JPH01104773A - Coated cutting tool - Google Patents

Coated cutting tool

Info

Publication number
JPH01104773A
JPH01104773A JP25869087A JP25869087A JPH01104773A JP H01104773 A JPH01104773 A JP H01104773A JP 25869087 A JP25869087 A JP 25869087A JP 25869087 A JP25869087 A JP 25869087A JP H01104773 A JPH01104773 A JP H01104773A
Authority
JP
Japan
Prior art keywords
coating layer
cutting tool
coated cutting
heat treatment
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25869087A
Other languages
Japanese (ja)
Other versions
JP2590139B2 (en
Inventor
Chihiro Kawai
千尋 河合
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25869087A priority Critical patent/JP2590139B2/en
Publication of JPH01104773A publication Critical patent/JPH01104773A/en
Application granted granted Critical
Publication of JP2590139B2 publication Critical patent/JP2590139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To decrease the chlorine content in a coating layer formed by a chemical vapor deposition method under specific conditions and to lessen or prevent the degradation in the strength of the coating layer occurring in residual chlorine by subjecting the above-mentioned coating layer to a vacuum heat treatment. CONSTITUTION:The coating layer is formed on the surface of the base body of a coated cutting tool by bringing a group IVa metal chloride as a metal source of group IVa metals and CH4 as a carbon and nitrogen source into reaction at 700-900 deg.C with H2 as a carrier gas by the chemical vapor deposition method. Since the treatment is executed at the relatively low temp., a brittle decarburization phase does not exist under the coating layer and in addition, the coating layer adheres tightly and securely to the base material. The vacuum heat treatment is executed for 10 minutes -10 hours under the conditions of 500-900 deg.C and <=50Torr to decrease the chlorine content in the coating layer. The degradation in the strength of the coating layer occurring in the residual chlorine contained in the coating layer is, therefore, lessened or prevented. As a result, the number of the cracks generated in the coating layer at the time of continued cutting is decreased and the chipping resistance of the coated cutting tool is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐摩耗性・耐欠損性に優れた被覆切削工具に
関するものであり、主として耐欠損性が必要とされるフ
ライス切削に適する被覆切削工具に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a coated cutting tool with excellent wear resistance and fracture resistance, and mainly relates to a coated cutting tool that is suitable for milling cutting where fracture resistance is required. This relates to cutting tools.

[従来の技術] 従来、たとえば、フライス用被覆切削工具として、CV
D (化学蒸着)被覆工具やPVD (物理蒸着)被覆
工具などが用いられている。しかし、両者とも、十分な
性能を発揮するに至っていないのが現状である。これは
、主として次の理由によるとされている。すなわち、前
者では被覆直下に脆弱な脱炭相(η相)が生成され、後
者では被覆と基材との密着強度不足のため被覆が剥離し
やすいのである。
[Prior Art] Conventionally, for example, CV has been used as a coated cutting tool for milling.
D (chemical vapor deposition) coated tools and PVD (physical vapor deposition) coated tools are used. However, the current situation is that neither of them has achieved sufficient performance. This is said to be mainly due to the following reasons. That is, in the former case, a brittle decarburized phase (η phase) is generated directly under the coating, and in the latter case, the coating is likely to peel off due to insufficient adhesion strength between the coating and the base material.

上記問題を解決するため、最近、高温で行なう従来のH
T−CVD法に比べて被覆温度を低下させたMT−CV
D法が用いられるようになった。
In order to solve the above problem, recently, conventional H
MT-CV with lower coating temperature compared to T-CVD method
D method is now used.

これにより、脆弱な脱炭相が存在せず強固な密着強度を
有する被覆切削工具が得られるようになった。
This has made it possible to obtain a coated cutting tool that has no brittle decarburized phase and has strong adhesion strength.

[発明が解決しようとする問題点] しかしながら、MT−CVD法によって作製された被覆
切削工具であっても、フライス切削において相変わらず
工具刃先の欠損が目立ち、HT−CVD法と比較した場
合に耐欠損性はほとんど向上していない。
[Problems to be Solved by the Invention] However, even with coated cutting tools manufactured by the MT-CVD method, chipping of the cutting edge of the tool is still noticeable during milling, and chipping resistance is poor when compared with the HT-CVD method. There has been little improvement in gender.

