JPH01107473A - Lithium ion conductive polymer electrolyte - Google Patents

Lithium ion conductive polymer electrolyte

Info

Publication number
JPH01107473A
JPH01107473A JP62265810A JP26581087A JPH01107473A JP H01107473 A JPH01107473 A JP H01107473A JP 62265810 A JP62265810 A JP 62265810A JP 26581087 A JP26581087 A JP 26581087A JP H01107473 A JPH01107473 A JP H01107473A
Authority
JP
Japan
Prior art keywords
polymer
polymer electrolyte
lithium ion
lithium
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265810A
Other languages
Japanese (ja)
Inventor
Kiyoaki Akashiro
赤代 清明
Tatsu Nagai
龍 長井
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62265810A priority Critical patent/JPH01107473A/en
Publication of JPH01107473A publication Critical patent/JPH01107473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To obtain a polymer electrolyte showing good lithium ion conductivity even at room temperature by using a specified polymer prepared by the addition of polyether glycol to polyglycerine as an organic polymer for polymer electrolyte. CONSTITUTION:A polymer, as shown in the formula I, prepared by the addition of polyether glycol to polyglycerine is used as an organic polymer for a polymer electrolyte. In the formula I, R shows polyethylene glycol, polypropylene glycol and the like, and n is 50 or less. Since polyether glycol which is liquid at room temperature and has good ion condcutivity is added to the side chain, the polymer functions as a good lithium ion condcutor, and the crystallinity of the polymer is lowered and the crystallization at room temperature is difficult to arise. The polymer electrolyte showing good lithium ion conductivity even at room temperature is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、リチウム電池、エレクトロクロミックデイ
スプレィなどの電解質や、リチウムイオン濃度センサー
、リチウムイオン分離膜などの用途に供されるリチウム
イオン伝導性ポリマー電解質に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention is a lithium ion conductive material used in electrolytes such as lithium batteries and electrochromic displays, lithium ion concentration sensors, and lithium ion separation membranes. Concerning polymer electrolytes.

〔従来の技術〕[Conventional technology]

リチウム電池などのリチウムイオン伝導性電解質として
は、LiCl0g/プロピレンカーボネートに代表され
るような液体電解質や、Li5N。
Lithium ion conductive electrolytes for lithium batteries include liquid electrolytes such as LiCl0g/propylene carbonate, and Li5N.

Li1−Altosなどに代表されるような固体電解質
が知られているが、最近では柔軟性のあるフィルム状に
形成することが容易な有機ポリマーをベースとしたポリ
マー電解質を用いる試みがなされている。
Solid electrolytes such as Li1-Altos are known, but recently attempts have been made to use polymer electrolytes based on organic polymers that can be easily formed into a flexible film.

この種のポリマー電解質は、これらを超薄膜化や小型化
が要請されているリチウム電池に適用すれば、電池作製
のための作業性や封止の信頼性の面で有利となり、また
低コスト化にも役立つ利点がある。また、その柔軟性に
よってリチウムイオン分離膜として利用でき、さらにエ
レクトロクロミックデイスプレィなどの電解質やリチウ
ムイオン濃度センサーなどとしても有用である。
If this type of polymer electrolyte is applied to lithium batteries, which require ultra-thin films and miniaturization, it will be advantageous in terms of workability and sealing reliability for battery production, and will also reduce costs. There are also some useful benefits. In addition, due to its flexibility, it can be used as a lithium ion separation membrane, and is also useful as an electrolyte for electrochromic displays and as a lithium ion concentration sensor.

従来、このようなポリマー電解質のひとつとして、有機
ポリマーとしてポリエチレンオキサイドを使用し、これ
とリチウム塩との複合体としたものが知られている(F
ast Ion Transport in 5oli
dP、131(1979)) 。
Conventionally, one known polymer electrolyte is a composite of polyethylene oxide as an organic polymer and lithium salt (F).
ast Ion Transport in 5oli
dP, 131 (1979)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のポリエチレンオキサイド−リチウ
ム塩系のポリマー電解質は、60℃以上の高温では溶融
して比較的良好なリチウムイオン伝導性を示すものの、
25℃程度の室温下ではリチウムイオン伝導性が低く、
室温下で用いられることがほとんどのリチウム電池や前
述のごとき各種用途に応用したときに、性能上充分に満
足できないという問題があった。
However, although the above-mentioned polyethylene oxide-lithium salt-based polymer electrolyte melts at high temperatures of 60°C or higher and exhibits relatively good lithium ion conductivity,
Lithium ion conductivity is low at room temperature of about 25℃,
When applied to lithium batteries, which are mostly used at room temperature, and the various uses mentioned above, there is a problem in that the performance is not fully satisfactory.

したがって、この発明は、リチウムイオン伝導性ポリマ
ー電解質における有機ポリマーとして、上記ポリエチレ
ンオキサイドとは異なる特定のポリマーを用いることに
より、室温下においても良好なリチウムイオン伝導性を
示すポリマー電解質を提供することを目的とする。
Therefore, the present invention aims to provide a polymer electrolyte that exhibits good lithium ion conductivity even at room temperature by using a specific polymer different from the above-mentioned polyethylene oxide as an organic polymer in a lithium ion conductive polymer electrolyte. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記の目的を達成するために鋭意研究
を重ねた結果、ポリマー電解質を構成させる有機ポリマ
ーとして、ポリグリセリンにポリエチレングリコール、
ポリプロピレングリコール、エチレンオキサイド−プロ
ピレンオキサイド共重合体などのポリエーテルグリコー
ルを付加させたポリマーを用いるときは、室温下におい
ても良好なリチウムイオン伝導性を示すポリマー電解質
が得られることを見出し、この発明を完成するにいたっ
た。
As a result of extensive research in order to achieve the above object, the inventors found that polyethylene glycol, polyglycerin, and
It was discovered that when using a polymer to which polyether glycol such as polypropylene glycol or ethylene oxide-propylene oxide copolymer is added, a polymer electrolyte that exhibits good lithium ion conductivity even at room temperature can be obtained, and the present invention was developed based on this discovery. It was completed.

