使用した比較例サンプル電池2は最も容量が劣ったもの
となった。
However, at the initial stage of the charge/discharge cycle, the particle size of the nickel hydroxide used in the example sample battery was 3 to 3.
0I! The one with nickel hydroxide particle size of 3 to 100 μm, which is shown as Comparative Example Sample Battery 1, has the highest capacity. Comparative Example Sample Battery 2, which used the same particle size, had the poorest capacity.

これは正極活物質として使用した水酸化ニッケルの粒度
が電池の容量に与える影響が大きいことを表しており、
粒度が細かい程セパレータ中の電解液との接触面積が大
きくなり、電池反応が良好に進行することを表すもので
ある。
This indicates that the particle size of the nickel hydroxide used as the positive electrode active material has a large effect on the battery capacity.
This indicates that the finer the particle size, the larger the contact area with the electrolyte in the separator, and the better the battery reaction progresses.

次に、負極の組成モ変化させた場合の影響を検討した。Next, we investigated the effects of changing the composition of the negative electrode.

方 仔12〜  t  17 本発明に係るアルカリ二次電池は、第1図に示すように
、水酸化ニッケルからなる正極活物質(2)を装着した
正極罐(1)と水素吸蔵合金からなる負極活物質(5)
を装着した負極罐(6)とを間にセパレータ(3)を介
して重ねあわせ、正極罐(1)と負極罐(6)の開口部
をガスケット(4)によって封止し、正極罐(1)をか
しめることによって構成されるものである。なお、上記
負極罐(6)及び負極活物質(5)は、第1図に示すよ
うに、負極罐(6)内全体にわたって負極活物質(5)
が充填されているのではなく、所定の隙間部(7)を存
している。この隙間部(7)は、負極活物質(5)の径
方向に設けられており、このように隙間部(7)を設け
ることによって、充放電反応によって水素吸蔵合金が径
方向に膨張した際にもセパレータ(3)を押し潰すこと
のないよう緩衝する役目を果たしている。
As shown in FIG. 1, the alkaline secondary battery according to the present invention includes a positive electrode can (1) equipped with a positive electrode active material (2) made of nickel hydroxide, and a negative electrode made of a hydrogen storage alloy. Active material (5)
The openings of the positive electrode can (1) and negative electrode can (6) are sealed with a gasket (4), and the positive electrode can (1) is stacked with a separator (3) in between. ) is constructed by caulking. In addition, as shown in FIG.
Rather than being filled, a predetermined gap (7) exists. This gap (7) is provided in the radial direction of the negative electrode active material (5), and by providing the gap (7) in this way, when the hydrogen storage alloy expands in the radial direction due to charge/discharge reactions, It also serves as a buffer to prevent the separator (3) from being crushed.

上述のアルカリ二次電池を作製するにあたっては、次の
ようにしておこなう。即ち、先ず正極罐(1)に30重
量%の水酸化カリウム水溶液に20g/lの水酸化リチ
ウムを加えたアルカリ電解液を滴下した後、水酸化ニッ
ケルを主体とした、粒度3〜30μmの水酸化ニッケル
45%、ニッケル50%、ポリテトラフルオロエチレン
5%とからなる水酸化ニッケル合剤を5トン/−の圧力
で加圧成形した高さ1.05m、直径7.8 龍、重さ
0゜2gの正極活物質(2)を装着した。なお、この正
極活物質(2)は理論容量20mAHである。
The above-mentioned alkaline secondary battery is manufactured as follows. That is, first, an alkaline electrolyte containing 20 g/l of lithium hydroxide added to a 30% by weight aqueous potassium hydroxide solution was dropped into the positive electrode can (1), and then water containing nickel hydroxide as a main component and having a particle size of 3 to 30 μm was added. A nickel hydroxide mixture consisting of 45% nickel oxide, 50% nickel, and 5% polytetrafluoroethylene was pressure-molded at a pressure of 5 tons/-, height 1.05m, diameter 7.8mm, weight 0.゜2g of positive electrode active material (2) was attached. Note that this positive electrode active material (2) has a theoretical capacity of 20 mAH.

