JPH01105569A - Semiconductor integrated device and removing method for malfunction thereof - Google Patents

Semiconductor integrated device and removing method for malfunction thereof

Info

Publication number
JPH01105569A
JPH01105569A JP26325587A JP26325587A JPH01105569A JP H01105569 A JPH01105569 A JP H01105569A JP 26325587 A JP26325587 A JP 26325587A JP 26325587 A JP26325587 A JP 26325587A JP H01105569 A JPH01105569 A JP H01105569A
Authority
JP
Japan
Prior art keywords
capacitor
lower electrode
semiconductor integrated
insulating film
integrated device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26325587A
Other languages
Japanese (ja)
Inventor
Hideji Ito
伊藤 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26325587A priority Critical patent/JPH01105569A/en
Publication of JPH01105569A publication Critical patent/JPH01105569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To remove only an improper unit capacitor and to improve its yield by dividing a capacitor formed on a substrate into a plurality, and connecting in parallel them with wirings having a narrow part of a wiring width. CONSTITUTION:A lower electrode 12 made of an N-type or the like high concentration impurity layer is formed on a surface layer of a semiconductor substrate 11. An insulating film 13 of an Si oxide film or the like is formed on the electrode 12, and upper electrodes 14,... divided into a plurality are formed of aluminum films, etc. thereon. The electrodes 14 are connected in parallel with leading wirings 14 having a part 15a of narrow width at its part. A high voltage is applied between the wirings 15 and 16 of upper and lower electrodes 14, 12. Then, an insulation breakdown occurs at the defective part of the film 13, a short-circuiting current flows to the unit capacitor including the defective part to fusion-cut the narrow wiring part 15a. Thereafter, only an improper unit capacitor is disconnected. Since only the improper part can be disconnected, the yield of a semiconductor integrated circuit is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体基板に形成されたコンデンサを備えた
半導体集積装置及びその不良除去方法、特にそのコンデ
ンサの溝道とそのコンデンサの不良除去方法に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor integrated device having a capacitor formed on a semiconductor substrate and a method for removing defects thereof, particularly a groove in the capacitor and a method for removing defects in the capacitor. It is related to.

(従来の技術) 従来、このような分野の技術としては、例えば第2図及
び第3図のようなものがあった。以下、その構成を説明
する。
(Prior Art) Conventionally, there have been technologies in this field, such as those shown in FIGS. 2 and 3, for example. The configuration will be explained below.

第2図は従来の半導体集積装置におけるコンデンサの平
面図、及び第3図はそのA−A線断面拡大図である。
FIG. 2 is a plan view of a capacitor in a conventional semiconductor integrated device, and FIG. 3 is an enlarged cross-sectional view taken along line A--A.

このコンデンサは、例えばバイポーラ型半導体集積装置
に設けられるもので、バイポーラ型トランジスタ等の能
動素子が形成されるN型シリコン基板1の表層には、高
濃度N型不純物層からなる下部電極2が形成され、さら
にその上にはシリコン酸化113を介して、導電層から
なる上部電極4が形成されている。ざらにシリコン酸化
膜3上には、上部電極4に接続された取出し配線5と、
コンタクト孔を介して下部電極2に接続された取出し配
線6とが形成されている。
This capacitor is provided, for example, in a bipolar semiconductor integrated device, and a lower electrode 2 made of a highly concentrated N-type impurity layer is formed on the surface layer of an N-type silicon substrate 1 on which active elements such as bipolar transistors are formed. Further, an upper electrode 4 made of a conductive layer is formed thereon via silicon oxide 113. Roughly on the silicon oxide film 3, there is a lead-out wiring 5 connected to the upper electrode 4;
A lead wiring 6 connected to the lower electrode 2 through the contact hole is formed.

以上の構成において、取出し配線5,6を通して、上部
電極4、酸化シリコン膜3、及び下部電極2からなるコ
ンデンサに対する電荷の充電または放電が行われる。こ
のコンデンサの容ICは、次式で表わされる。
In the above configuration, the capacitor composed of the upper electrode 4, the silicon oxide film 3, and the lower electrode 2 is charged or discharged through the lead-out wirings 5 and 6. The capacitance IC of this capacitor is expressed by the following equation.