すなわち、この発明は、リチウム塩と有機ポリマーの複
合体からなるリチウムイオン伝導性ポリマー電解質にお
いて、上記の有機ポリマーが、ポリグリセリンにポリエ
ーテルグリコールを付加した一般式(f) (式中、Rはポリエチレングリコール、ポリプロピレン
グリコールまたはエチレンオキサイド−プロピレンオキ
サイド共重合体であり、口は50以下である) で示されるポリマーであることを特徴とするリチウムイ
オン伝導性ポリマー電解質に関するものである。
That is, the present invention provides a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, in which the organic polymer has the general formula (f) in which polyether glycol is added to polyglycerin (wherein R is The present invention relates to a lithium ion conductive polymer electrolyte, which is polyethylene glycol, polypropylene glycol, or an ethylene oxide-propylene oxide copolymer, and has a diameter of 50 or less.

上記一般式(1)で示されるポリマーは、主鎖に従来使
用のポリエチレンオキサイドと同様のポリエチレンオキ
サイド構造をとり、側鎖にポリエチレングリコール、ポ
リプロピレングリコール、エチレンオキサイド−プロピ
レンオキサイド共重合体などのポリエーテルグリコール
を付加させた構造をとっていて、該側鎖には室温下で液
状でイオン伝導性の良好なポリエーテルグリコールを付
加させることができるので、主鎖および側鎖、特に側鎖
が良好なリチウムイオン伝導体として機能し、かつ側鎖
のポリエーテルグリコールによりポリマーの結晶化度が
低くなって、室温下でも結晶化が起こりにくいので、側
鎖の良好なリチウムイオン伝導性を低下させず、室温下
においても良好なリチウムイオン伝導性を示すポリマー
電解質を提供し得る。
The polymer represented by the above general formula (1) has a polyethylene oxide structure similar to conventionally used polyethylene oxide in the main chain, and a polyether such as polyethylene glycol, polypropylene glycol, or ethylene oxide-propylene oxide copolymer in the side chain. It has a glycol-added structure, and polyether glycol, which is liquid at room temperature and has good ion conductivity, can be added to the side chain, so the main chain and side chains, especially the side chains, have good properties. It functions as a lithium ion conductor, and the polyether glycol in the side chain reduces the crystallinity of the polymer, making it difficult for crystallization to occur even at room temperature, so it does not reduce the good lithium ion conductivity of the side chain. A polymer electrolyte that exhibits good lithium ion conductivity even at room temperature can be provided.

また、上記−触式(1)で示されるポリマーの中で、室
温で液状のものは、架橋剤で架橋するこ、とによって、
液状のものの有する良好なイオン伝導性を低下させるこ
となく、固体状にし、室温下においても特に良好なリチ
ウムイオン伝導性を示すポリマー電解質を得ることがで
きる。
Furthermore, among the polymers represented by formula (1) above, those that are liquid at room temperature can be crosslinked with a crosslinking agent.
It is possible to obtain a polymer electrolyte in a solid state that exhibits particularly good lithium ion conductivity even at room temperature without reducing the good ion conductivity of a liquid state.

この発明において、前記一般式(,1)で示されるポリ
マーのポリエーテルグリコール(R)の数平均分子量は
、ポリエーテルグリコールがポリエチレングリコールの
場合、1 、000以下、特に200〜800程度のも
のを用いることが好ましい、これは、ポリエチレングリ
コールの分子量が1 、000を岨えると固体状になっ
て、架橋する前のイオン伝導度が低くなることと、分子
量が小さくなりすぎると架橋した時に架橋点間の距離が
短くなり、リチウムのイオン移動がしにくくなって、イ
オン伝導度が低下するからである。一方、ポリエーテル
グリコールが、ポリプロピレングリコールまたはエチレ
ンオキサイド−プロピレンオキサイドの共重合体の場合
、数平均分子量が200〜10,000、特に1 、0
00〜8.000のものを用いるのが好ましい。
In this invention, the number average molecular weight of the polyether glycol (R) of the polymer represented by the general formula (1) is 1,000 or less, particularly about 200 to 800, when the polyether glycol is polyethylene glycol. This is because when the molecular weight of polyethylene glycol exceeds 1,000, it becomes solid and the ionic conductivity before cross-linking becomes low, and when the molecular weight becomes too small, cross-linking points will be lost when cross-linking. This is because the distance between them becomes shorter, making it difficult for lithium ions to move, resulting in a decrease in ionic conductivity. On the other hand, when the polyether glycol is polypropylene glycol or an ethylene oxide-propylene oxide copolymer, the number average molecular weight is 200 to 10,000, particularly 1,0.
00 to 8.000 is preferably used.

