JP2648718B2 - Manufacturing method of coated cemented carbide tool - Google Patents

Manufacturing method of coated cemented carbide tool

Info

Publication number
JP2648718B2
JP2648718B2 JP22242989A JP22242989A JP2648718B2 JP 2648718 B2 JP2648718 B2 JP 2648718B2 JP 22242989 A JP22242989 A JP 22242989A JP 22242989 A JP22242989 A JP 22242989A JP 2648718 B2 JP2648718 B2 JP 2648718B2
Authority
JP
Japan
Prior art keywords
layer
microns
cemented carbide
coated
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22242989A
Other languages
Japanese (ja)
Other versions
JPH0387369A (en
Inventor
仁 堀江
広志 植田
正幸 松崎
順彦 島
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Tools Ltd
Original Assignee
Hitachi Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tools Ltd filed Critical Hitachi Tools Ltd
Priority to JP22242989A priority Critical patent/JP2648718B2/en
Publication of JPH0387369A publication Critical patent/JPH0387369A/en
Application granted granted Critical
Publication of JP2648718B2 publication Critical patent/JP2648718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被覆超硬合金工具の改良に関するものであ
る。詳細には、耐欠損性を向上した被覆超硬合金工具の
応用範囲の拡大に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to improvements in coated cemented carbide tools. More specifically, the present invention relates to expansion of the application range of coated cemented carbide tools with improved fracture resistance.

〔従来の技術〕[Conventional technology]

硬質層がWC、WTiTa)C及びCoからなる超硬合金にTi
C、Al2O3、TiCN、TiN等を種々酌み合わせた多層被覆工
具は、その適用範囲が広くかつ長寿命の切削工具、耐摩
工具等として実用に供せられている。
The hard layer consists of WC, WTiTa) C and Co.
Multi-layer coated tools that take into account various factors such as C, Al 2 O 3 , TiCN, and TiN have been widely put into practical use as cutting tools, wear-resistant tools, and the like that have a wide application range and long life.

その製造方法は主としてCVD法、PVD法が用いられてい
るが、プロセス技術の進歩により様々な被覆方法もとら
れている。
Although the CVD method and the PVD method are mainly used for the manufacturing method, various coating methods have been adopted due to the progress of process technology.

また、基体にはJIS M系超合金にTiNを微量添加した合
金が広く用いられ、窒素の添加により、脱ベータ層等の
表面改質が計れ、より靭性が向上している。従来、耐摩
耗性重視の用途にはCVD法によりTiC、Al2O3等の多層被
覆が使用され耐欠損性重視の用途には強度の劣化が少な
いPVD法によりTiNを被覆した工具が適用されている。
In addition, an alloy obtained by adding a small amount of TiN to a JIS M superalloy is widely used for the substrate. By adding nitrogen, the surface modification of the debeta layer and the like can be measured, and the toughness is further improved. Conventionally, multi-layer coating of TiC, Al 2 O 3 etc. is used by CVD method for applications that emphasize wear resistance, and tools coated with TiN by PVD method with little deterioration in strength are applied to applications that emphasize fracture resistance. ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の様に従来の耐摩耗重視の用途には、TiC、Al2O3
等の被覆を実施し表面部に耐摩耗性の高い膜を被覆し効
果を上げているが、その反面、成膜時に基体と皮膜界面
に生じる脆弱な脱炭層のため耐欠損性に弱いという欠点
があり、その改善として基体の表面に軟化層を設けた
り、上記の脱ベータ層等を設定したりしてその強度の改
善を計っている。しかし、表面に軟化層や脱ベータ層を
設ける事は、基体表面のTi量を減ずるため、カーボンの
動きを減少させ皮膜の密着性、耐剥離性、脱炭層の生成
等、目的として意図とは反対に強度を劣化させ易い。
As described above, conventional wear-oriented applications include TiC, Al 2 O 3
The surface is coated with a highly wear-resistant film to improve its effect, but on the other hand, it has a weak defect resistance due to the fragile decarburized layer generated at the interface between the substrate and the film during film formation. In order to improve the strength, a softening layer is provided on the surface of the substrate, or the above-mentioned de-beta layer is provided to improve the strength. However, providing a softening layer or a de-beta layer on the surface reduces the amount of Ti on the surface of the substrate, so the movement of carbon is reduced and the adhesion of the film, the peel resistance, the formation of a decarburized layer, etc. are not intended. Conversely, the strength tends to deteriorate.