但し、A;電極の対向面積 ε0;真空の誘電率 εox’シリコン酸化膜 の比誘電率 tox”シリコン酸化膜 の膜厚 第4図は第2図のコンデンサの耐圧特性図であり、横軸
に印加電界、縦軸に破壊頻度がとられている。
However, A: opposing area of electrodes ε0; dielectric constant in vacuum εox' relative dielectric constant of silicon oxide film tox'' film thickness of silicon oxide film Figure 4 is a breakdown voltage characteristic diagram of the capacitor in Figure 2; The applied electric field and the breakdown frequency are plotted on the vertical axis.

第4図に示すように、前記のようなコンデンサにあって
は、高電界領域での破壊分布と共に、比較的低電界で絶
縁破壊するものがある。これは、コンデンサの対向部分
内におけるシリコン酸化膜3に局所的な欠陥が存在する
場合に生ずる。このような低電界で絶縁破壊するコンデ
ンサは、破壊によって上・下部電極4,2間が短絡して
大きな電流が流れ、半導体集積装置の動作上問題となる
As shown in FIG. 4, among the capacitors described above, there are some that exhibit dielectric breakdown in a relatively low electric field as well as breakdown distribution in a high electric field region. This occurs when a local defect exists in the silicon oxide film 3 within the opposing portion of the capacitor. In a capacitor that undergoes dielectric breakdown under such a low electric field, the breakdown causes a short circuit between the upper and lower electrodes 4 and 2, causing a large current to flow, which poses a problem in the operation of the semiconductor integrated device.

そこで、半導体集積装置の試験時に、コンデンサ電圧印
加試験を行い、コンデンサに動作上必要な電圧を印加し
、その電圧で破壊するものは取り除くようにしていた。
Therefore, when testing a semiconductor integrated device, a capacitor voltage application test is performed to apply a voltage necessary for operation to the capacitor, and to remove those that would be destroyed by that voltage.

(発明が解決しようとする問題点) しかしながら、上記構成のコンデンサ及びその不良除去
方法では、次のような問題があった。
(Problems to be Solved by the Invention) However, the capacitor having the above configuration and the method for removing defects thereof have the following problems.

前記コンデンサにおいて、大きな容量を得ようとすれば
シリコン酸化膜3の膜厚t。Xを小さくすればよいが、
その膜厚t。Xには必要な絶縁破壊電圧の関係から下限
があるため、電極対向面積Aを大きくする必要がある。
In the capacitor, if a large capacity is to be obtained, the thickness t of the silicon oxide film 3 must be increased. You can make X smaller, but
Its film thickness t. Since X has a lower limit due to the required dielectric breakdown voltage, it is necessary to increase the electrode facing area A.

ところが、電極対向面積Aを大きくすると、その増加に
比例してその対向面積内に酸化膜欠陥が存在する確率が
増えるために、第4図に示した低電界での破壊頻度が増
加してコンデンサの不良率が増し、それによって半導体
集積装置の歩留りを低下させるという問題があった。
However, when the electrode facing area A is increased, the probability that oxide film defects exist within the facing area increases in proportion to the increase, so the frequency of breakdown in low electric fields as shown in Figure 4 increases, and the capacitor There is a problem in that the defective rate of semiconductor integrated devices increases, thereby reducing the yield of semiconductor integrated devices.