発明者等は、この原因が、皮膜中に残存する塩素(CO
−”)量に起因すると推察した。すなわち、被覆温度と
残留塩素量とは密接に関連しており、被覆温度の低下と
ともに残留塩素量は著しく増大する。このため被覆強度
が著しく低下し、断続切削時において被覆にクラックが
発生しやすくなる。
The inventors believe that the cause of this is chlorine (CO) remaining in the film.
In other words, the coating temperature and the amount of residual chlorine are closely related, and as the coating temperature decreases, the amount of residual chlorine increases significantly.As a result, the coating strength decreases significantly, causing intermittent Cracks are more likely to occur in the coating during cutting.

これが基材に伝播して欠損に至ることになり、上記MT
−CVD法の利点を相殺するのではないかという結論を
、発明者等は得たのである。
This will propagate to the base material and lead to defects, and the above MT
-The inventors have concluded that the advantages of the CVD method may be offset.

そこで、本発明は、残留塩素量の少ない被覆層を得て、
強靭で優れた耐欠損性を有する被覆切削工具を提供する
ことを目的とする。
Therefore, the present invention provides a coating layer with a small amount of residual chlorine,
The purpose of the present invention is to provide a coated cutting tool that is tough and has excellent fracture resistance.

[問題点を解決するための手段] 本発明に係る被覆切削工具は、超硬合金またはサーメッ
トからなる基体に、IVa族金属の炭化物、窒化物およ
び炭窒化物の一群から選ばれた少なくとも1種の被覆層
を被覆した被覆切削工具である。
[Means for Solving the Problems] The coated cutting tool according to the present invention has a substrate made of cemented carbide or cermet, and at least one member selected from the group consisting of carbides, nitrides, and carbonitrides of group IVa metals. This is a coated cutting tool coated with a coating layer.

さらに、本発明に係る被覆切削工具は、前記被覆層が、
■a族金属の金属源としてのIVa族金属塩化物と、炭
素、窒素源としてのCH,およびN2または何機窒素化
合物とを、N2をキャリアガスとし化学蒸着法で700
〜900℃で反応させて、基体表面に未処理被覆層を形
成し、さらに500〜b 熱処理を10分〜10時間行なうことによって得られた
、塩素含有量の少ない被覆層であることを特徴としてい
る。
Furthermore, in the coated cutting tool according to the present invention, the coating layer is
■ A group IVa metal chloride as a metal source of a group a metal, CH as a carbon and nitrogen source, and N2 or a nitrogen compound are mixed by chemical vapor deposition using N2 as a carrier gas.
The coating layer is characterized by a low chlorine content obtained by reacting at ~900°C to form an untreated coating layer on the substrate surface, and further heat-treating at ~500°C for 10 minutes to 10 hours. There is.

なお、好ましくは、炭素、窒素源としてアセトニトリル
(CH3CN)を用いる。
Note that acetonitrile (CH3CN) is preferably used as the carbon and nitrogen source.

[作用] 本発明に係る被覆切削工具では、被覆層は700〜90
0℃という比較的低い温度で化学蒸着法によって形成さ
れるので、被覆層の下には脆弱な脱炭相が存在せず、し
かも被覆層は強固に基材に密着している。
[Function] In the coated cutting tool according to the present invention, the coating layer has a thickness of 700 to 90
Since it is formed by chemical vapor deposition at a relatively low temperature of 0° C., there is no fragile decarburized phase under the coating layer, and the coating layer is firmly adhered to the base material.