〔問題点を解決するための手段〕[Means for solving the problem]

しかしながら、本発明者らは、JIS M系超硬合金にお
いて脱ベータ層を持つ基体を使用して様々な方法で脆弱
な脱炭層の生成の防止に関して検討した結果、有機CN化
合物を反応ガスとするCVD法で成膜した場合、その方法
の特長である低温処理のための基体との反応が少なく脱
炭層の生成が少なく、またアルミナ等の被覆のための蒸
着温度を上昇させても既成膜と基体の反応は少なく、膜
の結晶性の変化にとどまり膜質が脱炭層の原因となるC
の移動に関して阻害する傾向があることをみいだした。
However, the present inventors have studied on the prevention of the formation of a fragile decarburized layer by various methods using a substrate having a debeta layer in JIS M cemented carbide, and found that an organic CN compound was used as a reactive gas. When a film is formed by the CVD method, there is little reaction with the substrate for low-temperature treatment, which is a feature of the method, and there is little generation of a decarburized layer. The reaction of the substrate is small, and the film quality is limited to the change in the crystallinity of the film.
Have a tendency to impede the movement of humans.

〔作用〕[Action]

以上のごとく、本発明は、周期律表の4a、5a、6a族の
炭化物、窒化物、炭窒化物の1種類以上と、Fe族、Cr族
の1種類以上よりなるとともに、(WTiTa)Cが無い脱
ベータ層を10〜50ミクロン設けたWC基超硬合金を基体と
し、 前記基体上に内層として0.5〜10ミクロンの有機CN化
合物を反応ガスに用いたCVD法による炭窒化チタンを設
け、 つづいて、中間層として1.0〜10ミクロンのメタン及
び/又は窒素ガスを反応ガスに用いたCVD法による炭化
チタン、窒化チタン、炭窒化チタンの1種または2種以
上を設け、 更に最外層として0.5〜5ミクロンの窒素ガス及/又
は2酸化炭素ガスを反応ガスに用いたCVD法による窒化
チタン及び/または酸化アルミニウムを被覆したことを
特徴とする被覆超硬合金工具の製造方法、 である。
As described above, the present invention comprises one or more types of carbides, nitrides, and carbonitrides of groups 4a, 5a, and 6a of the periodic table, and one or more types of Fe group and Cr group, and (WTiTa) C The base is a WC-based cemented carbide having a de-beta layer with no pores of 10 to 50 microns, and titanium carbonitride is provided as an inner layer on the substrate by a CVD method using an organic CN compound of 0.5 to 10 microns as a reaction gas, Subsequently, one or two or more of titanium carbide, titanium nitride, and titanium carbonitride are provided as an intermediate layer by a CVD method using methane and / or nitrogen gas of 1.0 to 10 μm as a reaction gas. A method for producing a coated cemented carbide tool characterized by being coated with titanium nitride and / or aluminum oxide by a CVD method using a nitrogen gas and / or a carbon dioxide gas of up to 5 microns as a reaction gas.

本発明による被覆工具の基体及び膜は以下の理由によ
り限定される。
The substrate and membrane of the coated tool according to the invention are limited for the following reasons.

1)脱ベータ層 10〜50ミクロン 4a族の窒化物を微量添加することにより表面に脱ベー
タ層を生成させるが10ミクロン以下ではクラック伝播を
阻む効果が少なく、また50ミクロン以上では切削中期以
降、摩耗がある程度進行してきたとき、脱ベータ層が受
けとめてしまい溶着より欠損等を生じ易くなるため、10
〜50ミクロンとした。
1) De-beta layer 10 ~ 50 micron De-beta layer is generated on the surface by adding a small amount of 4a nitride, but less than 10 micron has little effect on crack propagation. When the wear has progressed to a certain extent, the debeta layer is accepted and it is easy for defects to occur due to welding.
~ 50 microns.