また、前記のコンデンサ不良除去方法では、コンデンサ
電圧印加試験によって短絡したものは不良品として取り
除くようにしているが、局所的な酸化膜欠陥によってコ
ンデンサ全体が使用できなくなり、それによって半導体
集積装置の歩留りが低下するという問題があった。
In addition, in the above-mentioned capacitor defect removal method, capacitors that are short-circuited during a capacitor voltage application test are removed as defective products, but local oxide film defects may make the entire capacitor unusable, thereby reducing the yield of semiconductor integrated devices. There was a problem that the

本発明は前記従来技術が持っていた問題点として、大容
量コンデンサを得るための電極対向面積の増加によるコ
ンデンサ不良率の、増加という点と、局所的な酸化膜欠
陥によりコンデンサ全体が使用不可能になる点について
解決した半導体集積装置及びその不良除去方法を提供す
るものである。
The present invention solves the problems that the conventional technology had, such as an increase in the capacitor defect rate due to an increase in the electrode facing area to obtain a large capacity capacitor, and an unusable capacitor as a whole due to local oxide film defects. The object of the present invention is to provide a semiconductor integrated device and a method for removing defects thereof, which solve the problem.

(問題点を解決するための手段) 第1の発明は前記問題点を解決するために、半導体基板
に形成された能動素子とその半導体基板の一部に集積し
て形成されたコンデンサとを備えた半導体集積装置にお
いて、前記コンデンサは、前記半導体基板の表層に形成
された高濃度不純物層からなる下部電極と、前記下部電
極の表面に形成された絶縁膜と、前記絶縁膜上に形成さ
れた導電層からなる複数の上部電極と、一部に配線幅の
狭い領域を有し前記複数の上部電極を並列接続するため
の取出し配線とを備えたもので坐る。
(Means for Solving the Problems) In order to solve the above problems, the first invention includes an active element formed on a semiconductor substrate and a capacitor formed integrally on a part of the semiconductor substrate. In the semiconductor integrated device, the capacitor includes a lower electrode made of a highly concentrated impurity layer formed on a surface layer of the semiconductor substrate, an insulating film formed on the surface of the lower electrode, and a lower electrode formed on the insulating film. The device is equipped with a plurality of upper electrodes made of a conductive layer, and an extraction wiring having a narrow wiring width region in a part and connecting the plurality of upper electrodes in parallel.

また、第2の発明は半導体集積装置におけるコンデンサ
の不良なものを除去する不良除去方法において、第1の
発明の半導体集積装置を用いて、予め前記下部電極及び
取出し配線に高電圧を印加し、短絡している上部電極及
び下部電極に対応する前記取出し配線の配線幅の狭い領
域を溶断するようにしたものである。
Further, a second invention is a defect removal method for removing defective capacitors in a semiconductor integrated device, using the semiconductor integrated device of the first invention, applying a high voltage to the lower electrode and the lead-out wiring in advance, The narrow wiring width region of the lead-out wiring corresponding to the short-circuited upper electrode and lower electrode is blown out.

(作 用) 第1の発明によれば、以上のように半導体集積装置を構
成したので、複数個に分割され、かつ並列接続された複
数個の単位上部電極は、その下の共通絶縁膜を機能的に
複数個に分割し、絶縁膜欠陥の発生確率を減少させるよ
うに働き、それによって低電界での破壊頻度が少なくな
る。また、第2の発明の不良除去方法では、コンデンサ
電圧印加試験時において共通の下部電極と上部電極用の
取出し配線とに高電圧を印加し、絶縁膜欠陥により短絡
した単位コンデンサに対してはその短絡電流によって配
線幅の狭い領域を溶断させ、その不良な単位コンデンサ
のみ切り離す。これにより、他の良品の単位コンデンサ
が使用可能になり、それによって半導体集積装置の歩留
りが向上する。
(Function) According to the first invention, since the semiconductor integrated device is configured as described above, the plurality of unit upper electrodes that are divided into a plurality of pieces and connected in parallel can be connected to the common insulating film thereunder. It is functionally divided into a plurality of parts and works to reduce the probability of occurrence of insulating film defects, thereby reducing the frequency of breakdown in low electric fields. In addition, in the defect removal method of the second invention, a high voltage is applied to the common lower electrode and the lead wire for the upper electrode during the capacitor voltage application test, and a high voltage is applied to the unit capacitor that is short-circuited due to an insulating film defect. The short-circuit current causes the narrow area of the wiring to melt, disconnecting only the defective unit capacitor. This makes it possible to use other good unit capacitors, thereby improving the yield of semiconductor integrated devices.

