JPH01109284A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPH01109284A
JPH01109284A JP26746587A JP26746587A JPH01109284A JP H01109284 A JPH01109284 A JP H01109284A JP 26746587 A JP26746587 A JP 26746587A JP 26746587 A JP26746587 A JP 26746587A JP H01109284 A JPH01109284 A JP H01109284A
Authority
JP
Japan
Prior art keywords
light
distance
lens
measurement
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26746587A
Other languages
Japanese (ja)
Inventor
Tateaki Tanaka
建明 田中
Yoshiichi Morishita
森下 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26746587A priority Critical patent/JPH01109284A/en
Publication of JPH01109284A publication Critical patent/JPH01109284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To expand a measurement range by arranging the photodetection surface of a photodetector at a position of the image point distance of the longest measurement distance from the center of a lens at right angles to the optical axis of the lens. CONSTITUTION:A pencil beam 1 of 2mm in diameter emitted by a light source 6 of 20 milliwatt output strikes on an object 2 of distance measurement and is reflected irregularly. This irregularly reflected light 3 is condensed by the condenser lens 4 to illuminate the photodetecting element 5. Here, the element 5 is, for example, a CCD (charge-coupled device) and its photodetection surface is arranged at the image distance Kmax of the reflected light 3a from the object 2a of measurement at the longest measurement distance Lmax and at right angles to the optical axis of the lens 4 so that the image-formed reflected light illuminates the photodetection surface of the element 5. At the same time, the element 5 is so arranged as to project all of the reflected light 3b at the shortest measurement distance Lmin which is converged by the lens 4 on the other end of the photodetection surface of the element 5, and the image diameter of the reflected light projected on the element 5 at this time is maximum. Thus the measurement range is expanded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は距離測定装置に関し、更に詳しくは走行ロボッ
トの視覚センサとして用いられる光学式の距離測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a distance measuring device, and more particularly to an optical distance measuring device used as a visual sensor for a traveling robot.

(ロ)従来の技術 従来この種の装置としては、例えば、(1)雑誌「セン
サ技術J 1983年5月号pat〜33と、(2)雑
誌「センサ技術J 19g4年7月号p69〜72とに
開示されたものが知られている。すなわち、両者とも三
角側jl法を用いて距離測定をおこなうものである。
(b) Conventional technology Conventionally, this type of device has been published, for example, in (1) the magazine "Sensor Technology J, May 1983 issue, p. 33," (2) the magazine "Sensor Technology J, July 1983 issue, p. 69-72. In other words, both methods use the triangular side jl method to measure distance.

前者は、第4図に示すように、受光素子の受光面をレン
ズの光軸に対して傾けて設置したものであり、後者は、
第5図に示すように、受光面をレンズの焦点距離位置に
、かつ光軸に垂直に設置したものである。以下、この三
角測量法の基本原理を第4図を用いて説明する。
In the former, as shown in Fig. 4, the light-receiving surface of the light-receiving element is installed at an angle with respect to the optical axis of the lens, and in the latter,
As shown in FIG. 5, the light receiving surface is placed at the focal length of the lens and perpendicular to the optical axis. The basic principle of this triangulation method will be explained below using FIG.

第4図において、光源より発射されたペンシルビームl
は測定対象物2に当たって乱反射する。
In Figure 4, the pencil beam l emitted from the light source
hits the measurement object 2 and is diffusely reflected.

その反射光3を集光レンズ4(以下、レンズと略記する
)で集光し、受光素子5の受光面上に結像させる。この
時、測定対象物2までの距離に応じて受光面上を結像点
Pが移動するため、この位置を測定することにより距離
りを計算することができる。受光素子としては一般にC
CD (chargecoupled device)
リニアイメージセンサまたは半導***置検出素子(po
sition 5ensible detector;
以下、PSDと略記する)が用いられる。そして、レン
ズ4の焦点距離をf1受光素子5の受光面の長さをSと
し、最短測定距離La1n及び最長測定距#iL++a
xに設定した場合に、それぞれ受光面の両端で結像する
ように受光素子5を配置する。そしてペンシルビーム1
とレンズ4の光軸との角度をθとし、受光面の一端から
結像点Pまでの距離をtとすると、測定範囲内の任意の
測定距離りはより計算することができる。
The reflected light 3 is condensed by a condenser lens 4 (hereinafter abbreviated as a lens), and an image is formed on the light-receiving surface of the light-receiving element 5. At this time, since the imaging point P moves on the light receiving surface according to the distance to the measurement object 2, the distance can be calculated by measuring this position. Generally, C is used as a light receiving element.
CD (charge coupled device)
Linear image sensor or semiconductor position detection element (po
location 5enable detector;
(hereinafter abbreviated as PSD) is used. Then, the focal length of the lens 4 is f1, the length of the light receiving surface of the light receiving element 5 is S, the shortest measurement distance La1n and the longest measurement distance #iL++a
When set to x, the light receiving elements 5 are arranged so that images are formed at both ends of the light receiving surface. and pencil beam 1
If the angle between P and the optical axis of the lens 4 is θ, and the distance from one end of the light-receiving surface to the imaging point P is t, then any measurement distance within the measurement range can be more easily calculated.