2)内層 0.5〜10ミクロン 反応ガスとして有機CN化合物を用いるCVD法による炭
窒化チタン 内層が0.5ミクロン未満ではCの移動を抑制するため
に充分な効果がなく、また単層で10ミクロンを越えると
著しく靭性を阻害するために、0.5〜10ミクロンとし
た。
2) Inner layer 0.5 to 10 microns Titanium carbonitride by CVD method using an organic CN compound as a reaction gas If the inner layer is less than 0.5 microns, there is not enough effect to suppress the movement of C, and if it exceeds 10 microns in a single layer. In order to significantly impair toughness, the thickness was set to 0.5 to 10 microns.

3)中間層 1.0〜10ミクロン 反応ガスをメタン及び/又は窒素ガスを用いるCVD法
による、炭化チタン、窒化チタン、炭窒化チタンの1種
または2種以上 中間層が1.0ミクロン未満では充分な耐摩耗性を付与
することが出来ず、10ミクロンをこえると一層として厚
く成りすぎ脆くなるため、1.0〜10ミクロンとした。
3) Intermediate layer 1.0 to 10 microns One or two or more of titanium carbide, titanium nitride, and titanium carbonitride by the CVD method using methane and / or nitrogen gas as the reaction gas. When the thickness exceeds 10 microns, the layer becomes too thick and becomes brittle.

また、2)3)を繰り返し被覆し、皮膜の粗粒化を防
止しつつ厚膜化を計った場合でも10ミクロン以下が望ま
しい。
In addition, even when 2) and 3) are repeatedly applied to increase the film thickness while preventing coarsening of the film, the thickness is preferably 10 μm or less.

4)最外層 0.5〜5ミクロン 反応ガスを窒素ガス及び/又は2酸化炭素ガスを用い
たCVD法による窒化チタン及び/または酸化アルミニウ
ム 最外層が0.5ミクロン未満では充分な耐摩耗性を付与
することが出来ず、5ミクロンをこえると一層して厚く
成りすぎ脆くなるため、1.0〜5ミクロンとした。
4) Outermost layer 0.5 to 5 microns Titanium nitride and / or aluminum oxide by a CVD method using nitrogen gas and / or carbon dioxide gas as the reaction gas. If the outermost layer is less than 0.5 microns, sufficient wear resistance can be imparted. If it exceeds 5 microns, it becomes too thick and becomes brittle.

以下、本発明に関し具体的に説明する。 Hereinafter, the present invention will be described specifically.

〔実施例1〕 市販のWC粉末(平均粒度5.0μm)、TiC粉末(同1.0
μm)、TiN粉末(同1.0μm)、TaC粉末(1.5μm)及
び結合相としてCo粉末を使用して、一般に旋削用の基体
に使用されるJIS M20相当(組成86WC−2TiC−5TaC−7Co
−0.2TiN)になるように配合した。これらの粉末を配合
し、混合終了後、乾燥した後、プレス成形し、真空中14
00℃で1hr焼結したのち、SNMA432の形状に加工した。
[Example 1] Commercially available WC powder (average particle size: 5.0 µm) and TiC powder (1.0
μm), TiN powder (1.0 μm for the same), TaC powder (1.5 μm) and Co powder as the binder phase. Equivalent to JIS M20 (composition 86WC-2TiC-5TaC-7Co, generally used for turning substrates)
-0.2 TiN). These powders are blended, mixed, dried, press-molded and vacuumed.
After sintering at 00 ° C for 1 hour, it was processed into the shape of SNMA432.

更に、前記チップをCVD反応炉中に設置し、H2ガスを
流しながら、800℃まで昇温し、800℃よりTiCl42%、CH
3CN2%、H2残からなる混合気体を流量7リットル/min圧
力40mmHgの条件で供給し、0.5時間反応させ気体上にTiC
Nを2ミクロン被覆した。さらに、1000℃まで昇温し、
混合気体をiCl42%、N22%の組成に代え6時間反応させ
基体上にTiNをミクロン形成させ、次に混合気体をCO22
%、AlCl32%、H2残からなる混合気体を流量7リットル
/min圧力40mmHgの条件で供給し4時間半納させ基体上に
Al2O3を2ミクロン被覆した。
Furthermore, by placing the chip into the CVD reactor, while introducing H 2 gas, the temperature was raised to 800 ℃, TiCl 4 2% than 800 ° C., CH
3 CN2%, supplying a mixed gas consisting of H 2 remaining in the conditions of a flow rate 7 l / min pressure 40 mmHg, TiC on the gas reacted 0.5 hours
N was coated 2 microns. Furthermore, the temperature is raised to 1000 ° C,
The mixed gas iCl 4 2%, N 2 2 % of TiN to micron formed 6 hours reacted on a substrate instead of the composition, then the mixed gas CO 2 2
%, AlCl 3 2%, flow rate 7 l a mixed gas composed of H 2 remaining
/ min pressure of 40mmHg and supply for 4 and a half hours on substrate
Al 2 O 3 was coated 2 microns.