これにナイロン製不織布よりなるセパレータ(3)を介
し、封口ガスケット(4)を設置した。そして、粒径を
50μm以下に粉砕したL a N ra、qA lo
、zとポリテトラフルオロエチレンとカルボキシメチル
セルロース及びグラファイトを第1表に示すように変え
水素吸蔵合金を主体としてなる高さ1.7鰭、直径4m
、重さ0.12 gのペレット型水素吸藏合金負極活物
質(5)を30重量%の水酸化カリウム水溶液に20g
/lの水酸化リチウムを加えたアルカリ電解液を負極罐
(6)中に滴下した後に装着した。このように負極活物
質(5)を装着した負極罐を前記正極罐(1)上に重ね
合わせガスケット部をかしめて直径7.84mm、高さ
3.52■■のボタン型ニッケルー水素吸藏合金実施例
サンプル電池2〜実施例サンプル電池7を作製した。
A sealing gasket (4) was placed thereon with a separator (3) made of a nylon nonwoven fabric interposed therebetween. Then, L a N ra, qA lo pulverized to a particle size of 50 μm or less
, z, polytetrafluoroethylene, carboxymethyl cellulose, and graphite as shown in Table 1, and is mainly made of a hydrogen storage alloy.It has a height of 1.7 fins and a diameter of 4 m.
, 20 g of pellet-type hydrogen absorbing alloy negative electrode active material (5) weighing 0.12 g was added to a 30% by weight potassium hydroxide aqueous solution.
An alkaline electrolyte to which lithium hydroxide of 1/l was added was dropped into the negative electrode can (6), and then the negative electrode can (6) was installed. The negative electrode can loaded with the negative electrode active material (5) was stacked on the positive electrode can (1) and the gasket part was crimped to form a button-shaped nickel-hydrogen absorbing alloy with a diameter of 7.84 mm and a height of 3.52 mm. Example sample batteries 2 to 7 were produced.

止較■主 実施例2〜実施例7で使用したL a N i a、q
A 1゜、。
Comparison ■ L a N i a,q used in Main Examples 2 to 7
A 1゜.

とポリテトラフルオロエチレンを第1表に示すように変
え、カルボキシメチルセルロース及びグラファイトは使
用せず、他は実施例2〜実施例7と同様にして比較例サ
ンプル電池3を作製した。
Comparative Example Sample Battery 3 was produced in the same manner as in Examples 2 to 7 except that the and polytetrafluoroethylene were changed as shown in Table 1, carboxymethyl cellulose and graphite were not used, and the other conditions were the same as in Examples 2 to 7.

第1表 (尚、第1表中数値は全て重量%である。)上述のよう
にして作製した各サンプル電池について8mAで2時間
充電し、1.2にΩの定抵抗で放電する充放電サイクル
試験を行った。その際の電池内部の状態を第3図に、ま
た電池の内部抵抗の測定結果を第2表に示す。
Table 1 (All values in Table 1 are weight %.) Each sample battery produced as described above was charged at 8 mA for 2 hours, and then discharged at a constant resistance of 1.2 Ω. A cycle test was conducted. The internal state of the battery at that time is shown in FIG. 3, and the measurement results of the internal resistance of the battery are shown in Table 2.

(以下余白) 第2表 尚、第2表中、放電容量は充放電サイクルを繰り返して
その値の安定する10サイクル目の放電容量を示した。
(Margins below) Table 2 In Table 2, the discharge capacity indicates the discharge capacity at the 10th cycle, at which the value becomes stable after repeating charging and discharging cycles.

また、サイクル寿命としては、10サイクル目の放電容
量から40%容量劣化した時点でのサイクル数を示した
Further, as the cycle life, the number of cycles at the time when the capacity deteriorated by 40% from the discharge capacity at the 10th cycle was shown.