この時、受光素子5の受光面はレンズ4の光軸に対し角
度ψ傾け、かつその延長線が、ペンシルビームlと、レ
ンズ4の中点を通りレンズ4の光軸に垂直な線aとの交
点0を通るように設置する。
At this time, the light-receiving surface of the light-receiving element 5 is tilted at an angle ψ with respect to the optical axis of the lens 4, and its extension line is a line a passing through the middle point of the lens 4 and perpendicular to the optical axis of the lens 4. It is installed so that it passes through the intersection 0.

この交点0が距離りの始点であり、始点から、ペンシル
ビーム1とレンズ4の光軸との交点までの距離をLoと
すると なる角度に設定する。ここで、Aは、レンズ位置におけ
る光軸とペンシルビームとの距離である。
This intersection 0 is the starting point of the distance, and the angle is set such that the distance from the starting point to the intersection of the pencil beam 1 and the optical axis of the lens 4 is Lo. Here, A is the distance between the optical axis and the pencil beam at the lens position.

この方法による距離測定は超音波距離測定に比較し、 ■ビームの広がりがなく、細部の測定が可能である。Distance measurement using this method is compared to ultrasonic distance measurement, ■There is no beam spread, allowing detailed measurements.

■二次以上の多重反射の影響がほとんどなく誤測定が少
ない等の点で優れており、走行ロボットの物体形状を認
識するための視覚センサとして有効な方法である。
■It is excellent in that there is almost no effect of multiple reflections of secondary or higher order and there are fewer erroneous measurements, making it an effective method as a visual sensor for recognizing the shape of objects in running robots.

(ハ)発明が解決しようとする問題点 しかしながら前者の装置では、受光素子5の受光面をレ
ンズ4の光軸に対して式(2)に示す角度ψだけ傾けて
設置する必要があり、測定距離範囲内のどの距離でも像
点と受光面が一致する反面、■受光素子取付部分の加工
が困難でコストアップになる。
(c) Problems to be solved by the invention However, in the former device, it is necessary to install the light receiving surface of the light receiving element 5 at an angle ψ shown in equation (2) with respect to the optical axis of the lens 4. Although the image point and the light-receiving surface match at any distance within the distance range, (1) machining of the light-receiving element mounting part is difficult and costs increase.

■受光素子の取付けおよびその調整が難しく測定に誤差
が出る。
■It is difficult to install and adjust the photodetector, resulting in measurement errors.

等の欠点がある。There are drawbacks such as.

一方後者の装置では、像点距離が焦点距離fよりも長く
受光面と像点が異なる位置にあるため、像がぼけるとい
う問題がある。すなわち、本測定方式は乱反射光を集光
するため、光源誌・らの出射光量に対し、受光面での受
光光量は第6図に示すように、単位面積当′りの受光光
量Psが遠距離になるほど極端に少なくなる。すなわち
、像がぼけると光量不足となり、このため測定可能距離
を短くする必要があったり、測定精度が低下するおそれ
がある。
On the other hand, in the latter device, the image point distance is longer than the focal length f and the light-receiving surface and the image point are at different positions, so there is a problem that the image is blurred. In other words, since this measurement method focuses the diffusely reflected light, the amount of light received at the light receiving surface is far greater than the amount of light emitted from the light source, Ps, as shown in Figure 6. It becomes extremely small as the distance increases. That is, when the image becomes blurred, the amount of light becomes insufficient, which may require shortening the measurable distance or reduce measurement accuracy.

この対策として出射光量を増大させるようにすれば、装
置が大型化したり、光源としてレーザ光を使用する場合
は特に出力を増大する必要があるため危険を招くおそれ
がある。
If the amount of emitted light is increased as a countermeasure to this problem, the device may become larger, and if a laser beam is used as a light source, the output must be increased, which may lead to danger.