このチップを、市販の脱ベータ層を20ミクロン有する
TiC 6μm−Al2O3 2μmのチップと切削試験を以下の条
件で実施した。
This chip has a commercially available debeta layer of 20 microns
A cutting test with a 6 μm TiC-Al 2 O 3 2 μm chip was performed under the following conditions.

切削試験の諸元は、構造用鋼の丸棒に4カ所に10mm幅
の溝を入れ、機械的な衝撃が加わる条件で実施した。
The specifications of the cutting test were carried out under conditions where a 10 mm-wide groove was formed in four places in a round bar of structural steel and a mechanical shock was applied.

切削速度 180m/min 送り 0.2mm/rev 切込み 6.0mm その結果、本発明の被覆工具は2000回の衝撃に対して
も欠損せず、正常な摩耗を示したのに対し、市販のチッ
プは200から300回の衝撃で欠損した。
Cutting speed 180 m / min Feed 0.2 mm / rev Depth of cut 6.0 mm As a result, the coated tool of the present invention did not break even after 2000 impacts and showed normal wear, whereas the commercial insert It was lost after 300 shocks.

さらに、耐摩耗性を比較するための同様な切削諸元で
丸棒を使用して行った。30分切削後の逃げ面最大摩耗量
は本発明チップ0.29mm、市販チップ0.32mmと大差はなか
った。
Further, a round bar was used with similar cutting specifications for comparing wear resistance. The maximum wear amount of the flank after cutting for 30 minutes was not much different from the insert of the present invention of 0.29 mm and the commercial insert of 0.32 mm.

〔実施例2〕 実施例1と同様な組成のチップを使用し、液相発生温
度以下における焼結時の真空度、保持時間を変化させる
事により脱ベータ層の厚さを変化させ、更に実施例1と
同様な方法で被覆した。
[Example 2] Using a chip having the same composition as in Example 1, changing the degree of vacuum and holding time during sintering at a temperature lower than the liquid phase generation temperature to change the thickness of the de-beta layer, and further performing Coating was performed in the same manner as in Example 1.

第1表にその脱ベータ層の厚さ、膜質、膜厚を示す。
実施例1と同様な切削条件でテストした結果についても
第1表に併記する。
Table 1 shows the thickness, film quality, and film thickness of the debeta layer.
Table 1 also shows the results of tests performed under the same cutting conditions as in Example 1.

第1表の結果より、耐欠損性では、衝撃回数に大きな
差があるが、耐摩耗性に関しては同等か多少優れる程度
である。従って、耐摩耗性に関しては中間層に複層の被
覆を生成し膜の微細化を計り、最外層に窒化チタンを行
う等、膜質により向上させることも可能である。
From the results in Table 1, there is a large difference in the number of impacts in the fracture resistance, but the wear resistance is equivalent or slightly superior. Therefore, the wear resistance can be improved by the film quality, for example, by forming a multi-layer coating on the intermediate layer, miniaturizing the film, and applying titanium nitride on the outermost layer.