また、上述の条件で真空熱処理を被覆層に施すことによ
って、被覆層の塩素含有量は従来に比べて少なくなって
いる。このため、被覆層中に含有される残留塩素に起因
する被覆層の強度低下が、低減あるいは防止できる。そ
の結果、断続切削時に被覆層に生じるクラックの数が減
少して、被覆切削工具の耐欠損性が向上する。
Further, by subjecting the coating layer to vacuum heat treatment under the above-mentioned conditions, the chlorine content of the coating layer is reduced compared to the conventional method. Therefore, reduction in strength of the coating layer due to residual chlorine contained in the coating layer can be reduced or prevented. As a result, the number of cracks that occur in the coating layer during interrupted cutting is reduced, and the fracture resistance of the coated cutting tool is improved.

さらに、本発明に係る被覆切削工具の耐欠損性の向上は
、次のような作用によってももたらされると発明者等は
考えている。すなわち、真空熱処理において被覆層中よ
り塩素が外部に除去されるときに、−被覆層中に微小な
ピ′ンホールが生じる。
Furthermore, the inventors believe that the improvement in fracture resistance of the coated cutting tool according to the present invention is also brought about by the following effects. That is, when chlorine is removed from the coating layer to the outside during vacuum heat treatment, minute pinholes are generated in the coating layer.

これにより、熱処理後に室温まで冷却する際に被覆層中
に生じる引張り応力が緩和される。故に、被覆層中のク
ラ゛・シフ数が減少して、工具の耐欠損性がさらに向上
するものと考えられる。
This alleviates the tensile stress that occurs in the coating layer when it is cooled to room temperature after heat treatment. Therefore, it is considered that the number of cracks in the coating layer is reduced and the fracture resistance of the tool is further improved.

[実施例] 実施例1 超硬合金製の基体に、TiCQ、4.N2.CH、CN
を原料とし、850℃でTi (CN)を3μm被覆し
て被覆切削工具を得た。次に、850℃、0.1tor
r、2時間の条件で真空熱処理を施した。
[Example] Example 1 TiCQ, 4. N2. C.H., C.N.
was used as a raw material and coated with Ti (CN) to a thickness of 3 μm at 850° C. to obtain a coated cutting tool. Next, 850℃, 0.1torr
Vacuum heat treatment was performed under the conditions of 2 hours.

得られた試料および真空熱処理を行なわなかった同膜厚
の試料について、E、  P、 M、 A、  (X線
マイクロアナライザー)により、被覆層中のC髪濃度を
測定した。その結果、真空熱処理した試料のC銃濃度は
非熱処理試料の約1/2に減少していた。
The concentration of C hair in the coating layer was measured using an E, P, M, A, (X-ray microanalyzer) for the obtained sample and a sample having the same film thickness that was not subjected to vacuum heat treatment. As a result, the C gun concentration of the vacuum heat-treated sample was reduced to about 1/2 of that of the non-heat-treated sample.

なお、熱処理温度が500℃以下では被覆層中の塩素含
有量を減少させるに十分な効果がなく、900℃以上で
は皮膜粒子の粒成長が生じて工具の切削性能に悪影響を
与えた。また、熱処理時の気圧が50torr以上とな
れば、被覆層中の塩素含有量を減少させるに十分な効果
が生じなかった。真空度は、現実の真空装置の性能によ
って左右されるのではあるが、高い方がより望ましい。
Note that when the heat treatment temperature was 500°C or lower, there was no sufficient effect to reduce the chlorine content in the coating layer, and when the heat treatment temperature was 900°C or higher, grain growth of the coating particles occurred, which adversely affected the cutting performance of the tool. Moreover, if the atmospheric pressure during the heat treatment was 50 torr or more, a sufficient effect to reduce the chlorine content in the coating layer was not produced. Although the degree of vacuum depends on the performance of the actual vacuum device, a higher degree is more desirable.

真空熱処理時間は、10分間以下では十分な効果が認め
られず、10時間以上では効果が飽和した。
When the vacuum heat treatment time was 10 minutes or less, no sufficient effect was observed, and when the vacuum heat treatment time was 10 hours or more, the effect was saturated.