従って前記問題点を除去できるのである。′(実施例) 第1図は本発明の実施例を示す半導体集積装置における
コンデンサの平面図、第5図は第1図のB−B線断面拡
大図である。
Therefore, the above-mentioned problem can be eliminated. (Embodiment) FIG. 1 is a plan view of a capacitor in a semiconductor integrated device showing an embodiment of the present invention, and FIG. 5 is an enlarged cross-sectional view taken along the line B--B in FIG. 1.

このコンデンサは、例えばバイポーラ型半導体集積装置
に設けられるもので、バイポーラ型トランジスタ等の能
動素子が形成されるN型シリコン基板等の半導体基板1
1の表層には、N型等の高濃度不純物層からなる下部電
極12が形成されている。この下部電極12は、例えば
バイポーラ型トランジスタのエミッタ拡散層と同時に不
純物拡散によって形成されるもので、低い抵抗率を有し
ている。下部電極12の表面には、酸化処理によって形
成されたシリコン酸化膜等の絶縁膜13が形成され、さ
らにその絶縁膜13上に、A、ll等の導電層からなる
複数個の分割された上部電極14が形成されている。絶
縁膜13は、その膜厚により、完成されたコンデンサの
容量及び絶縁破壊電圧が変化する。この絶縁膜13上に
はざらに、複数個の上部電極14を並列接続するための
引出し配線15と、絶縁膜13に形成されたコンタクト
孔13aを通して下部電極12と接続された引出し配線
16とが形成されている。各上部電極14に接続された
引出し配線15には、部分的に配線幅の狭い領域15a
が形成されて0る。通常これらの上部電極14及び取出
し配線15.16は、絶縁膜13にコンタクト孔13a
を形成した後に、全面にA、ll等の導電層を被着し、
その導電層をホトリソ技術を用いて選択的にエツチング
することにより、同時に形成される。
This capacitor is provided, for example, in a bipolar semiconductor integrated device, and includes a semiconductor substrate 1 such as an N-type silicon substrate on which active elements such as bipolar transistors are formed.
A lower electrode 12 made of a high concentration impurity layer such as N-type is formed on the surface layer of the electrode 1 . This lower electrode 12 is formed, for example, by impurity diffusion simultaneously with the emitter diffusion layer of a bipolar transistor, and has a low resistivity. An insulating film 13 such as a silicon oxide film formed by oxidation treatment is formed on the surface of the lower electrode 12, and a plurality of divided upper parts made of conductive layers such as A and 11 are formed on the insulating film 13. An electrode 14 is formed. The capacitance and dielectric breakdown voltage of the completed capacitor vary depending on the thickness of the insulating film 13. Roughly on this insulating film 13, there are a lead wire 15 for connecting a plurality of upper electrodes 14 in parallel, and a lead wire 16 connected to the lower electrode 12 through a contact hole 13a formed in the insulating film 13. It is formed. The lead wiring 15 connected to each upper electrode 14 has a partially narrow wiring area 15a.
is formed and becomes 0. Normally, these upper electrodes 14 and lead-out wirings 15 and 16 are connected to contact holes 13a in the insulating film 13.
After forming, conductive layers such as A and ll are deposited on the entire surface,
They are simultaneously formed by selectively etching the conductive layer using photolithography.

以上のように構成されるコンデンサにおいて、複数個の
上部電極14は取出し配線15に並列接続され、その下
の絶縁膜13及び下部電極12は総ての上部電極14に
対して共通になっている。
In the capacitor configured as described above, the plurality of upper electrodes 14 are connected in parallel to the extraction wiring 15, and the underlying insulating film 13 and lower electrode 12 are common to all the upper electrodes 14. .