ポリプロピレングリコールまたはエチレンオキサイド−
プロピレンオキサイド共重合体が上記の分子量範囲で好
ましいのは、分子量増加による架橋前のポリマーのイオ
ン伝導度の低下と架橋後の架橋点間の距離の増加(イオ
ン移動のしやすさの増加)との兼ね合いによるものであ
り、上記範囲内でイオン伝導性が特に大きくなるからで
ある。
Polypropylene glycol or ethylene oxide
The propylene oxide copolymer is preferable in the above molecular weight range because of a decrease in the ionic conductivity of the polymer before crosslinking due to an increase in molecular weight and an increase in the distance between crosslinking points after crosslinking (increase in the ease of ion movement). This is because the ionic conductivity becomes particularly high within the above range.

一般式(1)において、nは50以下であるが、これは
nが50を超えると主鎖のポリエーテルの結晶性が高く
なりイオン伝導性が低くなって使用しがたくなる。なお
、nは2以上であればよく、モノマー(つまり、n=1
)でなければよい。
In the general formula (1), n is 50 or less, but if n exceeds 50, the crystallinity of the main chain polyether becomes high and the ionic conductivity becomes low, making it difficult to use. Note that n may be 2 or more, and monomer (that is, n=1
).

一般式(りで示されるポリマーを架橋する際の架橋剤と
しては、ポリマー中の水酸基と付加・縮合反応を起こす
2官能を有する有機物が用いられる。このような2官能
を有する有機物としては、ジイソシアナート、ジアミン
、ジカルボン酸、ジカルボン酸塩化物、メチロール化合
物、エピクロルヒドリンなどがあげられる。そして、上
記ジイソシアナートとしては、例えばヘキサメチレンジ
イソシアナート、2.4−)リレンジイソシアナート、
メチレンビス(4−フェニルイソシアナート)、キシリ
レンジイソシアナートなどが用いられ、ジアミンとして
は、例えばエチレンジアミン、テトラメチレンジアミン
などが用いられる。ジカルボン酸としては、例えばシュ
ウ酸、マロン酸、コハク酸、フタル酸、イソフタル酸、
テレフタル酸などが用いられ、ジカルボン酸塩化物とし
ては、例えば塩化スクシネルなどが用いられ、メチロー
ル化合物としては、例えばジメチル尿素などが用いられ
る。
As a crosslinking agent for crosslinking a polymer represented by the general formula (2), an organic substance having a difunctionality that causes an addition/condensation reaction with a hydroxyl group in the polymer is used. Examples include isocyanates, diamines, dicarboxylic acids, dicarboxylic acid chlorides, methylol compounds, epichlorohydrin, etc. Examples of the diisocyanates include hexamethylene diisocyanate, 2.4-)lylene diisocyanate,
Methylene bis(4-phenyl isocyanate), xylylene diisocyanate, etc. are used, and as the diamine, for example, ethylene diamine, tetramethylene diamine, etc. are used. Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, phthalic acid, isophthalic acid,
Terephthalic acid or the like is used, the dicarboxylic acid chloride is, for example, succinel chloride, and the methylol compound is, for example, dimethylurea.

ポリマー電解質は、一般式(1)で示されるポリマーと
リチウム塩とを適宜の有機溶媒に溶解した溶液を調製し
たのちに有機溶媒を蒸発除去するか、または一般式(1
)で示されるポリマーを架橋剤で架橋した架橋ポリマー
を適当なリチウム塩の有機溶媒溶液に浸漬し、リチウム
塩溶液をポリマー中に浸透させた後、有機溶媒を蒸発除
去することによって作製される。このようなポリマーと
リチウム塩との有機溶媒による溶解または架橋ポリマー
のリチウム塩溶液への浸漬により、ポリマーのエーテル
酸素(−0−)にリチウム塩が錯体を形成して結合し、
溶媒除去後も上記結合が保持されて有機ポリマーとリチ
ウム塩との複合体が得られる。
The polymer electrolyte can be prepared by preparing a solution in which a polymer represented by the general formula (1) and a lithium salt are dissolved in an appropriate organic solvent, and then removing the organic solvent by evaporation, or
) is crosslinked with a crosslinking agent by immersing the crosslinked polymer in an appropriate organic solvent solution of a lithium salt, allowing the lithium salt solution to permeate into the polymer, and then evaporating and removing the organic solvent. By dissolving such a polymer and lithium salt in an organic solvent or by immersing the crosslinked polymer in a lithium salt solution, the lithium salt forms a complex and binds to the ether oxygen (-0-) of the polymer,
Even after the solvent is removed, the above-mentioned bonds are retained and a composite of the organic polymer and lithium salt is obtained.