上記真空熱処理によって被覆層中の残留塩素量が減少す
る現象は、被覆時に被覆層中に大量の塩素が含有されて
しまうMT−CVD法において特に顕著である。但し、
従来のHT−CVD法においても、比較的低温域で処理
した試料については十分効果があった。したがって、特
に効果が顕著な被覆温度は、900℃以下である。また
、被覆温度が700℃以下では、切削工具として実用に
耐える被覆層の接着強度が得られなかった。
The phenomenon in which the amount of residual chlorine in the coating layer is reduced by the vacuum heat treatment is particularly remarkable in the MT-CVD method in which a large amount of chlorine is contained in the coating layer during coating. however,
The conventional HT-CVD method was also sufficiently effective for samples treated at relatively low temperatures. Therefore, the coating temperature at which the effect is particularly remarkable is 900°C or lower. Moreover, when the coating temperature was 700° C. or lower, the adhesive strength of the coating layer that could be used practically as a cutting tool could not be obtained.

実施例2 出発原料としてTiC止、、H2,CH3CNを用い、
超硬合金(材質A30N;型番SPMN422)上にT
i(CN)を850℃で2μm被覆した試料と、同条件
で被覆後、第1表に示すような温度および圧力で2時間
真空熱処理した試料とを、次の条件で断続切削したとこ
ろ、第1表に示す結果が得られた。
Example 2 Using TiC, H2, CH3CN as starting materials,
T on cemented carbide (material A30N; model number SPMN422)
When a sample coated with 2 μm of i(CN) at 850°C and a sample coated under the same conditions and vacuum heat-treated for 2 hours at the temperature and pressure shown in Table 1 were cut intermittently under the following conditions, the following results were obtained: The results shown in Table 1 were obtained.

カッタ:DPG4160R 速度:220m/min 送り:0.14mm/刃 切削油:なし 被削材:50M435 (以下余白) 第1表から明らかなように、本発明に係る切削工具では
、欠損に至るまでの切削時間および逃げ面摩耗幅に関し
、従来の被覆切削工具よりも優れた性能を発揮すること
がわかる。
Cutter: DPG4160R Speed: 220m/min Feed: 0.14mm/Blade Cutting oil: None Work material: 50M435 (Left below is the margin) As is clear from Table 1, the cutting tool according to the present invention has a It can be seen that this tool exhibits better performance than conventional coated cutting tools in terms of cutting time and flank wear width.

実施例3 出発原料としてTiC麩、、HfC之、、H2゜CHs
 CN、CHs  (NH) 2 CHsを用い、サー
メット(型番5NG432)上にTi(CN)。
Example 3 TiC, HfC, H2°CHs as starting materials
Ti(CN) on cermet (model number 5NG432) using CN, CHs (NH) 2 CHs.

Hf (CN)を750℃で2pm被覆した試料と、同
条件で被覆した後、第2表に示す温度および圧力の条件
で4時間真空熱処理を施した試料とを、次の条件で断続
切削し、耐欠損性を明らかにするための4溝靭性テスト
を行なった。その結果を第2表に示す。
A sample coated with 2 pm of Hf (CN) at 750°C and a sample coated under the same conditions and then subjected to vacuum heat treatment for 4 hours at the temperature and pressure conditions shown in Table 2 were cut intermittently under the following conditions. A four-groove toughness test was conducted to clarify the fracture resistance. The results are shown in Table 2.

速度:150m/min 送り:0.18〜0.25mm/刃 被削材:50M435 切削時間:30sec 繰返し数二8回 切削油:なし この第2表から明らかなように、比較品に比べて本発明
に係る被覆切削工具は、優れた耐欠損特性を有している
ことがわかる。
Speed: 150m/min Feed: 0.18-0.25mm/Blade Work material: 50M435 Cutting time: 30sec Number of repetitions: 28 Cutting oil: None As is clear from Table 2, this product is more effective than the comparative product. It can be seen that the coated cutting tool according to the invention has excellent fracture resistance.