そのため、取出し配線15.16を通して、各単位コン
デンサに対して同時に電荷の充電または放電が行われる
ことになる。そしてコンデンサの全容量は各単位コンデ
ンサの容量の和となる。また、一部の単位コンデンサが
破壊されている場合には、並列接続のためにその一部の
単位コンデンサのみが動作不良となり、その他の単位コ
ンデンサは正常動作を行ってその単位コンデンサの容量
の和が全体の容量となる。
Therefore, each unit capacitor is simultaneously charged or discharged through the lead-out wiring 15, 16. The total capacitance of the capacitor is then the sum of the capacitances of each unit capacitor. In addition, if some unit capacitors are destroyed, only some of them will malfunction due to parallel connection, and the other unit capacitors will operate normally and the sum of the capacitances of the unit capacitors will be is the total capacity.

次に、前記コンデンサの不良除去方法について説明する
Next, a method for removing defects from the capacitor will be explained.

コンデンサの動作状態を検査するために、コンデンサ電
圧印加試験時に取出し配線15.16に高電圧を印加す
る。並列コンデンサの全電極対向部分内の絶縁膜13の
一部に欠陥が存在している場合、印加された電圧によっ
てこの欠陥を含む単位コンデンサが破壊し、上部電極1
4と下部電極12間が短絡してその取出し配線15.1
6に大きな短絡電流が流れる。この時、取出し配線15
内の配線幅が狭くなった領域15aでの電流密度は大き
くなり、その領域15aが溶断される。例えば、幅4μ
m、厚さ1μmのAN配線を考えた場合、そのA、l!
配線は400mA程度の電流で溶断することが知られて
いる。このように不良の単位コンデンサ箇所の領域15
aが溶断されると、その不良の単位コンデンサは取出し
配線15から切り離され、初期の並列コンデンサからこ
の単位コンデンサのみが簡単に取り除かれることになる
In order to inspect the operating state of the capacitor, a high voltage is applied to the lead wires 15 and 16 during a capacitor voltage application test. If a defect exists in a part of the insulating film 13 in the portion of the parallel capacitor that faces all the electrodes, the unit capacitor containing this defect is destroyed by the applied voltage, and the upper electrode 1
4 and the lower electrode 12 are short-circuited and the lead-out wiring 15.1
A large short-circuit current flows through 6. At this time, take out wiring 15
The current density in the region 15a where the wiring width is narrowed increases, and the region 15a is blown out. For example, width 4μ
m, when considering an AN wiring with a thickness of 1 μm, its A, l!
It is known that wiring can be fused with a current of about 400 mA. In this way, area 15 of the defective unit capacitor location
When a is fused, the defective unit capacitor is separated from the lead-out wiring 15, and only this unit capacitor can be easily removed from the initial parallel capacitors.

この時、並列コンデンサの全容伍は初期の容量より1つ
の単位コンデンサの容量分だけ減少する。
At this time, the total capacity of the parallel capacitors decreases from the initial capacity by the capacity of one unit capacitor.

しかし、1個あるいは複数個の単位コンデンサが開放さ
れても、必要な容量が確保されるように単位コンデンサ
の分割数を増やしておけば、並列コンデンサの機能は保
持される。
However, even if one or more unit capacitors are opened, the function of the parallel capacitor can be maintained if the number of divisions of the unit capacitors is increased to ensure the required capacity.

本実施例のコンデンサ構造及びその不良除去方法では、
次のような利点を有している。
In the capacitor structure and defect removal method of this example,
It has the following advantages:

従来の上部電極を複数個に分割し、その分割された各上
部電極14に接続された取出し配線15の一部に配線幅
の狭い領域15aを設けるようにしたので、単位コンデ
ンサの絶縁膜13に欠陥が存在し、コンデンサ電圧印加
試験時に絶縁破壊を起こし、−時的にコンデンサの上部
電極14と下部電極12が短絡状態となっても、試験中
に前記絶縁膜欠陥が存在した単位コンデンサの上部電極
用取出し配線15のみが自動的に開放され、全並列コン
デンサの機能は保持されるので、コンデンサの不良率は
低減し、半導体集積装置の歩留りが著しく向上する。そ
の上、不良な単位コンデンサの取出し配線15のみが自
動的に開放されるため、゛コンデンサ電圧印加試験を兼
ねて不良な単位コンデンサの除去も行え、それによって
不良品除去作業の簡略化が図れる。本実施例の効果は、
特に大容量を得るために大きな対向面積を有するコンデ
ンサを備える半導体集積装置において大きい。
The conventional upper electrode is divided into a plurality of parts, and a region 15a with a narrow wiring width is provided in a part of the extraction wiring 15 connected to each divided upper electrode 14, so that the insulating film 13 of the unit capacitor Even if a defect exists and dielectric breakdown occurs during the capacitor voltage application test, and the upper electrode 14 and lower electrode 12 of the capacitor are temporarily short-circuited, the upper part of the unit capacitor in which the insulating film defect existed during the test Since only the electrode lead wiring 15 is automatically opened and the functions of all parallel capacitors are maintained, the defect rate of capacitors is reduced and the yield of semiconductor integrated devices is significantly improved. Furthermore, since only the lead-out wiring 15 of the defective unit capacitor is automatically opened, the defective unit capacitor can also be removed while performing the capacitor voltage application test, thereby simplifying the work of removing defective products. The effects of this example are as follows:
This is particularly large in semiconductor integrated devices that include capacitors that have a large facing area in order to obtain large capacitance.

なお、本発明は図示の実施例に限定されず、種々の変形
が可能である。その変形例としては、例えば次のような
ものがおる。
Note that the present invention is not limited to the illustrated embodiment, and various modifications are possible. Examples of such modifications include the following.

(i) 上記実施例において、半導体基板11はP型シ
リコン基板等の他の基板でもよく、それに応じて下部電
極12もP型等の他の極性にすればよい。絶縁膜13を
窒化シリコン膜等の他の材料にしたり、ざらに上部電極
14及び取出し配線15.16をポリシリコン等の伯の
導電材料で形成してもよい。また、分割された上部電極
14の平面形状や配列状態を他の形態にしたり、それに
応じて取出し配線15を伯の配置状態にすることも可能
である。
(i) In the above embodiments, the semiconductor substrate 11 may be another substrate such as a P-type silicon substrate, and the lower electrode 12 may also be of other polarity such as P-type accordingly. The insulating film 13 may be made of another material such as a silicon nitride film, or the upper electrode 14 and the lead-out wirings 15 and 16 may be made of a conductive material such as polysilicon. Further, it is also possible to change the planar shape and arrangement state of the divided upper electrodes 14 to other shapes, and to arrange the lead-out wiring 15 in a square arrangement state accordingly.

(11〉  上記実施例では、バイポーラ型の半導体集
積装置について説明したが、ユニポーラ型等の他の半導
体集積装置にも適用可能である。
(11> In the above embodiment, a bipolar type semiconductor integrated device has been described, but it is also applicable to other semiconductor integrated devices such as a unipolar type.

(発明の効果) 以上詳細に説明したように、第1の発明のコンデンサで
は、従来の上部電極を複数に分割してそれらを取出し配
線で並列に接続したので、それらの下に設けられる絶縁
膜の欠陥発生確率を減少させ、それによって低電界での
破壊頻度の減少と、それによる歩留りの向上が図れる。
(Effects of the Invention) As explained in detail above, in the capacitor of the first invention, the conventional upper electrode is divided into a plurality of parts and these are connected in parallel with wiring, so that the insulating film provided below them is The probability of defect occurrence is reduced, thereby reducing the frequency of breakdown in low electric fields and improving yield.