本発明は受光素子の取付は部の加工及び調整を容易にで
き、かつ測定距離を増長できる距離測定装置を提供する
ことを目的の一つとするものである。
One of the objects of the present invention is to provide a distance measuring device in which the attachment of a light receiving element can be easily processed and adjusted, and the measuring distance can be increased.

(ニ)問題点を解決するための手段 本発明は、距離測定対象物に向ってペンシルビームを出
射する光源と、上記ペンシルビームの反射光を集光する
集光レンズと、集光される反射光を受光する受光素子と
を有し、この受光素子から出力される受光面上での光照
射位置検出信号にもとづいて上記距離測定対象物までの
距離を測定する距離測定装置において、上記受光f子が
、その受光面を上記集光レンズの光軸に対して垂直に、
かつレンズ中心より最長測定距離の像点距離の位置に配
設してなる距離測定装置である。
(d) Means for Solving the Problems The present invention provides a light source that emits a pencil beam toward an object to be measured, a condensing lens that condenses the reflected light of the pencil beam, and a condensing lens that condenses the reflected light of the pencil beam. In a distance measuring device that has a light receiving element that receives light and measures the distance to the distance measurement target based on a light irradiation position detection signal on the light receiving surface output from the light receiving element, the light receiving element f with its light-receiving surface perpendicular to the optical axis of the condenser lens,
The distance measuring device is disposed at a position of the image point distance of the longest measurement distance from the center of the lens.

すなわち、本発明は、受光素子の受光面をレンズの光軸
に垂直に配設し、かつ受光面を測定距離範囲の最長測定
距離における像点位置に配置する構成としたものである
That is, in the present invention, the light-receiving surface of the light-receiving element is arranged perpendicular to the optical axis of the lens, and the light-receiving surface is arranged at the image point position at the longest measurement distance in the measurement distance range.

この8明における受光素子としてはPSDやCODイメ
ージセンサ、特にCCDリニアイメージセンサなどが挙
げられる。
Examples of light-receiving elements in this 8-light system include PSD and COD image sensors, particularly CCD linear image sensors.

この発明における光源としては、半導体レーザあるいは
ガスレーザが挙げられ、発光ダイオードも適用可能であ
る。
The light source in this invention includes a semiconductor laser or a gas laser, and a light emitting diode is also applicable.

(ホ)作用 この構成において、光源より発射されたペンシルビーム
は距離測定対象物に当り乱反射する。そして、この反射
光を集光レンズで集光すると、最も光量の少ない最長測
定距離においては受光素子の受光面と像点が一致するこ
とから、受光面には集光された光エネルギーが集中し、
これにより受光素子は十分な出力を発生できる。また、
最短測定距離に近づくにしたがい受光面上の像のぼけが
大きくなっても、受光面上に集光された光エネルギーの
増加により受光素子から十分な出力を発生できて距離が
測定されうる。
(e) Effect In this configuration, the pencil beam emitted from the light source hits the object to be measured and is diffusely reflected. Then, when this reflected light is focused by a condensing lens, the light receiving surface of the light receiving element and the image point coincide with each other at the longest measurement distance where the amount of light is least, so the focused light energy is concentrated on the light receiving surface. ,
This allows the light receiving element to generate sufficient output. Also,
Even if the image on the light-receiving surface becomes more blurred as it approaches the shortest measurement distance, sufficient output can be generated from the light-receiving element due to the increase in the light energy focused on the light-receiving surface, and the distance can be measured.

(へ)実施例 以下本発明の実施例を図面にもとづいて説明する。なお
、これによって本発明は限定されることはない。
(f) Examples Examples of the present invention will now be described based on the drawings. Note that the present invention is not limited thereby.

第1図において、1は出力20mW(ミリ・ワット)の
光源6より発射された211径のペンシルビームで、こ
れは距離測定対象物2に当り、乱反射する。4は集光レ
ンズであり、距離測定対象物2に当って乱反射した反射
光3を集光して受光素子5に照射する。
In FIG. 1, reference numeral 1 denotes a pencil beam with a diameter of 211 emitted from a light source 6 with an output of 20 mW (milliwatts), which hits a distance measurement object 2 and is diffusely reflected. Reference numeral 4 denotes a condensing lens, which condenses the reflected light 3 that is diffusely reflected upon hitting the distance measurement object 2 and irradiates it onto the light receiving element 5 .