上記のリチウム塩としては、従来のポリマー電解質に用
いられているものがいずれも使用可能であり、その具体
例としては、例えばLiCFzS02 、L 1cFs
sOt 、L iBr、Lil、Li5CN、L lB
F4 、L i C104、L 1AsF、などがあげ
られ、上記リチウム塩を溶解する溶媒としては、リチウ
ム塩を充分に溶解し、かつポリマーと反応しない有機溶
媒、例えばアセトニトリル、ジオキソラン、l、2−ジ
メトキシエタン、テトラヒドロフラン、メタノール、ア
セトンなどが用いられる。このリチウム塩の使用量は、
上記一般式(1)で示されるポリマーのエーテル酸素(
−0−)1モルに対して0.02〜0.2モル、特に0
.05〜0.1モルの範囲にするのが好ましい、これは
、リチウム塩の増加によるリチウムイオンのキャリアー
濃度の増大と、リチウム塩の増加によるリチウムイオン
の移動度の低下との兼ね合いに基づくものであり、上記
範囲内でリチウムイオン伝導度が大きくなるからである
Any of the lithium salts used in conventional polymer electrolytes can be used as the above lithium salt, and specific examples thereof include LiCFzS02, L1cFs, etc.
sOt, L iBr, Lil, Li5CN, L lB
Examples of the solvent for dissolving the lithium salt include organic solvents that sufficiently dissolve the lithium salt and do not react with the polymer, such as acetonitrile, dioxolane, and l,2-dimethoxy. Ethane, tetrahydrofuran, methanol, acetone, etc. are used. The amount of lithium salt used is
The ether oxygen of the polymer represented by the above general formula (1) (
-0-) 0.02 to 0.2 mol per 1 mol, especially 0
.. The range is preferably from 0.05 to 0.1 mol. This is based on the balance between an increase in the carrier concentration of lithium ions due to an increase in the lithium salt and a decrease in the mobility of lithium ions due to an increase in the lithium salt. This is because the lithium ion conductivity increases within the above range.

ポリマー電解質の形態は、その用途目的などによって適
宜法められる0例えば、この発明のポリマー電解質をリ
チウム電池用の電解質として用いかつ正負両極間のセパ
レータとしての機能を兼ねさせる場合は、ポリマー電解
質をシート状に形成すればよい、このシート状のポリマ
ー電解質を得るには、一般式(1)で示されるポリマー
とリチウム塩との有機溶媒溶液を適宜な基板上に流延し
、有機溶媒を蒸発除去するか、あるいは一般式(1)で
示されるポリマーを架橋剤で架橋した架橋ポリマーをシ
ート状に形成し、該シート状の架橋ポリマーをリチウム
塩の有機溶媒溶液に浸漬し、浸漬後、有i溶媒を蒸発除
去すればよい。上記シートとしては一般にフィルムと呼
ばれるようなミクロンオーダーのきわめて薄いものを作
製することができる。
The form of the polymer electrolyte is determined as appropriate depending on its intended use. For example, when the polymer electrolyte of the present invention is used as an electrolyte for a lithium battery and also serves as a separator between positive and negative electrodes, the polymer electrolyte may be formed into a sheet. To obtain this sheet-like polymer electrolyte, an organic solvent solution of the polymer represented by general formula (1) and a lithium salt is cast onto a suitable substrate, and the organic solvent is removed by evaporation. Alternatively, a crosslinked polymer represented by the general formula (1) is crosslinked with a crosslinking agent to form a sheet, and the sheet crosslinked polymer is immersed in an organic solvent solution of lithium salt, and after immersion, The solvent may be removed by evaporation. As the above-mentioned sheet, an extremely thin sheet on the order of microns, generally called a film, can be produced.

また、この発明のポリマー電解質をリチウム塩の正極に
適用する場合は、一般式(1)で示されるポリマーとリ
チウム塩との有機溶媒溶液に正極活物質などを所定割合
で加え、有機溶媒を蒸発除去したのちシート状などの所
望形状に成形するか、または一般式(1)で示されるポ
リマー、架橋剤、正極活物質などを所定割合で加えた後
、ポリマーを架橋させ、所望形状に成形後、得られた成
形体をリチウム塩の有機溶媒溶液に浸漬し、浸漬後、有
機溶媒を蒸発除去すればよい、そうすることによって、
ポリマー電解質が正極活物質などと混在−棒体した成形
体を得ることができる。
In addition, when applying the polymer electrolyte of the present invention to a lithium salt positive electrode, a positive electrode active material or the like is added in a predetermined ratio to an organic solvent solution of the polymer represented by general formula (1) and a lithium salt, and the organic solvent is evaporated. After removing it, it is molded into a desired shape such as a sheet, or after adding a polymer represented by general formula (1), a crosslinking agent, a positive electrode active material, etc. in a predetermined ratio, the polymer is crosslinked and molded into a desired shape. , the obtained molded body is immersed in an organic solvent solution of lithium salt, and after immersion, the organic solvent is removed by evaporation. By doing so,
A molded body in which a polymer electrolyte is mixed with a positive electrode active material and the like can be obtained.

第1図は上記したこの発明のポリマー電解質を用いたリ
チウム電池の例を示すもので、図中、■はステンレス鋼
からなる方形平板状の正極集電機、2は周辺を一面側へ
段状に折曲した主面と同じ向きの平坦状の周辺部2aを
設けたステンレス鋼からなる浅い方形皿状の負極集電板
、3は両極集電板l、2の対向する周辺部1a、28間
を封止する接着剤層である。
Figure 1 shows an example of a lithium battery using the polymer electrolyte of the present invention described above. A shallow rectangular dish-shaped negative electrode current collector plate made of stainless steel with a flat peripheral part 2a in the same direction as the bent main surface, 3 is a bipolar current collector plate l, and 2 is between the opposing peripheral parts 1a and 28. This is the adhesive layer that seals the

4は両極集電板l、2間に構成された空間5内において
正極集電板1側に配されたこの発明のボIJマー電解質
と正極活物質などとを既述した方法にてシート状に成形
してなる正極、6は空間5内において負極集電板2側に
装填されたリチウムまたはリチウム合金からなる負極、
7は正極4、負極6間に介在させた前記この発明のポリ
マー電解質をシート状に成形してなるセパレータである
Reference numeral 4 denotes both electrode current collector plates l, and the bomber IJ electrolyte of the present invention and positive electrode active material, etc., arranged on the positive electrode current collector plate 1 side in the space 5 formed between the two electrodes are formed into a sheet form by the method described above. 6 is a negative electrode made of lithium or lithium alloy loaded on the negative electrode current collector plate 2 side in the space 5;
7 is a separator formed by molding the polymer electrolyte of the present invention interposed between the positive electrode 4 and the negative electrode 6 into a sheet shape.