また第2の発明の不良除去方法では、取出し配線の一部
に配線幅の狭い領域を設けておき、取出し配線と下部電
極との間に高電圧を印加して不良な単位コンデンサに生
じる短絡電流によって配線幅の狭い領域を溶断するよう
にしたので、簡単に不良な単位コンデンサを切り離すこ
とができ、それによって不良箇所の除去を簡易、的確に
行える。
In addition, in the defect removal method of the second invention, a region with a narrow wiring width is provided in a part of the extraction wiring, and a high voltage is applied between the extraction wiring and the lower electrode to eliminate the short-circuit current generated in the defective unit capacitor. Since the area where the wiring width is narrow is fused, the defective unit capacitor can be easily separated, thereby allowing the defective portion to be removed easily and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す半導体集積装置における
コンデンサの平面図、第2図は従来の半導体集積装置に
おけるコンデンサの平面図、第3図は第2図のA−A線
断面拡大図、第4図は第2図の耐圧特性図、第5図は第
1図のB−B線断面拡大図である。 11・・・・・・半導体基板、12・・・・・・下部電
極、13・・・・・・絶縁膜、14・・・・・・上部電
極、15.16・・・・・・取出し配線、15a・・・
・・・配線幅の狭い領域。 出願人代理人  柿  本  恭  成12°下郁電極 本発明の半導体集積装置のコレデンサ 第2図のA−A線断面拡大図
FIG. 1 is a plan view of a capacitor in a semiconductor integrated device showing an embodiment of the present invention, FIG. 2 is a plan view of a capacitor in a conventional semiconductor integrated device, and FIG. 3 is an enlarged cross-sectional view taken along line A-A in FIG. , FIG. 4 is a breakdown voltage characteristic diagram of FIG. 2, and FIG. 5 is an enlarged cross-sectional view taken along the line B--B of FIG. 1. 11... Semiconductor substrate, 12... Lower electrode, 13... Insulating film, 14... Upper electrode, 15.16... Extraction Wiring, 15a...
...A region with narrow wiring width. Applicant's agent Kyo Kakimoto 12° lower electrode Enlarged cross-sectional view taken along line A-A of FIG. 2 of the correductor of the semiconductor integrated device of the present invention

Claims (1)

【特許請求の範囲】 1、半導体基板に形成された能動素子とその半導体基板
の一部に集積して形成されたコンデンサとを備えた半導
体集積装置において、 前記コンデンサは、 前記半導体基板の表層に形成された高濃度不純物層から
なる下部電極と、 前記下部電極の表面に形成された絶縁膜と、前記絶縁膜
上に形成された導電層からなる複数の上部電極と、 一部に配線幅の狭い領域を有し前記複数の上部電極を並
列接続するための取出し配線とを備えたことを特徴とす
る半導体集積装置。 2、能動素子が形成された半導体基板の一部の表層に形
成された高濃度不純物層からなる下部電極と、前記下部
電極の表面に形成された絶縁膜と、前記絶縁膜上に形成
された導電層からなる複数の上部電極と、一部に配線幅
の狭い領域を有し前記複数の上部電極を並列接続するた
めの取出し配線とを備えたコンデンサを有する半導体集
積装置を用いて、 予め前記下部電極及び取出し配線に高電圧を印加し、 短絡している上部電極及び下部電極に対応する前記取出
し配線の配線幅の狭い領域を溶断することを特徴とする
半導体集積装置の不良除去方法。
[Claims] 1. In a semiconductor integrated device comprising an active element formed on a semiconductor substrate and a capacitor integrated and formed on a part of the semiconductor substrate, the capacitor is formed on a surface layer of the semiconductor substrate. a lower electrode made of a high concentration impurity layer formed; an insulating film formed on the surface of the lower electrode; a plurality of upper electrodes made of a conductive layer formed on the insulating film; What is claimed is: 1. A semiconductor integrated device comprising a lead wire having a narrow area and connecting the plurality of upper electrodes in parallel. 2. A lower electrode made of a highly concentrated impurity layer formed on the surface layer of a part of the semiconductor substrate on which the active element is formed, an insulating film formed on the surface of the lower electrode, and a lower electrode formed on the insulating film. Using a semiconductor integrated device having a capacitor including a plurality of upper electrodes made of a conductive layer and a lead wire that partially has a narrow wiring width region and connects the plurality of upper electrodes in parallel, A method for removing defects in a semiconductor integrated device, characterized in that a high voltage is applied to a lower electrode and a lead-out wiring, and a narrow area of the lead-out wiring corresponding to the short-circuited upper electrode and lower electrode is fused.
JP26325587A 1987-10-19 1987-10-19 Semiconductor integrated device and removing method for malfunction thereof Pending JPH01105569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26325587A JPH01105569A (en) 1987-10-19 1987-10-19 Semiconductor integrated device and removing method for malfunction thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26325587A JPH01105569A (en) 1987-10-19 1987-10-19 Semiconductor integrated device and removing method for malfunction thereof