〔発明の効果〕 本発明の被覆超硬合金工具の製造方法は、皮膜と基体
界面に生ずる脱ベータ層を生成し、かつ脱ベータ層の効
果を脱炭層の生成防止をはかることにより最大限に生か
し、刃先強度を増し、耐欠損性を向上させたものであ
り、被覆工具の欠点である縦断続切削を含む分野へより
適用範囲を広げた工具である。
[Effects of the Invention] The method for producing a coated cemented carbide tool according to the present invention maximizes the effect of the debeta layer generated at the interface between the coating and the substrate by preventing the formation of the decarburized layer. It is a tool that has been used to increase the edge strength and improve fracture resistance, and has a wider application range to fields including longitudinal interrupted cutting, which is a disadvantage of coated tools.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井寄 裕介 千葉県成田市新泉13番地の2 日立ツー ル株式会社成田工場内 合議体 審判長 中山 時夫 審判官 高梨 操 審判官 長者 義久 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yusuke Iyoro 13-2, Shinsen, Narita-shi, Chiba Pref.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周期律表の4a、5a、6a族の炭化物、窒化
物、炭窒化物の1種以上と、Fe族、Cr族の1種以上より
なるとともに、(WTiTa)Cが無い脱ベータ層を10〜50
ミクロンを設けたWC基超硬合金を基体とし、 前記基体上に内層として0.5〜10ミクロンの有機CN化合
物を反応ガスに用いたCVD法による炭窒化チタンを設
け、 つづいて、中間層として1.0〜10ミクロンのメタン及び
/又は窒素ガスを反応ガスに用いたCVD法による炭化チ
タン、窒化チタン、炭窒化チタンの1種または2種以上
を設け、 更に最外層として0.5〜5ミクロンの窒素ガス及び/又
は2酸化炭素ガスを反応ガスに用いたCVD法による窒化
チタン及び/または酸化アルミニウムを被覆したことを
特徴とする被覆超硬合金工具の製造方法。
The present invention comprises at least one of carbides, nitrides and carbonitrides of groups 4a, 5a and 6a of the periodic table and at least one of Fe and Cr groups, and has no (WTiTa) C. Beta layer 10-50
A WC-based cemented carbide provided with a micron is used as a base, and titanium carbonitride is provided as an inner layer on the base by a CVD method using an organic CN compound of 0.5 to 10 μm as a reaction gas. One or two or more of titanium carbide, titanium nitride, and titanium carbonitride are provided by a CVD method using methane and / or nitrogen gas of 10 microns as a reaction gas, and nitrogen gas of 0.5 to 5 microns and / or Alternatively, a method for producing a coated cemented carbide tool characterized by being coated with titanium nitride and / or aluminum oxide by a CVD method using a carbon dioxide gas as a reaction gas.
JP22242989A 1989-08-29 1989-08-29 Manufacturing method of coated cemented carbide tool Expired - Fee Related JP2648718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22242989A JP2648718B2 (en) 1989-08-29 1989-08-29 Manufacturing method of coated cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22242989A JP2648718B2 (en) 1989-08-29 1989-08-29 Manufacturing method of coated cemented carbide tool

Publications (2)

Publication Number Publication Date
JPH0387369A JPH0387369A (en) 1991-04-12
JP2648718B2 true JP2648718B2 (en) 1997-09-03

Family

ID=16782257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22242989A Expired - Fee Related JP2648718B2 (en) 1989-08-29 1989-08-29 Manufacturing method of coated cemented carbide tool

Country Status (1)

Country Link
JP (1) JP2648718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429980A (en) * 2005-09-08 2007-03-14 John James Saveker Material comprising a carbide, boride or oxide and tungsten carbide

Also Published As

Publication number Publication date
JPH0387369A (en) 1991-04-12

Similar Documents

Publication Publication Date Title
US6929851B1 (en) Coated substrate
RU2466828C2 (en) Cutting tool
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3658949B2 (en) Coated cemented carbide
EP0446375B1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JP2000218410A (en) Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2648718B2 (en) Manufacturing method of coated cemented carbide tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
KR930010709B1 (en) Surface-coated hard member having excellent abrasion resistance
JPH0364469A (en) Coated sintered hard alloy tool
JP3358696B2 (en) High strength coating
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
AU761003B2 (en) Substrate treatment method
JPH0433865B2 (en)
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JPH03122280A (en) Coated cemented carbide tool
JP2657235B2 (en) Coated super hard alloy tool
JP2657236B2 (en) Coated super hard alloy tool
JPS60174876A (en) Manufacture of coated cutting tool
JPH0387368A (en) Coated sintered hard alloy tool
JPH058103A (en) Cutting tool member made of surface-coated tungsten carbide base sintered alloy
JPH0645880B2 (en) Method for producing surface-coated cemented carbide
JPH0225721B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090516

LAPS Cancellation because of no payment of annual fees