なお、上記正極4は、場合により正極活物質とポリテト
ラフルオロエチレン粉末などの結着剤や電子伝導助剤と
を混合してシート状に成形したものなどであってもよい
、正極4に用いる正極活物質としては、例えばTl5z
、Mo5t、V*O+s、v203、VSe、N1PS
s、ポリアニリン、ポリピロール、ポリチオフェンなど
の1種もしくは211以上が用いられる。
In addition, the above-mentioned positive electrode 4 may be formed into a sheet by mixing a positive electrode active material with a binder such as polytetrafluoroethylene powder or an electron conduction aid, depending on the case. As the positive electrode active material, for example, Tl5z
, Mo5t, V*O+s, v203, VSe, N1PS
One or more of s, polyaniline, polypyrrole, polythiophene, etc., or 211 or more are used.

このように構成されるリチウム電池は、セパレータ7が
前記ポリマー電解質からなるシート状物であることによ
り、また正極4が上記ポリマー電解質を含む同様のシー
ト状物であることによって、電池の薄型化や電池作業の
ための作業性、封止の信輔性などの向上に寄与させるこ
とができ、また液体電解質のような漏液の心配が本質的
にないといった種々の利点を有する上に、上記電解質が
そのイオン伝導性にすぐれていることにより、−次電池
としての放電特性や二次電池としての充放電サイクル特
性に非常にすぐれたものとなる。
In the lithium battery constructed in this way, the separator 7 is a sheet-like material made of the polymer electrolyte, and the positive electrode 4 is a similar sheet-like material containing the polymer electrolyte, so that the battery can be made thinner. The above-mentioned electrolyte has various advantages such as being able to contribute to improving workability for battery work and reliability of sealing, and essentially not having to worry about leakage unlike liquid electrolyte. Due to its excellent ionic conductivity, it has excellent discharge characteristics as a secondary battery and excellent charge/discharge cycle characteristics as a secondary battery.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、この発明によれば、リチウム塩と複合体
を構成させる有機ポリマーとして、ポリグリセリンにポ
リエーテルグリコールを付加した一a式(1)で示され
るポリマーを用いることにより、室温下においても良好
なリチウムイオン伝導性を示すポリマー電解質を提供す
ることができる。
As described above, according to the present invention, by using a polymer represented by Formula 1a (1) in which polyether glycol is added to polyglycerin as an organic polymer constituting a complex with a lithium salt, even at room temperature A polymer electrolyte exhibiting good lithium ion conductivity can be provided.

〔実施例〕〔Example〕

以下にこの発明の実施例を比較例と対比して記述する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1 数平均分子315,000のユニグリA V −645
(商品名、日本油脂(株)製)を100℃で2時間真空
乾燥した。このユニグリA V−645(商品名)の構
造式は次に示すとおりである。
Example 1 UNIGRI AV-645 with number average molecular weight of 315,000
(trade name, manufactured by NOF Corporation) was vacuum dried at 100° C. for 2 hours. The structural formula of UNIGRI AV-645 (trade name) is as shown below.

上記ユニグリA V−645(商品名)9.26gト2
.4−トリレンジイソシアナー)0.5gを三角フラス
コに入れ、マグネチックスクーラーで撹拌後、得られた
粘性溶液状混合物をアルミニウム板上に滴下し、アルゴ
ンガスフロー中で、ホットプレート上にて80°Cで8
時間反応させて架橋体(架橋ポリマーという)を得た。
The above Unigri A V-645 (product name) 9.26g 2
.. 4-Tolylene diisocyaner) was placed in an Erlenmeyer flask, stirred with a magnetic cooler, the resulting viscous solution mixture was dropped onto an aluminum plate, and heated to 80% on a hot plate in an argon gas flow. 8 at °C
A crosslinked product (referred to as a crosslinked polymer) was obtained by reacting for a period of time.

得られた架橋ポリマーをアルミニウム板からはがし、ア
セトン中に浸漬して、未反応の2.4−)リレンジイソ
シアナートをアセトンに溶解して除去した。つぎにエタ
ノール中に浸漬し、未反応のNGO基をエタノールと反
応させた。ついで架橋ポリマーを濃度3重量%のl5i
cFssOsアセトン溶液中に8時間浸漬し、LiCF
35Oz溶液を架橋ポリマー中に浸透させた後60℃に
加熱してアセトンを蒸発除去して厚さ50amのシート
状のポリマー電解質を得た。
The obtained crosslinked polymer was peeled off from the aluminum plate and immersed in acetone to remove unreacted 2,4-)lylene diisocyanate by dissolving it in acetone. Next, it was immersed in ethanol to cause unreacted NGO groups to react with ethanol. The crosslinked polymer was then mixed with l5i at a concentration of 3% by weight.
LiCF was soaked in cFssOs acetone solution for 8 hours.
A 35Oz solution was permeated into the crosslinked polymer and then heated to 60°C to evaporate the acetone to obtain a sheet-like polymer electrolyte with a thickness of 50am.

実施例2 +31”I  ユニグリAV−645(商品名)に代え
て数平均分子量1,100のユニグリAV−611(商
品名、日本油脂(株)製)を1.58g使用した以外は
実施例】と同様にしてポリマー電解質を得た。上記ユニ
グリA V −610商品名)の構造式は次に示すとお
りである。
Example 2 +31"I Example except that 1.58 g of UNIGRI AV-611 (trade name, manufactured by NOF Corporation) with a number average molecular weight of 1,100 was used instead of UNIGRI AV-645 (trade name)] A polymer electrolyte was obtained in the same manner as above.The structural formula of UNIGRI AV-610 (trade name) is as shown below.

実施例3 ユニグリA V−645(商品名)に代えて数平均分子
量2.000のユニグリA V−620(商品名、日本
油脂(株)製)を2.87g使用した以外は実施例1と
同様にしてポリマー電解質を得た。上記ユニグリAV−
620(商品名)の構造式は次に示すとおりである。
Example 3 Same as Example 1 except that 2.87g of UNIGRI A V-620 (trade name, manufactured by NOF Corporation) having a number average molecular weight of 2.000 was used instead of UNIGRI A V-645 (trade name). A polymer electrolyte was obtained in the same manner. The above Unigri AV-
The structural formula of 620 (trade name) is as shown below.

実施例4 ユニグリAV−645(商品名)に代えて数平均分子量
7,000のユニグリA V−670(商品名、日本油
脂(株)製)を10g使用した以外は実施例1と同様に
してポリマー電解質を得た。上記ユニグリAV−670
(商品名)の構造式は次に示すとおりである。
Example 4 The same procedure as in Example 1 was carried out, except that 10 g of UNIGRI AV-670 (trade name, manufactured by NOF Corporation) having a number average molecular weight of 7,000 was used in place of UNIGRI AV-645 (trade name). A polymer electrolyte was obtained. Above Unigri AV-670
The structural formula of (product name) is as shown below.

】 実施例5 数平均分子量7Q、QQQ(7)ユニグIJ A−V−
670T (商品名、日本油脂(株)製)を100°C
で2時間真空乾燥した。このユニグリAV−670T 
(商品名)の構造式は次に示すとおりである。
] Example 5 Number average molecular weight 7Q, QQQ (7) UNIG IJ AV-
670T (product name, manufactured by NOF Corporation) at 100°C
It was vacuum dried for 2 hours. This Unigri AV-670T
The structural formula of (product name) is as shown below.

上記コニグリAV−6707(商品名)IgとLiCF
 s S Os O,236gをアセトニトリル5ml
に溶解し、マグネチックスターラーで撹拌して均一に混
合した。得られた粘性溶液状混合物をガラス基板上に滴
下し、常圧下、アルゴンガスフロー中で5時間放置した
後、真空度I Xl0−’torr、温度120℃で1
0時間処理して、アセトニトリルを蒸発H除去し、厚さ
20μmのシート状のポリマー電解質を得た。
Coniguri AV-6707 (product name) Ig and LiCF
s S Os O, 236g, acetonitrile 5ml
and stirred with a magnetic stirrer to mix uniformly. The obtained viscous solution-like mixture was dropped onto a glass substrate, left for 5 hours under normal pressure in an argon gas flow, and then heated at a vacuum degree of I Xl0-'torr and a temperature of 120°C.
After treatment for 0 hours, acetonitrile was removed by evaporation to obtain a sheet-like polymer electrolyte with a thickness of 20 μm.

実施例6 ユニグリAV−6707(商品名)に代えて数平均分子
量35.000<7)LニゲIJAV−635T (商
品名、日本油脂(株)製)を1g使用し、かつLiCF
Example 6 1 g of L Nige IJAV-635T (trade name, manufactured by NOF Corporation) (number average molecular weight 35.000 < 7) was used in place of Unigri AV-6707 (trade name), and LiCF
.

503の量を0.237gに変えた以外は実施例5と同
様にしてポリマー電解質を得た。上記ユニグリAV−6
35T (商品名)の構造式は次に示すとおりである。
A polymer electrolyte was obtained in the same manner as in Example 5 except that the amount of 503 was changed to 0.237 g. Above Unigri AV-6
The structural formula of 35T (trade name) is as shown below.

比較例1 数平均分子量600 、000のポリエチレンオキサイ
ドIgとL 1cFssOs  O,326gをアセト
ニトリル5mlに溶解し、マグネチックスターラーで撹
拌して均一に溶解した。この溶液をガラス基板上に滴下
し、常圧下アルゴンガスフロー中で5時間放置した後、
真空度I Xl0−’torr、温度120℃で10時
間処理して、アセトニトリルを蒸発除去し、厚さ20μ
mのシート状のポリマー電解質を得た。
Comparative Example 1 Polyethylene oxide Ig having a number average molecular weight of 600.000 and 326 g of L1cFssOs O were dissolved in 5 ml of acetonitrile and stirred with a magnetic stirrer to uniformly dissolve. After dropping this solution onto a glass substrate and leaving it for 5 hours in an argon gas flow under normal pressure,
Processed for 10 hours at a vacuum degree of I
A sheet-like polymer electrolyte of m was obtained.

上記実施例1〜6および比較例1のポリマー電解質の性
能を調べるために、以下のイオン伝導度試験および電池
の内部抵抗試験を行った。
In order to examine the performance of the polymer electrolytes of Examples 1 to 6 and Comparative Example 1, the following ionic conductivity test and battery internal resistance test were conducted.

(イオン伝導度試験) 実施例1〜4の各ポリマー電解質はAu板でサンドイン
チ状に挾み、実施例5〜6および比較例1のポリマー電
解質はその上にAu<L型電極を蒸着法で形成し、電極
間の交流インピーダンスを測定し、複素インピーダンス
解析(Cole−Coleプロット)を行い、室温(2
5℃)でのイオン伝導度を決定した。結果は第1表に示
すとおりである。
(Ionic conductivity test) Each of the polymer electrolytes of Examples 1 to 4 was sandwiched between Au plates in the form of a sandwich, and the polymer electrolytes of Examples 5 to 6 and Comparative Example 1 were coated with Au<L type electrodes by vapor deposition. The alternating current impedance between the electrodes was measured, and complex impedance analysis (Cole-Cole plot) was performed.
The ionic conductivity at 5°C was determined. The results are shown in Table 1.

第    1    表 また、種々の温度条件下でのイオン伝導度を上記同様に
して測定した結果は、第2図に示すとおりである。第2
図において、縦軸はイオン伝導度(S/cm)であり、
横軸は絶対温度の逆数10”/T (K−1)である、
また、曲線2aは実施例1の結果、曲線2bは実施例2
の結果、曲線2cは実施例3の結果、曲線2dは実施例
4の結果、曲線2eは実施例5の結果、曲線2fは実施
例6の結果、曲線2gは比較例1の結果である。
Table 1 Further, the results of measuring the ionic conductivity under various temperature conditions in the same manner as above are shown in FIG. Second
In the figure, the vertical axis is ionic conductivity (S/cm),
The horizontal axis is the reciprocal of absolute temperature 10”/T (K-1),
Also, curve 2a is the result of Example 1, and curve 2b is the result of Example 2.
As a result, curve 2c is the result of Example 3, curve 2d is the result of Example 4, curve 2e is the result of Example 5, curve 2f is the result of Example 6, and curve 2g is the result of Comparative Example 1.

〈電池の内部抵抗試験) 実施例1〜6および比較例1のポリマー電解質をセパレ
ータとして用いた第1図に示す構成の総厚0.5−1−
辺の長さ15+++mの正方形薄型のリチウム電池を作
製した。
(Internal resistance test of battery) Total thickness of the structure shown in FIG. 1 using the polymer electrolytes of Examples 1 to 6 and Comparative Example 1 as a separator: 0.5-1-
A square thin lithium battery with a side length of 15+++ m was produced.

なお、負極はリチウムとアルミニウムとの合金を、正極
は実施例1〜6および比較例1と同組成のポリマー電解
質と二硫化チタン(TIS、)とを含むシート状成形物
をそれぞれ用いた。
An alloy of lithium and aluminum was used as the negative electrode, and a sheet-shaped molded product containing a polymer electrolyte having the same composition as in Examples 1 to 6 and Comparative Example 1 and titanium disulfide (TIS) was used as the positive electrode.

これらのリチウム電池について、25℃、60℃、10
0℃での内部抵抗を測定した結果を第2表に示す。
For these lithium batteries, 25℃, 60℃, 10℃
Table 2 shows the results of measuring the internal resistance at 0°C.

第     2     表 以上の試験結果から明らかなように、この発明の実施例
1〜6のポリマー電解質は、室温(25℃;第2図の横
軸の値で約3.35)付近においても約8.0X1G−
’ 〜1.OXl0−’S/CI程度の高いイオン伝導
性を示したが、ポリエチレンオキサイドをポリマー成分
とする比較例1のポリマー電解質は、室温でのイオン伝
導度が1.0X10−@S/cmであり、この発明の実
施例1〜6のポリマー電解質に比べて、イオン伝導度が
低かうた。
As is clear from the test results in Table 2 and above, the polymer electrolytes of Examples 1 to 6 of the present invention had a temperature of about 8.0 .0X1G-
'~1. Although the polymer electrolyte of Comparative Example 1 containing polyethylene oxide as a polymer component had an ionic conductivity as high as OXl0-'S/CI, the ionic conductivity at room temperature was 1.0X10-@S/cm. The ionic conductivity was lower than that of the polymer electrolytes of Examples 1 to 6 of this invention.

また、第2表に示すように、この発明の実施例1〜6の
ポリマー電解質を用いたリチウム電池の室温(25℃)
での内部抵抗は、11.1〜8.900Ωであったが、
比較例1のポリマー電解質を用いたリチウム電池の室温
(25℃)での内部抵抗は89.000Ωと非常に大き
かった。
Furthermore, as shown in Table 2, lithium batteries using the polymer electrolytes of Examples 1 to 6 of the present invention were prepared at room temperature (25°C).
The internal resistance was 11.1 to 8.900Ω, but
The internal resistance of the lithium battery using the polymer electrolyte of Comparative Example 1 at room temperature (25° C.) was as large as 89.000Ω.

特に分子量が小さいポリマーを架橋剤で架橋した架橋ポ
リマーをポリマー成分として用いた実施例1〜4のポリ
マー電解質は、イオン伝導度が大きく、また、それらを
電解質として用いたリチウム電池の室温下での内部抵抗
は他のものに比べて非常に小さかった。
In particular, the polymer electrolytes of Examples 1 to 4, in which crosslinked polymers with low molecular weights were crosslinked with a crosslinking agent, had high ionic conductivity, and the ion conductivity of lithium batteries using them as electrolytes was high at room temperature. Internal resistance was very small compared to others.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のリチウムイオン伝導性ポリマー電解
質を用いたリチウム電池の一例を示す縦断面図である。 第2図はこの発明および比較用のリチウムイオン伝導性
ポリマー電解質のイオン伝導度と温度との関係を示す図
である。 7・・・セパレータ (ポリマー電解質)第  1  
FIG. 1 is a longitudinal sectional view showing an example of a lithium battery using the lithium ion conductive polymer electrolyte of the present invention. FIG. 2 is a diagram showing the relationship between ionic conductivity and temperature of lithium ion conductive polymer electrolytes of the present invention and comparative lithium ion conductive polymer electrolytes. 7... Separator (polymer electrolyte) 1st
figure

Claims (2)

【特許請求の範囲】[Claims] (1)リチウム塩と有機ポリマーとの複合体からなるリ
チウムイオン伝導性ポリマー電解質において、上記の有
機ポリマーが、ポリグリセリンにポリエーテルグリコー
ルを付加した一般式(I) ▲数式、化学式、表等があります▼(I) (式中、Rはポリエチレングリコール、ポリプロピレン
グリコールまたはエチレンオキサイド−プロピレンオキ
サイド共重合体であり、nは50以下である) で示されるポリマーであることを特徴とするリチウムイ
オン伝導性ポリマー電解質。
(1) In a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, the above organic polymer has the general formula (I) in which polyether glycol is added to polyglycerin. ▲ Numerical formulas, chemical formulas, tables, etc. ▼(I) (wherein R is polyethylene glycol, polypropylene glycol or ethylene oxide-propylene oxide copolymer, and n is 50 or less) A lithium ion conductive polymer characterized by being a polymer represented by: Polymer electrolyte.
(2)リチウム塩と有機ポリマーとの複合体からなるリ
チウムイオン伝導性ポリマー電解質において、上記の有
機ポリマーが、ポリグリセリンにポリエーテルグリコー
ルを付加した一般式(I) ▲数式、化学式、表等があります▼(I) (式中、Rはポリエチレングリコール、ポリプロピレン
グリコールまたはエチレンオキサイド−プロピレンオキ
サイド共重合体であり、nは50以下である) で示されるポリマーを架橋剤で架橋した架橋ポリマーで
あることを特徴とするリチウムイオン伝導性ポリマー電
解質。
(2) In a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, the above organic polymer has the general formula (I) in which polyether glycol is added to polyglycerin. ▲ Numerical formulas, chemical formulas, tables, etc. ▼(I) (wherein R is polyethylene glycol, polypropylene glycol, or ethylene oxide-propylene oxide copolymer, and n is 50 or less) It is a crosslinked polymer obtained by crosslinking the polymer shown by the following with a crosslinking agent. A lithium ion conductive polymer electrolyte featuring:
JP62265810A 1987-10-20 1987-10-20 Lithium ion conductive polymer electrolyte Pending JPH01107473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265810A JPH01107473A (en) 1987-10-20 1987-10-20 Lithium ion conductive polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265810A JPH01107473A (en) 1987-10-20 1987-10-20 Lithium ion conductive polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH01107473A true JPH01107473A (en) 1989-04-25

Family

ID=17422365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265810A Pending JPH01107473A (en) 1987-10-20 1987-10-20 Lithium ion conductive polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH01107473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516339A (en) * 1993-02-05 1996-05-14 Eveready Battery Company, Inc. Process for making electrochemical cells using a polymer electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516339A (en) * 1993-02-05 1996-05-14 Eveready Battery Company, Inc. Process for making electrochemical cells using a polymer electrolyte
US5660950A (en) * 1993-02-05 1997-08-26 Eveready Battery Company Electrochemical cells using a polymer electrolyte

Similar Documents

Publication Publication Date Title
US10622671B2 (en) Hybrid electrolytes with controlled network structures for lithium metal batteries
JPH03190959A (en) Lithium ion-conductive polyelectrolyte
Jo et al. Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly (vinyl alcohol) matrix
US6214251B1 (en) Polymer electrolyte composition
WO1996021639A1 (en) Organic liquid electrolyte plasticizer
EP3664210B1 (en) Secondary battery solid electrolyte composition and solid electrolyte prepared therefrom
JP3407363B2 (en) Polymer solid electrolyte
US20060222956A1 (en) Gel electrolyte, process for producing the same, and use thereof
JP3022317B2 (en) Polymer solid electrolyte
JPH02291603A (en) Ion conductive polymer electrolyte and battery using it
WO2019158781A1 (en) Solid polymer electrolyte
JPH02295004A (en) Lithium ion conductive polymer electrolyte
JPH01107474A (en) Lithium ion conductive polymer electrolyte
JPH01107473A (en) Lithium ion conductive polymer electrolyte
US20200381780A1 (en) Solid polymer electrolyte
JPH0224976A (en) Lithium ion conducting polymer electrolyte
JPH0224975A (en) Lithium ion conducting polymer electrolyte
JPS63136407A (en) Lithium ion conducting polymer electrolyte
JPH01107471A (en) Lithium ion conductive polymer electrolyte
JPS62254303A (en) Lithium ion conducting polymer electrolyte
JP3729757B2 (en) Polymer electrolyte substrate, polymer electrolyte, and polymer electrolyte sheet for non-aqueous secondary battery
JPH08217869A (en) Solid polyelectrolyte
JPH01107469A (en) Lithium ion conductive polymer electrolyte
JP2008204858A (en) Electrode integrated polymer electrolyte membrane and electrochemical element using the same
JPH01107472A (en) Lithium ion conductive polymer electrolyte