Publications (1)

Publication Number Publication Date
JPH01105569A true JPH01105569A (en) 1989-04-24

Family

ID=17386930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26325587A Pending JPH01105569A (en) 1987-10-19 1987-10-19 Semiconductor integrated device and removing method for malfunction thereof

Country Status (1)

Country Link
JP (1) JPH01105569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603101A1 (en) * 1992-12-17 1994-06-22 International Business Machines Corporation A self protective decoupling capacitor structure
EP1416536A2 (en) * 2002-11-04 2004-05-06 Texas Instruments Incorporated Eliminating defective decoupling capacitors
JP2009094093A (en) * 2007-10-03 2009-04-30 Nec Electronics Corp Semiconductor device
JP2019110279A (en) * 2017-12-20 2019-07-04 スタンレー電気株式会社 Piezoelectric type actuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603101A1 (en) * 1992-12-17 1994-06-22 International Business Machines Corporation A self protective decoupling capacitor structure
JPH06283665A (en) * 1992-12-17 1994-10-07 Internatl Business Mach Corp <Ibm> Self-protecting type decoupling capacitor
EP1416536A2 (en) * 2002-11-04 2004-05-06 Texas Instruments Incorporated Eliminating defective decoupling capacitors
EP1416536A3 (en) * 2002-11-04 2009-06-24 Texas Instruments Incorporated Eliminating defective decoupling capacitors
JP2009094093A (en) * 2007-10-03 2009-04-30 Nec Electronics Corp Semiconductor device
JP2019110279A (en) * 2017-12-20 2019-07-04 スタンレー電気株式会社 Piezoelectric type actuator
US11665966B2 (en) 2017-12-20 2023-05-30 Stanley Electric Co., Ltd. Piezoelectric actuator

Similar Documents

Publication Publication Date Title
JP3405650B2 (en) Integrated circuit chip and method of manufacturing the same
JPH01283863A (en) Mos type semiconductor device
KR970003725B1 (en) Screening of gate oxides on semiconductors
JPH01105569A (en) Semiconductor integrated device and removing method for malfunction thereof
US3851245A (en) Method for determining whether holes in insulated layer of semiconductor substrate are fully open
JPH0438862A (en) Semiconductor integrated circuit device
JP2508301B2 (en) Semiconductor integrated circuit
US6815798B2 (en) Integrated capacitor for sensing the voltage applied to a terminal of an integrated or discrete power device on a semiconductor substrate
JPH08191145A (en) Insulated gate semiconductor device and manufacture thereof
JP3135968B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3161182B2 (en) Method for manufacturing power semiconductor device
US11754640B2 (en) Device comprising two voltage domains and method
JPH02216862A (en) Semiconductor device
JPS6020548A (en) Input protective device in intergrated circuit
JP2585556B2 (en) Semiconductor integrated circuit device
RU2024108C1 (en) Dielectric-isolated integrated circuit manufacturing process
JP2000214228A (en) Semiconductor device
JPH04291944A (en) Semiconductor device
JP3738369B2 (en) Semiconductor integrated circuit device
JPS6381842A (en) Manufature of semiconductor device
JP2000012776A (en) Manufacture of semiconductor device
JPH1187614A (en) Semiconductor integrated circuit device
JPH07249742A (en) Semiconductor device
JPH04116827A (en) Semiconductor device
JPH04306860A (en) Method of screening semiconductor integrated circuit device