JPH01112226A - Optical logic element - Google Patents

Optical logic element

Info

Publication number
JPH01112226A
JPH01112226A JP27114987A JP27114987A JPH01112226A JP H01112226 A JPH01112226 A JP H01112226A JP 27114987 A JP27114987 A JP 27114987A JP 27114987 A JP27114987 A JP 27114987A JP H01112226 A JPH01112226 A JP H01112226A
Authority
JP
Japan
Prior art keywords
refractive index
quantum well
well layer
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27114987A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27114987A priority Critical patent/JPH01112226A/en
Publication of JPH01112226A publication Critical patent/JPH01112226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a face type optical gate which the wavelength range of usable light is wide by providing an incidence face and an exit face so that they form acute angles to the boundary surface between a quantum well layer and a high-refractive index semiconductor layer. CONSTITUTION:A quantum well layer 12 where a well layer 121 and a barrier layer 122 are alternately laminated on a substrate 11 and a GaAs high-refractive index semiconductor layer 13 laminated on the quantum well layer 12 are provided. In this case, the high-refractive index semiconductor layer 13 is provided with a face 14, on which a signal light 16 is made incident, and a face 15 from which the signal light 16 made incident on this incidence face 14 is emitted after being reflected on the boundary surface between the quantum well layer 12 and the high-refractive index semiconductor layer 13, and the incidence face 14 and the exit face 15 form acute angles to this boundary surface. Since the change of the critical angle due to the change of the refractive index of a quantum well is used, the wavelength range of light applicable to this optical gate is wider than that of a conventional optical gate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理等に用いる光論理素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical logic element used for optical information processing and the like.

(従来の技術) 近年、光の持つ高度な並列情報伝達、処理特性を利用し
たデジタル情報処理が注目を集めている。このような光
によるデジタル情報処理を実現するには、光を2次元的
に制御するいわゆる固型論理素子の開発が必要である。
(Prior Art) In recent years, digital information processing that utilizes the highly parallel information transmission and processing characteristics of light has attracted attention. In order to realize such digital information processing using light, it is necessary to develop so-called solid-state logic elements that control light two-dimensionally.

そのうちの一つとして光信号を光によりオンオフする光
ゲートがある。従来、直型の光ゲートとして第2図に示
す構造がアプライド・フィジクス・レターズ(Appl
iedPhysics Letters) 46.91
8. (1985)においてシュウエル(Jewell
 、 J、 L、 )等によって報告されている。この
光ゲートはファブリ・ペロ共振器21の内部に量子井戸
層12をはきんだ構造である。第3図に示すようなファ
ブリ・ベロ共振器の共振特性を一利用して光によるスイ
ッチングを行っている。制御光17が入射しない時には
第3図31に示すように信号光16に対して高透過状態
にある。制御光17が入射すると量子井戸層12による
吸収が制御光17によって飽和して量子井戸層12の屈
折率が変化して32のようになり信号光16に対して低
透過状態になって出力光18の強度がスイッチングきれ
る。
One of these is an optical gate that turns on and off optical signals using light. Conventionally, the structure shown in Figure 2 as a direct type optical gate was published in Applied Physics Letters (Appl.
iedPhysics Letters) 46.91
8. (1985), Jewell (1985).
, J, L, ) et al. This optical gate has a structure in which a quantum well layer 12 is placed inside a Fabry-Perot resonator 21. Optical switching is performed by making full use of the resonance characteristics of a Fabry-Béro resonator as shown in FIG. When the control light 17 is not incident, the signal light 16 is in a highly transparent state as shown in FIG. 31. When the control light 17 is incident, the absorption by the quantum well layer 12 is saturated by the control light 17, and the refractive index of the quantum well layer 12 changes to become 32, resulting in a low transmission state for the signal light 16, resulting in output light. 18 intensities can be switched.

(発明が解決しようとする問題点) 以上に述べた構造には、ファブリ・ペロ共振器の共振特
性を利用して光によるスイッチングを行っているから信
号光の波長をファブリ・ペロ共振器の共振特性に精密に
合せなければならないという問題点がある。本発明の目
的は、このような問題点を除去し、用いることのできる
光の波長範囲の大きな固型光ゲートを提供することにあ
る。
(Problems to be Solved by the Invention) The structure described above uses the resonance characteristics of the Fabry-Perot resonator to perform optical switching, so the wavelength of the signal light is The problem is that it must be precisely matched to the characteristics. An object of the present invention is to eliminate such problems and provide a solid optical gate that can be used in a wide wavelength range of light.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する光論理
素子は、量子井戸層上にこの量子井戸層より禁制帯幅が
大きく、屈折率の大きな高屈折率半導体層を積層してな
り、前記高屈折率半導体層には、信号光が入射される面
と、この入射面から入射された前記信号光が前記量子井
戸層と前記高屈折率半導体層との界面で反射されたとき
に出射する面とが設けてあり、前記入射面および出射面
は前記界面に対して鋭角をなしていることを特徴とする
(Means for Solving the Problems) In order to solve the above-mentioned problems, the optical logic element provided by the present invention has a high-density layer on the quantum well layer, which has a larger forbidden band width than the quantum well layer and has a large refractive index. The high refractive index semiconductor layer has a surface onto which signal light is incident, and the signal light incident from this incident surface is formed by stacking refractive index semiconductor layers on the quantum well layer and the high refractive index semiconductor layer. A surface from which light is emitted when reflected at an interface with the light beam is provided, and the incident surface and the light exit surface form an acute angle with respect to the interface.

(作用) 量子井戸層面に対して垂直方向の電場ベクトルを持つ光
(p偏光)が信号光として入射する。制御光がないとき
、高屈折率半導体層と量子井戸層との界面での信号光の
反射率は小さい。−実制御光が入射すると量子井戸層の
信号光に対する屈折率が減少する。この時、信号光の進
行方向は量子井戸層との界面に対しほぼ臨界角となるか
ら、信号光は全反射する。本発明は、界面での屈折率変
化による反射率の変化を利用し、ファブリ・ペロ共振器
の共振特性を利用していない。そこで、本発明の光論理
素子が用いることのできる光の波長範囲は前述の第2図
の光ゲートより大きい。
(Operation) Light (p-polarized light) having an electric field vector perpendicular to the plane of the quantum well layer enters as signal light. When there is no control light, the reflectance of the signal light at the interface between the high refractive index semiconductor layer and the quantum well layer is small. - When the actual control light is incident, the refractive index of the quantum well layer with respect to the signal light decreases. At this time, since the traveling direction of the signal light is approximately at a critical angle with respect to the interface with the quantum well layer, the signal light is totally reflected. The present invention utilizes a change in reflectance due to a change in refractive index at an interface, and does not utilize the resonance characteristics of a Fabry-Perot resonator. Therefore, the wavelength range of light that can be used by the optical logic element of the present invention is larger than that of the optical gate shown in FIG. 2 described above.

(実施例) 第1図は本発明の一実施例の構成を示す断面図である。(Example) FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention.

この実施例は、InPの基板11と、このInP基板1
1の上に厚d 10層mのIno、5sGao、ayA
3からなるウェル層121と〃さ15nmのInPから
なるバリア層122とを交互に80層ずつ積層してなる
量子井戸層12と、この量子井戸層12の上に厚さ10
−に積層してなるGaAsの高屈折率層13とからなる
。高屈折率!13は、反応性イオンビームによるエツチ
ングで、頂角が40″のプリズム状に成形されており、
符号14の面が入射面、符号工5の面が出射面をなして
いる。信号光16を入射面14に垂直に、また制御光1
7は量子井戸層面に垂直にそれぞれ入射する。
This embodiment includes an InP substrate 11 and an InP substrate 1.
Ino, 5sGao, ayA with thickness d 10 layer m on top of 1
A quantum well layer 12 is formed by alternately laminating 80 well layers 121 made of InP with a thickness of 15 nm and barrier layers 122 made of InP with a thickness of 15 nm.
- a high refractive index layer 13 of GaAs laminated on the substrate. High refractive index! 13 is formed into a prism shape with an apex angle of 40" by etching with a reactive ion beam,
The surface 14 is the incident surface, and the surface 5 is the exit surface. The signal light 16 is directed perpendicularly to the incident plane 14, and the control light 1
7 are incident perpendicularly to the plane of the quantum well layer.

信号光16は高屈折率層13と量子井戸層12の界面に
対してp偏光であり、またそのエネルギーは0、895
QVで量子井戸層12の励起子のエネルギーに相当する
。制御光17のエネルギーは0.9eVである。制御光
17の強度が小言い場合、量子井戸層12の信号光15
に対する屈折率は3.33である。高屈折率層13の信
号光16に対する屈折率は3.4であるから、高屈折率
層13と量子井戸層12の間の界面における反射率は1
%である。制御光17の強度が655W / on ”
に達すると量子井戸層12における励起子吸収の飽和に
より、量子井戸層12の屈折率が3.2に減少する。こ
のとき、高屈折率[13と量子井戸層12の界面の臨界
角は70″であるから信号光16は全反射される。以上
のように制御光17の強度により、出射面15から出射
する反射光の強度がスイッチングされる。このときの信
号光16のエネルギーは量子井戸層12の励起子吸収付
近であればよいから、本実施例ではファブリ・ペロ共振
器において必要だった精密なチューニングは必要でない
The signal light 16 is p-polarized light with respect to the interface between the high refractive index layer 13 and the quantum well layer 12, and its energy is 0.895
QV corresponds to the energy of excitons in the quantum well layer 12. The energy of the control light 17 is 0.9 eV. When the intensity of the control light 17 is low, the signal light 15 of the quantum well layer 12
Its refractive index is 3.33. Since the refractive index of the high refractive index layer 13 for the signal light 16 is 3.4, the reflectance at the interface between the high refractive index layer 13 and the quantum well layer 12 is 1.
%. The intensity of the control light 17 is 655W/on”
When this reaches, the refractive index of the quantum well layer 12 decreases to 3.2 due to saturation of exciton absorption in the quantum well layer 12. At this time, since the critical angle of the interface between the high refractive index [13 and the quantum well layer 12 is 70'', the signal light 16 is totally reflected.As described above, due to the intensity of the control light 17, it is emitted from the output surface 15 The intensity of the reflected light is switched.The energy of the signal light 16 at this time only needs to be around the exciton absorption of the quantum well layer 12, so in this example, the precise tuning required in the Fabry-Perot resonator is Not necessary.

(発明の効果) 以上に詳述したように、本発明では、量子井戸の屈折率
変化による臨界角の変化を利用するから、用いることの
できる光の波長範囲は従来の光ゲートより大きい。
(Effects of the Invention) As detailed above, in the present invention, since the change in the critical angle due to the change in the refractive index of the quantum well is utilized, the usable wavelength range of light is wider than that of the conventional optical gate.

【図面の簡単な説明】 第1図は本発明の一実施例の構成を示す断面図、第2図
は従来例の構成図、第3図はその従来例の透過率特性を
示す図である。 11・・・基板、12・・・量子井戸層、13・・・高
屈折率層、14・・・入射面、15・・・出射面、16
・・・信号光、17・・・制御光、121・・・ウェル
層、122・・・バリア層、21・・・ファブリ・ペロ
共振器、201 、202・・・レンズ、203・・・
偏光ビームスプリッタ、204・・・半波長板、205
.206・・・鏡、31は制御光のない場合のファブリ
・ペロ共振器の共振特性線、32は制御光のある場合の
共振特性線。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, FIG. 2 is a configuration diagram of a conventional example, and FIG. 3 is a diagram showing transmittance characteristics of the conventional example. . DESCRIPTION OF SYMBOLS 11... Substrate, 12... Quantum well layer, 13... High refractive index layer, 14... Incidence surface, 15... Output surface, 16
... Signal light, 17... Control light, 121... Well layer, 122... Barrier layer, 21... Fabry-Perot resonator, 201, 202... Lens, 203...
Polarizing beam splitter, 204...half-wave plate, 205
.. 206...Mirror, 31 is the resonance characteristic line of the Fabry-Perot resonator in the absence of control light, and 32 is the resonance characteristic line in the presence of control light.

Claims (1)

【特許請求の範囲】[Claims] 量子井戸層上にこの量子井戸層より禁制帯幅が大きく、
屈折率の大きな高屈折率半導体層を積層してなり、前記
高屈折率半導体層には、信号光が入射される面と、この
入射面から入射された前記信号光が前記量子井戸層と前
記高屈折率半導体層との界面で反射されたときに出射す
る面とが設けてあり、前記入射面および出射面は前記界
面に対して鋭角をなしていることを特徴とする光論理素
子。
On the quantum well layer, the forbidden band width is larger than this quantum well layer.
It is formed by laminating high refractive index semiconductor layers having a large refractive index, and the high refractive index semiconductor layer has a surface on which signal light is incident, and the signal light incident from this incident surface is transmitted to the quantum well layer and the semiconductor layer. 1. An optical logic element comprising: a surface that emits light when reflected at an interface with a high refractive index semiconductor layer; the incident surface and the exit surface form an acute angle with respect to the interface.
JP27114987A 1987-10-26 1987-10-26 Optical logic element Pending JPH01112226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27114987A JPH01112226A (en) 1987-10-26 1987-10-26 Optical logic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27114987A JPH01112226A (en) 1987-10-26 1987-10-26 Optical logic element

Publications (1)

Publication Number Publication Date
JPH01112226A true JPH01112226A (en) 1989-04-28

Family

ID=17496010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27114987A Pending JPH01112226A (en) 1987-10-26 1987-10-26 Optical logic element

Country Status (1)

Country Link
JP (1) JPH01112226A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359549A (en) * 1989-07-21 1991-03-14 American Teleph & Telegr Co <Att> Semiconductor optical processing element and optical processor comprising the same
WO2010061736A1 (en) 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
WO2011078077A1 (en) 2009-12-24 2011-06-30 Jx日鉱日石金属株式会社 Surface-treated copper foil
WO2011138876A1 (en) 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359549A (en) * 1989-07-21 1991-03-14 American Teleph & Telegr Co <Att> Semiconductor optical processing element and optical processor comprising the same
WO2010061736A1 (en) 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
WO2011078077A1 (en) 2009-12-24 2011-06-30 Jx日鉱日石金属株式会社 Surface-treated copper foil
WO2011138876A1 (en) 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit

Similar Documents

Publication Publication Date Title
US5076672A (en) All-optical switch apparatus using a nonlinear etalon
JP2820367B2 (en) Quasi-monolithic saturable optical device
Doumuki et al. An aluminum-wire grid polarizer fabricated on a gallium–arsenide photodiode
JPH01112226A (en) Optical logic element
JPS63187221A (en) Optical logic element
JP2563991B2 (en) Optical filter
KR100480746B1 (en) Gan-based electro-optic modulators in the blue range
JPS62284331A (en) Optical modulator
JPS6389817A (en) Face type optical logic element
KR960013804B1 (en) Polarization switching system
Chopra et al. Thin Films in Optics
JPS6030734Y2 (en) High reverse loss compact optical isolator
JPH02230224A (en) Optical flip-flop
JPH01182833A (en) Optical switch
JPH02127627A (en) Etalon type optical bistable element
JPH0882811A (en) Optical switching method, optical switching device and optical semiconductor device
JP2006126567A (en) Optical switch, and optical distributing device, and optical multiplexing device using the same
JPH04241333A (en) Optical exclusive or circuit
JPH02269307A (en) Face type optical modulator
JPH0719005B2 (en) Optical bistable element
JPH0372961B2 (en)
JPH09244075A (en) Light limitter element
JPH0359549A (en) Semiconductor optical processing element and optical processor comprising the same
JPH07263783A (en) Optical wiring device
JPS63200131A (en) Optical logic element