第2表に示すように、比較例サンプル電池3に比ベカル
ボキシメチルセルロースを添加した電極を使用した電池
はいずれもサイクル寿命が伸びている。
As shown in Table 2, the cycle life of all batteries using electrodes to which carboxymethylcellulose was added compared to Comparative Example Sample Battery 3 was extended.

充放電サイクル試験終了後の電池を分解してみると第3
図に示すように空間的に余裕のある径方向に体積膨張を
示し、負極罐(36)全体にわたって水素吸蔵合金を主
体とする負極活物質(35)が充満してはいるものの、
セパレータ(33)を押し潰すことはなかった。このよ
うにセパレータ(33)を押し潰すことがないため、セ
パレータ(33)との接触部の密度が高く成らず、その
ためアルカリ電解液が負極活物質(35)内に充分浸み
込んで良好な電池反応が起こることとなる。ただし、カ
ルボキシメチルセルロースの添加量が0.1重量%のサ
ンプル電池1はその作用が充分でなく、逆にカルボキシ
メチルセルロースの添加量が5重量%のサンプル電池4
は電解液吸収作用が強くセパレータ内には電解液の存在
が観察されなかった。
When the battery was disassembled after the charge/discharge cycle test, the third
As shown in the figure, the volume expands in the radial direction with ample space, and although the entire negative electrode can (36) is filled with the negative electrode active material (35) mainly composed of a hydrogen storage alloy,
The separator (33) was not crushed. Since the separator (33) is not crushed in this way, the density of the contact area with the separator (33) does not become high, and therefore the alkaline electrolyte sufficiently permeates into the negative electrode active material (35), resulting in a good condition. A battery reaction will occur. However, sample battery 1 in which the amount of carboxymethylcellulose added was 0.1% by weight did not have sufficient effect, and conversely, sample battery 4 in which the amount of carboxymethylcellulose added was 5% by weight
had a strong electrolyte absorption effect, and no electrolyte was observed within the separator.

また、単にカルボキシメチルセルロースだけを、添加し
た実施例サンプル電池2.実施例サンプル電池3.実施
例サンプル電池4では第2表に示すように電池の内部抵
抗値が高くなってしまい、そのため放電容量の劣化をき
たしている。
In addition, Example sample battery 2 in which only carboxymethylcellulose was added. Example sample battery 3. In Example Sample Battery 4, the internal resistance value of the battery became high as shown in Table 2, resulting in deterioration of the discharge capacity.

これを補うためにグラファイトを添加したサンプル電池
5〜サンプル電池7は電池の内部抵抗が低く放電容量も
従来電極を上回りサイクル寿命も200回を越えている
Sample Batteries 5 to 7, in which graphite was added to compensate for this, have low internal resistance, discharge capacity that exceeds conventional electrodes, and cycle life of over 200 cycles.

本実施例2〜実施例7ではカルボキシメチルセルロース
を用いて水素吸蔵合金負極に電解液を吸収させて軟らか
くすることによりサイクル寿命の効果を得たが、ポリビ
ニルアルコール、ポリエチレンオキサイド、架橋デンプ
ンでも同様の効果を得ることができた。
In Examples 2 to 7, carboxymethylcellulose was used to absorb the electrolyte into the hydrogen-absorbing alloy negative electrode to make it softer, thereby increasing the cycle life, but polyvinyl alcohol, polyethylene oxide, and crosslinked starch also had the same effect. I was able to get

この作用の趣旨から他の高分子吸収剤を用いても同様の
効果が得られる。
Based on this principle of action, similar effects can be obtained by using other polymer absorbents.