[発明の効果] 以上説明したように、本発明によれば、被覆層中の残留
塩素量を減少させることにより、比較的低温で化学蒸着
法を採用した場合の利点である被覆切削工具の耐欠損性
および耐摩耗性を最大限に発揮することができ、強靭で
優れた耐欠損性を有する被覆切削工具が得られる。
[Effects of the Invention] As explained above, according to the present invention, by reducing the amount of residual chlorine in the coating layer, the durability of the coated cutting tool, which is an advantage when using chemical vapor deposition at a relatively low temperature, is improved. A coated cutting tool that can maximize fracture resistance and wear resistance and has strong and excellent fracture resistance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)超硬合金またはサーメットからなる基体に、IVa
族金属の炭化物、窒化物および炭窒化物の一群から選ば
れた少なくとも1種の被覆層を被覆した被覆切削工具に
おいて、 前記被覆層は、 前記IVa族金属の金属源としてのIVa族金属塩化物と、
炭素、窒素源としてのCH_4、N_2または有機窒素
化合物とを、H_2をキャリアガスとし化学蒸着法で7
00〜900℃で反応させて、前記基体表面に未処理被
覆層を形成し、 さらに500〜900℃、50torr以下の条件で、
真空熱処理を10分〜10時間行なうことによって得ら
れた、 塩素含有量の少ない被覆層であることを特徴とする被覆
切削工具。
(1) IVa on a base made of cemented carbide or cermet
A coated cutting tool coated with at least one coating layer selected from the group of group metal carbides, nitrides, and carbonitrides, wherein the coating layer includes a group IVa metal chloride as a metal source of the group IVa metal. and,
Carbon, CH_4 as a nitrogen source, N_2 or an organic nitrogen compound, and H_2 as a carrier gas, by chemical vapor deposition method.
React at 00 to 900°C to form an untreated coating layer on the surface of the substrate, further under conditions of 500 to 900°C and 50 torr or less,
A coated cutting tool characterized by having a coating layer with a low chlorine content obtained by performing vacuum heat treatment for 10 minutes to 10 hours.
(2)特許請求の範囲第1項において、炭素、窒素源と
してアセトニトリル(CH_3CN)を用いた被覆切削
工具。
(2) A coated cutting tool according to claim 1, using acetonitrile (CH_3CN) as a carbon and nitrogen source.
JP25869087A 1987-10-14 1987-10-14 Coated cutting tool Expired - Lifetime JP2590139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25869087A JP2590139B2 (en) 1987-10-14 1987-10-14 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25869087A JP2590139B2 (en) 1987-10-14 1987-10-14 Coated cutting tool

Publications (2)

Publication Number Publication Date
JPH01104773A true JPH01104773A (en) 1989-04-21
JP2590139B2 JP2590139B2 (en) 1997-03-12

Family

ID=17323742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25869087A Expired - Lifetime JP2590139B2 (en) 1987-10-14 1987-10-14 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP2590139B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386403A (en) * 1989-08-29 1991-04-11 Hitachi Tool Eng Ltd Surface coated throw away tip
JPH0418658U (en) * 1990-06-06 1992-02-17
WO1992005296A1 (en) * 1990-09-17 1992-04-02 Kennametal Inc. Cvd and pvd coated cutting tools
US5223337A (en) * 1988-12-10 1993-06-29 Fried. Krupp Gmbh Tool produced by a plasma-activated CVD process
US5232318A (en) * 1990-09-17 1993-08-03 Kennametal Inc. Coated cutting tools
US5250367A (en) * 1990-09-17 1993-10-05 Kennametal Inc. Binder enriched CVD and PVD coated cutting tool
US5266388A (en) * 1990-09-17 1993-11-30 Kennametal Inc. Binder enriched coated cutting tool
US5325747A (en) * 1990-09-17 1994-07-05 Kennametal Inc. Method of machining using coated cutting tools
US5589223A (en) * 1990-01-31 1996-12-31 Mitsubishi Material Corp. Process for producing cermet cutting tools having both longitudinal and granular crystal structures
WO1998015671A1 (en) * 1996-10-09 1998-04-16 Widia Gmbh Composite body, production process and use
JP2004197154A (en) * 2002-12-18 2004-07-15 Jfe Steel Kk Grain-oriented silicon steel sheet and its producing method, and device for coating ceramic film
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2016153518A (en) * 2015-02-20 2016-08-25 東京エレクトロン株式会社 Film deposition method and film deposition apparatus of carbon film
EP3620552A1 (en) 2018-09-04 2020-03-11 Tungaloy Corporation Coated cutting tool

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223337A (en) * 1988-12-10 1993-06-29 Fried. Krupp Gmbh Tool produced by a plasma-activated CVD process
JPH0386403A (en) * 1989-08-29 1991-04-11 Hitachi Tool Eng Ltd Surface coated throw away tip
US5589223A (en) * 1990-01-31 1996-12-31 Mitsubishi Material Corp. Process for producing cermet cutting tools having both longitudinal and granular crystal structures
JPH0418658U (en) * 1990-06-06 1992-02-17
US5364209A (en) * 1990-09-17 1994-11-15 Kennametal Inc. CVD and PVD coated cutting tools
US5250367A (en) * 1990-09-17 1993-10-05 Kennametal Inc. Binder enriched CVD and PVD coated cutting tool
US5266388A (en) * 1990-09-17 1993-11-30 Kennametal Inc. Binder enriched coated cutting tool
US5325747A (en) * 1990-09-17 1994-07-05 Kennametal Inc. Method of machining using coated cutting tools
US5232318A (en) * 1990-09-17 1993-08-03 Kennametal Inc. Coated cutting tools
US5395680A (en) * 1990-09-17 1995-03-07 Kennametal Inc. Coated cutting tools
WO1992005296A1 (en) * 1990-09-17 1992-04-02 Kennametal Inc. Cvd and pvd coated cutting tools
WO1998015671A1 (en) * 1996-10-09 1998-04-16 Widia Gmbh Composite body, production process and use
US6224968B1 (en) 1996-10-09 2001-05-01 Widia Gmbh Composite body, production process and use
JP2004197154A (en) * 2002-12-18 2004-07-15 Jfe Steel Kk Grain-oriented silicon steel sheet and its producing method, and device for coating ceramic film
JP4595280B2 (en) * 2002-12-18 2010-12-08 Jfeスチール株式会社 Method for producing unidirectional silicon steel sheet and ceramic coating apparatus
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2016153518A (en) * 2015-02-20 2016-08-25 東京エレクトロン株式会社 Film deposition method and film deposition apparatus of carbon film
EP3620552A1 (en) 2018-09-04 2020-03-11 Tungaloy Corporation Coated cutting tool
US11007579B2 (en) 2018-09-04 2021-05-18 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
JP2590139B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US4337300A (en) Surface-coated blade member for cutting tools and process for producing same
US6152977A (en) Surface functionalized diamond crystals and methods for producing same
JPH01104773A (en) Coated cutting tool
JPH02197569A (en) Coated sintered hard alloy and production thereof
JPS6334227B2 (en)
JP3384110B2 (en) Coated cutting tool and its manufacturing method
EP0589641A2 (en) Method of producing wear resistant articles
JPS6117909B2 (en)
JP3291775B2 (en) Surface coated cutting tool
JPH09300105A (en) Throw-away insert of surface coated super-hard alloy
US20110223332A1 (en) Method for depositing cubic boron nitride thin film
JP3478355B2 (en) Surface coated WC based cemented carbide cutting tool
JPS61291493A (en) Diamond coated hard material
JPS5822374A (en) Surface coated high speed steel member
JPH04301084A (en) Wear-resistant member and its manufacture
EP0083842A1 (en) Surface-coated hard metal body and method of producing the same
JPS6242995B2 (en)
JPS6244572A (en) Surface coated tool
JPS6228452A (en) Knitting needle
US5073411A (en) Process for forming a surface oxidized binding layer on hard substrates
JPH06248420A (en) Hard film coated member
JPS6257802A (en) Parts coated with hard carbon
JP2648718B2 (en) Manufacturing method of coated cemented carbide tool
JPS5856033B2 (en) Coated cemented carbide parts
JP2576996B2 (en) Manufacturing method of coated cutting tool