この受光素子5は例えばPSDであり、この受光面は、
最長測定距離L a+axの測定対象物2aからの反射
光3aの像点用@Kmaxの位置で、かつレンズ4の光
軸に垂直に配設されるとともに、結像した反射光が受光
素子5の受光面の一端に照射されるように配設されてい
る。同時に、受光素子5は、最短測定距離La1nでの
反射光3bのレンズ4により集光された光が受光素子5
の受光面の他端にすべて照射されるように配設されてお
り、この時、受光素子5上に照射される反射光の微径φ
は、第3図に示すように、最大となる。2bおよび3b
はそれぞれLsinの測定対象物およびこの対象物から
の反射光、また、レンズ4の有効径をΦ、距離りにおけ
る像点距離をKとする。
This light receiving element 5 is, for example, a PSD, and this light receiving surface is
It is arranged at the position @Kmax for the image point of the reflected light 3a from the measurement object 2a at the longest measurement distance L a + ax and perpendicular to the optical axis of the lens 4, and the reflected light formed as an image is transmitted to the light receiving element 5. The light is arranged so as to be irradiated onto one end of the light receiving surface. At the same time, the light receiving element 5 receives the reflected light 3b focused by the lens 4 at the shortest measurement distance La1n.
is arranged so that the other end of the light-receiving surface of
is maximum, as shown in FIG. 2b and 3b
are the measurement object Lsin and the reflected light from this object, respectively. Also, the effective diameter of the lens 4 is Φ, and the image point distance in distance is K.

以上の如き構成において、測定範囲内の任意の測定距離
りの反射光3の受光素子5の受光面上の微径φは、 射)光量Pinは、光源6の照射光量をP ouL反射
対象物2の反射率ηとし、反射までの光の減衰がなく、
かつ位置用に乱反射すると考えた場合、となる。
In the above configuration, the minute diameter φ on the light receiving surface of the light receiving element 5 of the reflected light 3 at an arbitrary measurement distance within the measurement range is: With a reflectance η of 2, there is no attenuation of light until reflection,
And if we consider that there is diffuse reflection due to position, then

従ってレンズ4で集光された光が受光素子5の受光面上
に均一に照射されると仮定すると、受光素子5の受光面
が受ける単位面積当りの受光光量Psは Ps =  午   ・(5) となる。
Therefore, assuming that the light focused by the lens 4 is uniformly irradiated onto the light-receiving surface of the light-receiving element 5, the amount of light received per unit area Ps received by the light-receiving surface of the light-receiving element 5 is Ps = pm ・(5) becomes.

このようにして受光素子5から出力される受光面での光
照射位置検出信号にもとづいて距離りが測定される。
In this way, the distance is measured based on the light irradiation position detection signal on the light receiving surface output from the light receiving element 5.

ここで、η= 1.L+sin=OJ(m)、Lmax
= l (m)、Φ=20(as)、P out=1(
W)、ペンシルビームlの径を2JIJIとした場合の
φ、Pin、P+の計算例を第3図に示す。これらを、
第6図に示す従来例のものと比べると、微径φが全体的
に小さくなっていることが分かり、また、単位面積当り
の受光光量Psが遠距離では大きな値で、しかも単調に
増加しているとともに、近距離でも従来より大きな値を
示していることが分かる。
Here, η=1. L+sin=OJ(m), Lmax
= l (m), Φ = 20 (as), P out = 1 (
W), an example of calculating φ, Pin, and P+ when the diameter of the pencil beam l is 2JIJI is shown in FIG. these,
Compared to the conventional example shown in Fig. 6, it can be seen that the fine diameter φ is smaller overall, and the amount of light received per unit area Ps is a large value at a long distance and increases monotonically. It can be seen that the value is larger than before even at short distances.

(ト)発明の効果 以上の如く本発明によれば、受光素子の受光面を、レン
ズ光軸に垂直に、かつレンズ中心より最長測定距離の像
点距離の位置に配設したので、遠距離での単位面積当り
の受光素子への照射光量を増加することができ、従って
簡単な構成で測定範囲を拡大することができる効果があ
る。また、光源の出力アップを必要としないので、コス
トアップや危険を招くおそれはないなど多大の利点を有
する。
(G) Effects of the Invention According to the present invention, the light-receiving surface of the light-receiving element is disposed perpendicular to the lens optical axis and at the image point distance of the longest measurement distance from the center of the lens. The amount of light irradiated onto the light receiving element per unit area can be increased, and therefore the measurement range can be expanded with a simple configuration. Further, since it is not necessary to increase the output of the light source, there are many advantages such as no increase in cost or danger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成説明図、第2図は
上記実施例の要部構成説明図、第3図は上記実施例の測
定距離に対する受光面の微径、受光面全面の受ける受光
光量および単位面積当りの受光光量をそれぞれ示す特性
図、第4図および第5図はそれぞれ従来例を示す構成説
明図、第6図は第5図における第3図相当図である。 1・・・・・・ペンシルビーム、 2.2a、2b・・・・・・距離測定対象物、3.3a
、3b・・・・・・反射光、 4・・・・・・集光レンズ、5・・・・・・受光素子、
6・・・・・・光源、   LIIlax・・・・・・
最長測定距離、L・・・・・・測定距離、 K a+a
x・・・・・・像点距離。 第1図 第2図 第3図 託ail(m) 嫡5図
Fig. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the main part of the above embodiment, and Fig. 3 is a diagram showing the fine diameter of the light receiving surface with respect to the measurement distance of the above embodiment, and the entire surface of the light receiving surface. FIGS. 4 and 5 are diagrams showing the configuration of conventional examples, and FIG. 6 is a diagram corresponding to FIG. 3 in FIG. 5. 1... Pencil beam, 2.2a, 2b... Distance measurement object, 3.3a
, 3b... Reflected light, 4... Condensing lens, 5... Light receiving element,
6...Light source, LIIlax...
Longest measurement distance, L...Measurement distance, K a+a
x... Image point distance. Fig. 1 Fig. 2 Fig. 3 Ail (m) Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1、距離測定対象物に向ってペンシルビームを出射する
光源と、上記ペンシルビームの反射光を集光する集光レ
ンズと、集光される反射光を受光する受光素子とを有し
、この受光素子から出力される受光面上での光照射位置
検出信号にもとづいて上記距離測定対象物までの距離を
測定する距離測定装置において、上記受光素子が、その
受光面を上記集光レンズの光軸に対して垂直に、かつレ
ンズ中心より最長測定距離の像点距離の位置に配設して
なる距離測定装置。
1. It has a light source that emits a pencil beam toward an object to be measured, a condensing lens that condenses the reflected light of the pencil beam, and a light receiving element that receives the condensed reflected light. In a distance measuring device that measures the distance to the object to be measured based on a light irradiation position detection signal on a light receiving surface output from the element, the light receiving element aligns the light receiving surface with the optical axis of the condenser lens. A distance measuring device arranged perpendicular to the lens and at the position of the longest measurement distance from the center of the lens.
JP26746587A 1987-10-21 1987-10-21 Distance measuring instrument Pending JPH01109284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26746587A JPH01109284A (en) 1987-10-21 1987-10-21 Distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26746587A JPH01109284A (en) 1987-10-21 1987-10-21 Distance measuring instrument

Publications (1)

Publication Number Publication Date
JPH01109284A true JPH01109284A (en) 1989-04-26

Family

ID=17445217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26746587A Pending JPH01109284A (en) 1987-10-21 1987-10-21 Distance measuring instrument

Country Status (1)

Country Link
JP (1) JPH01109284A (en)

Similar Documents

Publication Publication Date Title
CN108693515B (en) Lidar system and method for ascertaining a system state of a lidar system
US20030128351A1 (en) Device for optical distance measurement of distance over a large measuring range
EP1577639B1 (en) Optical axial displacement sensor
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JPH11257917A (en) Reflection type optical sensor
JP2000193748A (en) Laser distance-measuring device for large measurement range
JPS5979805A (en) Distance sensor
US4952816A (en) Focus detection system with zero crossing detection for use in optical measuring systems
JP2018040748A (en) Laser range measuring device
JPH01109284A (en) Distance measuring instrument
JP4546047B2 (en) Optical distance measuring device
JP2002071310A (en) Optical displacement measuring device and method therefor
US6317200B1 (en) Positional measurement with normalized signal processing
EP0837301A2 (en) Position detecting element and range sensor
JPH0479522B2 (en)
JP2765291B2 (en) Laser radar device
JP3945120B2 (en) Ranging sensor and adjustment method thereof
JPH11101872A (en) Laser range finder
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
JPS63225116A (en) Optical displacement measuring instrument
JPH10339605A (en) Optical range finder
JPS6225210A (en) Distance detecting equipment
JPS6262208A (en) Range-finding apparatuws and method
JPH09281237A (en) Laser distance measuring instrument
JP4142596B2 (en) Optical distance sensor