またグラファイトの替わりにアセチレンブラック等の4
電性カーボンを用いてもよい。
Also, instead of graphite, use 4 such as acetylene black.
Electric carbon may also be used.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明のアルカリ二次
電池においては、アルカリ二次電池の正極として粒度が
3〜30μmの小径の水酸化ニッケルを使用しているの
で、アルカリ電解液が正極内部にまで及び比表面積の大
きな粒子と充分接触することができ、充放電反応が良好
に進行するため、初期放電性能が向上する。また、正極
合剤を加圧成形により作製しているため安価に正極を作
製することができる。
As is clear from the above explanation, in the alkaline secondary battery of the present invention, small-diameter nickel hydroxide with a particle size of 3 to 30 μm is used as the positive electrode of the alkaline secondary battery, so the alkaline electrolyte is inside the positive electrode. It is possible to make sufficient contact with particles having a large specific surface area, and the charging/discharging reaction progresses favorably, resulting in improved initial discharge performance. Furthermore, since the positive electrode mixture is produced by pressure molding, the positive electrode can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用して作製したアルカリ二次電池の
概略断面図である。 第2図はサイクル数と放電容量との関係を示す特性図で
ある。 第3図は本発明を適用して作製したアルカリ二次電池の
充放電後の電池内部の状態を示す概略断面図である。 第4図は従来のアルカリ電池の充放電後の電池内部の状
態を示す概略断面図である。 ■・・・正極罐 2・・・正極活物質 3・・・セパレータ 4・・・ガスケット 5・・・負極活物質 6・・・9.極罐 7・・・隙間部 特許出願人   ソニー株式会社 代理人  弁理士  電池  晃 同   円柱 榮− 同    佐胚   勝 第1図 サイグーよ (回) 第2図
FIG. 1 is a schematic cross-sectional view of an alkaline secondary battery manufactured by applying the present invention. FIG. 2 is a characteristic diagram showing the relationship between the number of cycles and discharge capacity. FIG. 3 is a schematic cross-sectional view showing the internal state of an alkaline secondary battery manufactured by applying the present invention after charging and discharging. FIG. 4 is a schematic cross-sectional view showing the internal state of a conventional alkaline battery after charging and discharging. ■...Positive electrode can 2...Positive electrode active material 3...Separator 4...Gasket 5...Negative electrode active material 6...9. Gokukan 7... Gap Patent Applicant Sony Corporation Representative Patent Attorney Kodo Battery Sakae Hibashira - Masaru Saetsu Figure 1 Saiguyo (times) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルを主体とする正極活物質と結合剤と導電
補助剤よりなる成形体を正極とし、前記正極活物質であ
る水酸化ニッケルの粒径が3〜30μmであることを特
徴とするアルカリ二次電池。
The positive electrode is a molded body made of a positive electrode active material mainly composed of nickel hydroxide, a binder, and a conductive additive, and the nickel hydroxide, which is the positive electrode active material, has a particle size of 3 to 30 μm. Next battery.
JP62271295A 1987-10-27 1987-10-27 Alkaline secondary battery Pending JPH01112663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271295A JPH01112663A (en) 1987-10-27 1987-10-27 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271295A JPH01112663A (en) 1987-10-27 1987-10-27 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH01112663A true JPH01112663A (en) 1989-05-01

Family

ID=17498056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271295A Pending JPH01112663A (en) 1987-10-27 1987-10-27 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH01112663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
US5366831A (en) * 1991-06-14 1994-11-22 Yuasa Corporation Nickel electrode for alkaline battery

Similar Documents

Publication Publication Date Title
US5571636A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
CN1117408C (en) Alkaline storage battery
JPH11162468A (en) Alkaline secondary battery
JP2002184397A (en) Positive electrode plate for alkaline battery, and manufacturing method of the same, and alkaline battery using the same
JPS6166366A (en) Hydrogen-occlusion electrode
JPH01112663A (en) Alkaline secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH087896A (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JPH0935718A (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JP3343413B2 (en) Alkaline secondary battery
JP2022182855A (en) Negative electrode for alkaline storage battery and alkaline storage battery using the same
JPH06333568A (en) Sealed metal oxide-hydrogen battery, and its manufacture
JP3377576B2 (en) Manufacturing method of alkaline secondary battery
JP3069767B2 (en) Hydrogen storage alloy electrode
JP3742149B2 (en) Alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery